1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi thử Đại học môn Toán khối D năm 2011

5 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 232 KB

Nội dung

Đề thi thử Đại học môn Toán khối D năm 2011 có kèm đáp án. Đây là tài liệu ôn tập và luyện thi tốt giúp các em biết được những dạng Toán sẽ ra trong kì thi ĐH để có sự chuẩn bị chu đáo cho kì thi sắp tới.

ĐỀ THI THỬ ĐẠI HỌC NĂM 2011 Mơn : Tốn, khối D (Thời gian 180 không kể phát đề) PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = x3 – 3x2+2 (1) Khảo sát biến thiên vẽ đồ thị hàm số (1) Tìm điểm M thuộc đường thẳng y=3x-2 tổng khoảng cách từ M tới hai điểm cực trị nhỏ Câu II (2 điểm) Giải phương trình cos2x + 2sin x − − 2sin x cos 2x = Giải bất phương trình ( 4x − 3) x − 3x + ≥ 8x − π cotx dx π  π s inx.sin  x + ÷ 4  Câu III ( 1điểm)Tính tích phân I = ∫ Câu IV (1 điểm) Cho hình chóp S.ABC có mặt đáy (ABC) tam giác cạnh a Chân đường vng góc hạ từ S xuống mặt phẳng (ABC) điểm thuộc BC Tính khoảng cách hai đường thẳng BC SA biết SA=a SA tạo với mặt phẳng đáy góc 300 Câu V (1 điểm) Cho a,b, c dương a2+b2+c2=3 Tìm giá trị nhỏ biểu thức P= a3 b2 + + b3 c2 + + c3 a2 + PHẦN RIÊNG (3 điểm) A Theo chương trình chuẩn Câu VI.a (2 điểm) Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) : x + y + 2x − 8y − = Viết phương trình đường thẳng song song với đường thẳng d: 3x+y-2=0 cắt đường tròn theo dây cung có độ dài Cho ba điểm A(1;5;4), B(0;1;1), C(1;2;1) Tìm tọa độ điểm D thuộc đường thẳng AB cho độ dài đoạn thẳng CD nhỏ Câu VII.a (1 điểm) Tìm số phức z thoả mãn : z − + i = Biết phần ảo nhỏ phần thực đơn vị B Theo chương trình nâng cao Câu VI.b (2 điểm) 100 + 8C100 + 12C100 + + 200C100 Tính giá trị biểu thức: A = 4C100 Cho hai đường thẳng có phương trình: x−2 z +3 d1 : = y +1 = x = + t  d :  y = − 2t z = 1− t  Viết phương trình đường thẳng cắt d1 d2 đồng thời qua điểm M(3;10;1) Câu VII.b (1 điểm) Giải phương trình sau tập phức: z2+3(1+i)z-6-13i=0 -Hết ĐÁP ÁN ĐỀ THI TH I HC LN II, năm 2010 PHN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu Nội dung Tập xác định: D=R lim ( x − x + ) = −∞ x →−∞ Điểm lim ( x3 − x + ) = +∞ x →+∞ x = x = y’=3x2-6x=0 ⇔  Bảng biến thiên: x -∞ y’ + 0,25 đ 0 - +∞ + +∞ 0,25 đ y I -∞ Hàm số đồng biến khoảng: (-∞;0) (2; + ∞) Hàm số nghịch biến khoảng (0;2) fCĐ=f(0)=2; fCT=f(2)=-2 y’’=6x-6=0x=1 x=1=>y=0 x=3=>y=2 x=-1=>y=-2 -2 0,5 đ Đồ thị hàm số nhận điểm I(1;0) tâm đối xứng Gọi tọa độ điểm cực đại A(0;2), điểm cực tiểu B(2;-2) Xét biểu thức P=3x-y-2 Thay tọa độ điểm A(0;2)=>P=-4P=6>0 Vậy điểm cực đại cực tiểu nằm hai phía đường thẳng y=3x-2, để MA+MB nhỏ => điểm A, M, B thẳng hàng Phương trình đường thẳng AB: y=-2x+2 Tọa độ điểm M nghiệm hệ:  x=   y = 3x −  4 2 ⇔ => M  ; ÷  5 5  y = −2 x + y =  cos2x + 2sin x − − 2sin x cos 2x = (1) Giải phương trình: ( 1) ⇔ cos2 x ( − 2sin x ) − ( − 2sin x ) = II ⇔ ( cos2 x − 1) ( − 2sin x ) = Khi cos2x=1 x = kπ , k ∈ Z π 5π + k 2π , k ∈ Z Khi s inx = ⇔ x = + k 2π x = 6 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,5 đ 0,5 đ Giải bất phương trình: ( 4x − 3) x − 3x + ≥ 8x − (1) (1) ⇔ ( x − 3) ) ( 0,25 đ x − 3x + − ≥ Ta có: 4x-3=0x=3/4 x − 3x + − =0x=0;x=3 Bảng xét dấu: x -∞ 4x-3 + x − 3x + − Vế trái - + 0,25 đ ¾ +∞ + - 0 0,25 đ + + +  3 Vậy bất phương trình có nghiệm: x ∈  0;  ∪ [ 3; +∞ )  4 0,25 đ Tính π π cot x cot x dx = ∫ dx π  π π s inx ( s inx + cos x ) sin x sin  x + ÷ 6 4  I=∫ π III = 2∫ π 0,25 đ cot x dx s in x ( + cot x ) dx = −dt sin x π π +1 Khi x = ⇔ t = + 3; x = ⇔ t = 3 0,25 đ Đặt 1+cotx=t ⇒ Vậy I= +1 t −1 ∫ t dt = ( t − ln t ) +1 +1 +1 0,25 đ   = 2 − ln ÷   0,25 đ IV Gọi chân đường vng góc hạ từ S xuống BC H Xét ∆SHA(vuông H) AH = SA cos 300 = 0,25 đ S a Mà ∆ABC cạnh a, mà cạnh AH = a K => H trung điểm cạnh BC => AH ⊥ BC, mà SH ⊥ BC => BC⊥(SAH) Từ H hạ đường vng góc xuống SA K => HK khoảng cách BC SA => HK = AH sin 300 = A C 0,25 đ H B 0,25 đ AH a = Vậy khoảng cách hai đường thẳng BC SA a 0,25 đ Ta có: a3 b2 + b3 c +3 + c3 V + a2 + a3 b2 + b3 c +3 + + + c3 a2 + b2 + a 3a ≥ 33 = (1) 16 64 c2 + c 3c ≥ 33 = (2) 16 64 + 0,5 đ a2 + c 3c ≥ 33 = (3) 16 64 Lấy (1)+(2)+(3) ta được: a + b2 + c2 + P+ ≥ ( a + b + c ) (4) 16 0,25 đ Vì a2+b2+c2=3 Từ (4) ⇔ P ≥ 3 giá trị nhỏ P = a=b=c=1 2 0,25 đ PHẦN RIÊNG (3 điểm) A Theo chương trình chuẩn Đường trịn (C) có tâm I(-1;4), bán kính R=5 Gọi phương trình đường thẳng cần tìm ∆, => ∆ : 3x+y+c=0, c≠2 (vì // với đường thẳng 3x+y-2=0) Vì đường thẳng cắt đường trịn theo dây cung có độ dài 6=> khoảng cách từ tâm I đến ∆ 52 − 32 = c = 10 − =4⇔ (thỏa mãn c≠2) 32 + c = −4 10 − Vậy phương trình đường trịn cần tìm là: x + y + 10 − = ⇒ d ( I , ∆) = 0,25 đ 0,25 đ x = 1− t  Phương trình đường thẳng AB:  y = − 4t  z = − 3t  0,25 đ Để độ dài đoạn CD ngắn nhất=> D hình chiếu vng góc C uuur cạnh AB, gọi tọa độ điểm D(1-a;5-4a;4-3a) ⇒ DC = (a; 4a − 3;3a − 3) 0,25 đ uuur uuur Vì AB ⊥ DC =>-a-16a+12-9a+9=0 a = 21 26 0,25 đ  49 41  VII.a 0,25 đ −3 + + c x + y − 10 − = uuur Ta có AB = ( −1; −4; −3) VI.a 0,25 đ 0,25 đ Tọa độ điểm D  ; ; ÷  26 26 26  Gọi số phức z=a+bi  a − + ( b + 1) i = Theo ta có:  b = a − 0,25 đ ( a − ) + ( b + 1) = ⇔ b = a − 2 0,25 đ  a = −   b = −1 − ⇔  a = +   b = −1 + 2 0,25 đ 2 Vậy số phức cần tìm là: z= − +( −1 − )i; z= z= + +( −1 + )i A Theo chương trình nâng cao 100 100 100 + C100 x + C100 x + + C100 x Ta có: ( + x ) = C100 ( 1− x) 100 (1) 100 100 = C100 − C100 x + C100 x − C100 x + + C100 x (2) 0,25 đ 0,25 đ Lấy (1)+(2) ta được: ( 1+ x) 100 + ( 1− x) 100 100 100 = 2C100 + 2C100 x + 2C100 x + + 2C100 x Lấy đạo hàm hai vế theo ẩn x ta 100 ( + x ) − 100 ( − x ) 99 99 100 99 = 4C100 x + 8C100 x3 + + 200C100 x Thay x=1 vào 100 + 8C100 + + 200C100 => A = 100.299 = 4C100 Gọi đường thẳng cần tìm d đường thẳng d cắt hai đường thẳng d d2 điểm A(2+3a;-1+a;-3+2a)uvà B(3+b;7-2b;1-b) uur uuur Do đường thẳng d qua M(3;10;1)=> MA = k MB VI.b uuur uuur MA = ( 3a − 1; a − 11; −4 + 2a ) , MB = ( b; −2b − 3; −b ) 3a − = kb 3a − kb = a =    ⇒ a − 11 = −2kb − 3k ⇔ a + 3k + 2kb = 11 ⇔ k = −4 + 2a = − kb  2a + kb = b =    uuur => MA = ( 2; −10; −2 )  x = + 2t  Phương trình đường thẳng AB là:  y = 10 − 10t  z = − 2t  ∆=24+70i, VII.b ∆ = + 5i z = + i =>   z = −5 − 4i ∆ = −7 − 5i 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ Bài làm điểm thí sinh làm theo cách khác! ... z = − 3t  0,25 đ Để độ d? ?i đoạn CD ngắn nhất=> D hình chiếu vng góc C uuur cạnh AB, gọi tọa độ điểm D( 1-a;5-4a;4-3a) ⇒ DC = (a; 4a − 3;3a − 3) 0,25 đ uuur uuur Vì AB ⊥ DC =>-a-16a+12-9a+9=0... = 100.299 = 4C100 Gọi đường thẳng cần tìm d đường thẳng d cắt hai đường thẳng d d2 điểm A(2+3a;-1+a;-3+2a)uvà B(3+b;7-2b;1-b) uur uuur Do đường thẳng d qua M(3;10;1)=> MA = k MB VI.b uuur uuur... 6 4  I=∫ π III = 2∫ π 0,25 đ cot x dx s in x ( + cot x ) dx = −dt sin x π π +1 Khi x = ⇔ t = + 3; x = ⇔ t = 3 0,25 đ Đặt 1+cotx=t ⇒ Vậy I= +1 t −1 ∫ t dt = ( t − ln t ) +1 +1 +1 0,25 đ  

Ngày đăng: 30/04/2021, 23:51

w