1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Kỹ năng phân loại và phương pháp giải chi tiết bài tập trắc nghiệm Vật lý 12 (Trọng tâm): Phần 2

130 37 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 130
Dung lượng 28,93 MB

Nội dung

Nối tiếp nội dung phần 1 tài liệu Phân loại và phương pháp giải chi tiết bài tập trắc nghiệm Vật lý 12, phần 2 giới thiệu tới người đọc các nội dung: Dao động và sóng điện từ, dòng điện xoay chiều, sóng ánh sáng, lượng tử ánh sáng,... Mời các bạn cùng tham khảo nội dung chi tiết.

• N a n g lufong t i J c t h d i c i i a c u p n c a m ; ChiTtfng IV DAO DQNG VA SONG D I | N Tlf W L = - hi' = -L B, P H A N If, sin'(cot + ip ) w«,.= i L I - l L ^ , ; de • Nang l u p n g d i e n tii cua m a c h dao dpng: 1: D A O D O N G D I E N T L / nang lUgng tit trildng luon luon chuyen hoa cho nhitng, tdng nang N h a n x e t : Nang lifpng d i e n trUdng cua t u dien Wc va n a n g Itfcfng t i f M a c h d a o d o n g L C g o m t u d i e n C d a diTcfc t i c h d i e n , n o i vdi c u p n d a y c6 d o t U c a m L B A D i p n tror R c u a c u o n L day k h o n g dang ke b) Moi quail he giUa q, i, u mach LC T , trucmg cua cupn cam W L bien t h i e n tuan hoan v6i chu k y — , t a n so 2f, t a n so goc CO Doi vdi nang liWng dien tii W l a mot h k n g so khong thay doi Dao dOng di$n tC/ t^t d i n Trong c a c mach dao dpng thuc luon cd t i e u hao n a n g lupng ( d o R c h ^ n g * q = qocos(u)t + cp) han) V i vay, dao dpng se dCrng l a i sau k h i t i e u hao h e ' t n a n g lupng H i e n * V d i lo = qo-w tiipng n a y g p i l a dao dpng dien tii tit d a n Gia t r i R cang I d n t h i sU t ^ t dan cang n h a n h * UAB = , — = — cos((ot + q)) Dao d6ng di$n tCf tri, h§ tU dao d6ng 'c c D a t Uo = ^ Muon CO dao dpng dien tif khong t ^ t dan t a c the t r i bhng each cung c a p UAB = Uocos(o)t + (p) them nang lupng cho mach de bo vao phan nang lupng tieu hao moi chu ky K h i viec cung c a p nang lupng tii p i n cho khung dao dpng L C dugrc t r i Vay: Dien tich, hieu di^n thi' trin hoi ban tu di^n va cUang dong dien mach bien thien dieu hba vai ciing tan so goc Im = T = In = 2Tt^/LC yd tan so f = (0 o n d i n h t h i d a o dpng k h u n g L C dupc t r i o n d i n h v d i t a n so rieng Wo , chu ky c i i a mach Ta gpi day l a h e t U d a o dpng Dao dong di^n tCl caang bQc Su cpng hudng 271 a) Dao dong dien tii cUang bilc VLC" K h i t a m a c mach d a o dpng L C n o i t i e p v d i nguon dien ngoai c d hieu N h a n x e t : Cirdng dong dien t r o n g mach n h a n h p h a - s o v d i dien 3, = ^hll = hhng so- liigng dien tii la khong ddi a) Mach dao dong kin =^CUl Vay: Trong qua trinh dao dong cua mach, nang lugng dien triCang va Dao dOng di$n tC( mach LC mot mach ' W L = WoLsin^(cot + cp) I: T O M T A T L I T H U Y E T W = Wc + W , = ^ Van = i dien t h e bien t h i e n theo t h d i gian u - Uo.cosw.t ch^ng han t h i dong t i c h va hi§u dien t h e giijra h a i b a n cifc cua t u d i e n , h i f u di?n t h e cung dien t r o n g mach L C se k h o n g t h e d a o dpng theo t a n so g o c riehgco,, m a pha dien t i c h cua t u dien p h a i bie'ii t h i e n theo t a n so goc w Qua t r i n h n a y dupc gpi l a d a o dpng Nang lUOng di^n tQ mgch dao d^ng LC • N a n g lifpng tufc thcfi ciia t u d i e n : dien tii cUdng buTc • b) Sii cong hudng H i e n tifpng bien dp c i i a dao dpng d i | n t r o n g k h u n g d a t g i d t r i Wc = - C u ' = - C Dat w,oc cos2((ot + (p) = lcu^ = i c = 2C ^ Wc = Woccos^((ot + (p) (I) C L T C dai = cOp Litu y: Khi mach dao dong c6 R Ian thi dinh cong hiiang thdp (bien nhd) va ngiigc Igi t f n g dung: D o n g t r o n g c a c mach Ipc, mach chpn song, mach khuech dai Van de 2: D I E N TL/ T R U C l N G Dien trUdng bi^n thiSn a) TU tritang tCl trUdng bidn thiSn bien thien: Vain de 4: T R U Y E N T H O N G B A N G S O N G D I E N TL/ Nguyen tSc truyen thOng bSng s6ng dign tQ So( k h o i c i i a PQii mot tiT trircfng bien t h i e n theo thcfi gian thi thong phat v a thu no s i n h mot d i e n trUdng xoay, tiJc l a dudng sufc ciia d i e n trUdng n a y khep k i n va bao boc xung q u a n h duomg siJc tir b) Dien truang bien thien: ^' K h i mot dien t r i / d n g b i e n t h i e n theo t h d i gian t h i no s i n h mot tij' triTcfng xoay Dudng sufc t i ^ ciia tCr trir6ng khep k i n va bao boc xung quanh du&ng sure dien triTcfng [ Dien tC/ trUdng • M o i bien t h i e n theo t h d i gian ciia t\i trUdng deu s i n h r a tr ong khong gian xung quanh m o t d i e n truorng xoay bien t h i e n theo t h d i gian, va nguoc l a i May p h a t dao dong cao t a n A n t e n t h u Bien dien Chon song Dao dpng cao t a n Tach song K e t l u a n : D i e n trUdng b i e n t h i e n va tCr trUcfng bien t h i e n cung t o n t a i Khuyech dai cao t a n Khuyech d a i a m t a n k h o n g gian Chung c6 the chuyen hoa I a n tr ong mot truang A n t e n p h a t 10 Loa t h o n g n h a t duoc goi l a d i e n tCf trUdng • TCr trUdng bien t h i e n c a n g n h a n h t h i cUcfng dien trUcJng xoay c a n g Idn va n g U O c l a i SU truyen s6ng dien tQ quanh Tr^i Dit - K h i t r u y e n song d i e n t\i t r o n g t h o n g t i n quanh T r a i DS't phu thuoc vao cac yeu to n h u : Budc song, dieu k i e n m o i trUcfng t r e n m a t dat va t i n h chat ciia bau k h i quyen V^ande 3; S O N G D I E N TL/ * Song dai va song trung; S6ng di§n tQ 1^ gi? Song dien t\i l a sU Ian t r u y e n cua d i e n ti^ t r i f d n g t r o n g k h o n g gian Oac d i l m , tinh ch^t cua s6ng di§n ta - Truyen duoc moi trUdng vat chat va ca chan khong vci budc song: ^ = J (c = 3.10 m/s); f: T a n so ciia song d i e n tCr (Hz) - Song dien tii l a song ngang T r o n g qua t r i n h t r u y e n song t a i mot diein - Song b i p h a n xa d t a n g d i e n l i va c6 k h a nSng di vong quanh T r a i Dat qua nhieu I a n p h a n xa giUa t a n g dien l i va m a t dat NgU6i t a d i i n g song t r o n g t r u y e n t h a n h va t r u y e n h i n h t r e n m a t dat - Song d a i i t b i nUdc hap t h u n e n d i i n g de t h o n g t i n dudi nUdc * S o n g n g S n : p h a n xa d t a n g dien l i , p h a n xa t r e n m a t dat n h i e u I a n , do t r u y e n dupc xa t r e n m a t dat * S o n g c i / c n g S n : Song cd nSng lupng I d n n h a t , va k h o n g b i t a n g bat k y t r e n phuong t r u y e n , vectd E , vector B luon vuong g6c va dien l i p h a n xa va hap t h u nen t r u y e n t h a n g Song dUprc iJng dung vuong goc v d i phuong t r u y e n song de t h o n g t i n t r o n g cU l i v a i chuc k m hoac t r u y e n t h o n g qua ve - Song dien tiT cung t u a n theo c a c d i n h luat p h a n x a , khiic x a va cung co the giao thoa v d i tinh (thong t i n vu t r u ) - Qua t r i n h t r u y e n song dien tir t r o n g k h o n g gian mang theo nSng luong TRAC NGHIEM LI THUYET '^^u Su bien t h i e n ciia dong d i e n i t r o n g mot mach dao dpng l$ch pha nhU j | the nao so v d i sU b i e n t h i e n ciia dien t i c h q ciia m o t ban tu dien A i Cling pha v d i q C i sdm pha — so v d i q B i lech pha n v d i q D i t r e pha — so v d i q Cau Mot CO d a o mach dong dao dien dong til LC c6 dion trcf tiX d o vdi bieu thuan bhng khong thiJc dien tich tren K h i mac}^ hkn tu dien • q = quCos(cut + cp) t h i g i a t r i c u c d a i c u a c i T d n g d o d o n g d i e n t r o n g m a c h B ^ V2 A (0 Qo C D ^ Qo la CO q o C a u Chu k i dao dong rieng cua dao dong dien tii t i i mach dao don,, LC (c6 dien trd thuan khong ddng ke) la 2n „ „ D T = A T = H V L C C T = B T = V L C • V'LC •j2nhC ^^'^'-'^ C a u Tan so dao dong cua dien tH tu ciia mach LC c6 di|n t r d thuan khong dang ke la A.f ' 27:VLC B f=27iVLC ' c f = — V L C 271 D f = 2n • VLC • C a u Mot mach dao dong dien tCr L C gom tu dien c6 dien dung C va cuon day thuan cam c6 t i i cam L Biet day dan c6 dien t r d thuan khong dang ke va mach c6 dao dong dien tH rieng Goi Qo, U,) Ian luot la dien tich cuc dai va hieu dien the cue dai cua tu dien, lo la cUdng dp dong dien cUc dm mach Bieu thufc nao sau day khong phai la b i l u thiJc tinh nSng lupnf,r dien tCr mach? Cu^ D W = - C U ^ c w = | L I ^ B W = A W = 2C Cau Trong mach dao dong LC gom mot tu dien c6 dien dung C v^ cupn day thuan cam CO dp t U cam L dang c6 dao dong dien tU tiT v6i hieu dien the cUc dai giiia hai ban cUc cua tu dien la UQ Dong dien mach c6 gia t r i cUc dai D Io = U o i l LC C C a u Trong mach dao dong LC c6 dien t r d thuan bang khong t h i A NSng lifpng tit trudng tap trung d cupn cam va bien thien tuan hoan VO'l chu k i bang nijfa chu k i rieng cua mach B NSng lupng dien trUdng tap trung d tu dien v^ bien thien vdi chu k i bang chu k i dao dpng ri§ng cua mach C Nang li^ong tCr trUdng tap trung d tu dien va bien thien vdi chu k i bang niia chu ki dao dpng rieng ciia mach D Tai moi thcfi diem t t h i tong cua nSng lircfng dien trudng va nSng lupng trudng luon tang C a u K h i noi ve dien tif triTdng, phat bieu nao sau day khong diing? A Dien tich diem dao dpng theo thdi gian sinh dien til trifdng khong gian xung quanh no B TCr trudng bien thien theo thdi gian sinh dien tii trUdng xoay C Dien tCr trudng Ian truyen chan khong vdi van toe bang van toe aiil^ sang chan khong D Dien trudng bien thien theo thdi gian sinh tif tri/dng xoay Gpi (I): Giao thoa song di#n tCr ): Cong hu'dng dao dong dien tit (III) : Phan xa song dien tir (IV) : Khiic xa song dien tii Mach chon song may thu song v6 tuyen dien hoat dong dira tren hien tuong A ( I ) B (II) C ( I l l ) D (IV) QSiU 10 Mot mach dao dong dien til LC g6m cuon day thuan cam c6 dp t u cam L khong doi va tu dien c6 dien dung C thay doi duoc Biet dien t r d cua day dSn la khong dang ke va mach c6 dao dong dien tit rieng K h i dien ^ ^ f c dung CO gia t r i Ci thi chu k i dao dong rieng ciia mach la Tj K h i dien dung WBr'c/EC T r o n g s o n g d i e n tiT t h i d a o d p n g e u a E v a q u a B t a i m o t d i e m l u o n d o n g - > K h i C t a n g 16 I a n t h i T t S n g I a n pha v d i n h a u C a u 11 C h p n B C a u 28 C h p n A D u n g se l a d i e n t r i r c r n g x o d y l a d i e n t r U d n g c6 d i f d n g sure 1^ nhCTng dudng Song d a i dupe d u n g de t h o n g t i n d u d i nude, cong k i n u 29 C h p n D C a u 12 C h p n D Nang l u p n g d i e n t r i T d n g v a n S n g l u p n g tis t r u d n g b i e n t h i e n t h e o t h d i g i a n , n S n g l u p n g d i e n tii l a m o t h a n g so k h o n g d d i DAP A N BAI TAP TRAC N G H I E M C H l / a N G IV C a u 13 C h p n C Nang l u p n g d i e n tuT k h o n g d o i t h e o thcri g i a n C a u CD = -^L^ C a u 14 C h p n A • N a n g l u p n g d i e n tCr k h o n g d o i t h e o t h d i g i a n dao dpng bien thien T t u a n hoan v d i chu k i — C a u 16 C h p n D Do f = ; = 27iVLC ~ 27tvLC => L 0,507 ( H ) ~ z=> C 1,76.10"^ ( F ) Chpn A C a u f = 27tVLC Chpn A C a u 17 C h p n C C S u f = - > T a n so d a o d o n g r i e n g c i i a m a c h t a n g g a p doi k h i die:; d u n g C c u a t u d i e n g i a m g i a t r i d i e n d u n g c i i a t u d i f n di I a n Do f = rad/s C h p n C C a u I S C h p n C Nang l i r p n g d i e n t r u d n g t r o n g t u d i e n c i i a m o t m a c h « 444 C a u T = 27t ^/LC = 1,53.10"'' (s) Chpn D = T a n so d a o d o n g r i e n g c i i a m a c h p h u t h u o c v a o L , C Cftu T = 271 X / L C 27rVLC ^ C = 0,02 ( F ) Chpn A C a u 18 C h p n D S o n g d i e n t i r l a s o n g m a t r o n g q u a t r i n h t r u y e n s o n g t h i E l u o n v u o n g gc^ v d i E v a ca h a i vectcr E , B l u o n v u o n g gdc v d i p h u o n g t r u y e n s o n g C a u 19 C h p n B D i i n g l a s o n g n g d n c6 t a n so I d n hern t a n so s o n g d a i d o Xti 1§ n g h i c h v d i Q t h o n g q u a c o n g thiJc ^ - j • N e n k h i X n h o - > f I d n C a u 20 C h p n A C h p n C C f i u X = c T = ^ t ^ / L C = 168,5 ( m ) C h p n C X; = C T = c.2n T L C ^ S o n g d i e n tii m a n g n a n g l u p n g C a u 21 C h p n D S o n g d i e n tCr m a n g n a n g l u p n g C a u 22 C h p n A D u n g p h a i l a s o n g d i e n tii l a s o n g n g a n g c T , = e.27iVLC7 = 23,8 m Cfiu8 I = 113,04 m Chpn D •fiu X = ^ ^ f = ^ = 3.10" H z ^ f = M H z Chpn A C a u 10 Klai C, n t Ca t h i ma f = ^ ^ + (*) -^f^ = — +— = — ^ D A P A N B A I T A P L U Y E N T A P C H l / a N G rV (*) Bai t i le n g h i c h v fn \Jn^ ^L = 0,42 (A) = T f + T| = ' + ' = 25 ^ T = (s) B a i De cho L = L j + L2 ( * ) ma T = 271 V L C Chon A = WL^^^ '-:^ =t^ ^ C = ^ Chon B C a u 18 W = Wc + W,, (*) ma Wc = 3W,., W = (*) (A) '0,0517? P = r I ^ = C = 3,6.10-* (F) Chon A C a u 17 V2 Cong suat can cung cap l a Chon A C a u 15 W = 0,0517 • I = • T = - ^ = 12,56.10-' (s) 2C = 8,04 n H - > L2 = 2,85.10-' H = 2,85 m H Chon C C a u 14 W = = 8,04.10 ' H X., = C.T2 = 3.10^2317L2C2 i = " V o s l 0 t t (A) hay i = 2.10-^7isin(1007it + ^ ) (A) C a u 12 i = 0 T " ^ s i n ( 0 T t + C = 0,126.10-'F = 0,126.nF ^ = 0,2.10'^ F = 0,2 ^iF ^ = 47I2LC (T^ t i le t h u a n v d i L ) (*) _> B a i T ^ T f + T| = 100 271 T = 10 s qo « 1,27.10-" ( C ) ^0 B a i W = W, LI -°- = - ' ( J ) -52- = W L + W L ^ W L = 5,625.10" J 2C Suy r a Wc = W L = 1,6875 IQ-^' J ^ Chon C B a i W = Wc + W L -> W,.^_^ = W L + W L ^ ^ = W L - > W L = 8.10-^* (J) = Wc B a i Cho p h a n lifng h a t n h a n : V a y X ^ ?D ^ ?H m„ = 1,0087 u l u = MeV/c^ b) T i m AE = ? Ta c6: lUe + ln + M e V D + D ^ N a n g luong toa r a k h i t o n g hop g H e l i Cho N A = 6,02.10'^ m o r V mo = mx + m r = 2,0136 u + 3,0155 u = 5,0291 u m = m,ie + m„ = 4,0015 u + 1,0087 u = 5,0102 u Do mo > m: P h a n iJng t o a nSng Tom iMng N a n g lircrng toa cua p h a n uTng l a AE = (mo - m)c' = (5,0291u - 5,0102u).c^ = O.OlSQu.c^ = 0,0189.5H4?SX.> tat HUcfng ddn gidi • m = g Nhan xet: Tii p h a n urng h a t n h a n ta t h a y ciJ Tinh E = ? hat nhan He dirge t o n g hop t h i nSng l u g n g toa r a la MeV Cho N A = 6,02.10'^ (mor^) • So h a t He l i c6 t r o n g g AE « 17,6 M e V « 2,81.10 " (J) N = ^ NA = A B a i Cho p h a n uTng h a t n h a n ?,^Cl + ; H - > X + Js'Ar 1.6,02.10^ = 4,013.10^ (hat) o Cu- h a t He c6 E = ? a) Xac d i n h h a t n h a n X V a y n a n g lurgng toa r a k h i t o n g hop g H e l i b) P h a n ling t r e n toa hay t h u bao n h i e u n&ng liitfng? ( T i n h nSng lUcJng E = N (MeV) E = 16,052.10'' M e V theo don v i eV) Cho mci = 36,956563 u; ma = 1,007276 u; mx = 1,00867 u; mAr = 36.956889 u; l u = 931 M e v / c l Tom Hiidng tat b) P h a n iJng t r e n toa nSng nhieu luong? A p d u n g d i n h luat bao t o a n d i e n t i c h va so k h o i 37 + = A + 37 mci = 36,956563 u mx = 1,00867 u mAr = 36,956889 u l u = 931 M e V / c l 17 + = Z + 18 Vay -> P + ^Li - > X + X giai a) Xdc d i n h h a t n h a n X Cho mil = 1,007276 u ddn ?,'Cl + ; H ^ X + ?s'Ar a) Xac dinh hat nhan X hay t h u bao B a i Cho p h a n iJng h a t n h a n A = l Z = ( h a t ncftron) b) T i m AE = ? Cho mp = 1,007276 u; mx = 4,001500 u; m u = 7,014400 u; l u = 931 M e V / c ^ N A = 6,02.10^^ m o l - i a) T i n h n a n g l i i o n g toa (hoac t h u ) k h i t o n g hop 0)1 m o l h a t X b) Neu d u n g l u g n g n a n g liTOng t o a r a (hoac t h u ) c u a p h a n iJng de dun soi nude t h i CO the dun soi dugc bao nhieu k i l o g a m niidc d 20"C c = 4186 J / k g Tom • mo = mci + m i l = 36,956563 u + 1,007276 u = 37,963839 u tat Hiidng dan gidi • mp = 1,007276 u a) Nhan xet: De t i n h n a n g lirgng t6a r a (hay t h u • mx = 4,001500 u vao) k h i t o n g hop 0,1 mol h a t X t h i dau t i e n t a • m = mx + mAr = 1,00867 u + 36,956889 u = 37,965559 u • m u = 7,014400 u can t i m n a n g luong toa (hay t h u vao) Do mo < m n e n p h a n ufng t h u nSng lucfng • l u = 931 MeV/c^ p h a n ij'ng Sau d i t i m so h a t NSng luong t h u cua p h a n ufng: AE = (mo - m)c^ = (37,963839 u - 37,96559 u)c^ = - , - W = -1,72.10-1931 AE = -1,6 M e V = -1,6.10'' (eV) MeV • c Biet ciia X c6 t r o n g 0,1 • N A = 6,02.10^2 mol-1 m o l h a t X, cuoi cung ta c6 the suy r a dirge n a n g a) T i n h E = ? lirgng toa (hay t h u vao) k h i t o n g hgp 0,1 m o l Cho n = 0,1 m o l h a t X Cu the nhu sau: c = 4186 J / k g • mo = m p + mL, b) m,112O - = 1,007276 u + 7,014400 u = 8,0*1676 u • m = mx + mx = 4,001500u + 4,001500u = 8,003u BAI TAP TRAC N G H I E M Do mo > m ^ p h a n iJng toa n&ng l u a n g NSng Itrgng t6a cua p h a n ling A E = (mo - m ) c ' = O.OlSBTGuc^ = 0,018676.931 M e V / c ' * 17,4 M e V * So h a t X CO t r o n g 0,1 m o l N Tir p h a n iJng t a t h a y de t o n g h o p dirge h a t X t h i nSng li^gng t o a l a AE 17,4 MeV Vay nSng lirgng toa r a k h i t o n g hgp 0,1 m o l h a t X l a E = m „ = l , 0 w ; lw = - ^ m,, =26.91 All \= 4,001 M ; m^, =29,910U; = — N A = H N A = 0,1.6,02.10^^ = 6,02.10^^ ( h a t ) A N.AE C a u 33 Cho p h a n ufng h a t n h a n : f j ^ / + a^^^°P + n c' P h a n uTng toa hay t h u bao n h i e u n&ng lugng? A Toa 2,98 M e V B T h u 2,98 M e V C Toa 2,98 eV D T h u 2,98 eV C a u 34 Cho p h a n ufng h a t n h a n : D + D T +P MeV m,, = , m , =3,016w ; m,, = 1,0073M; 1M = — — E = 5,2374.10'' M e V c P h a n uTng toa hay t h u bao n h i e u n&ng lugng? m„^o=? A 1,63 M e V K h i dung n&ng lirgng E de dun nudc t h i Ta c6: Q = m.c (ta - t i ) p h a n u-ng Phan Q 8,37984.10"' c(t2-ti) 4186.(100-20) C 3,63 M e V D 4,63 M e V C a u 35 H a t n h a n "g^P^ phong xa p h a t r a m o t h a t a va m o t h a t n h a n X nhiT E = Q = 5,2374.10'' M e V = 8,37984.10^° (J) m = B 2,63 M e V m « 0,25.10" k g ~llPo a +X r a n a y t o a r a bao n h i e u mx = 205,92944u; n ^ n g lugng? Cho m,,^^ = 209,93730u; = 4,00150u; l u = MeV/c^ A AE = 5,92 MeV B AE = 24,8 MeV C AE = 59,2 MeV D AE = 4,58 MeV C a u 36 Cho p h a n dng h a t n h a n : p + X ^2a P h a n iJng t h u hay t o a bao n h i e u nSng lugng? Cho b i e t : mp = l,007276u; m^ = 4,001506 u; mx = 7,014400 u; u = 931 M e V / c l A T h u 17,8 MeV B T h u 17,38 MeV C Toa 38 MeV D Toa 17,38 MeV Caiu 37 Cho p h a n iJng h a t n h a n : ]\Na + p-> X + ;°Ne B i e t p h a n ufng t o a r a m o t n&ng iMng 2,38 MeV T i n h nSng lirgng t o a r a k h i gam h a t X dirge tao t h a n h Cho N^ = 6,02.10^' "'or\ A 1,30223.10'" MeV B 130205.lO'" MeV C 2,56833.10'" MeV D 1,43276.10'" MeV fiu 38 Cho p h a n iJng h a t n h a n : ]T+'D'He+^n + n,6MeV T i n h n&ng lu'gng t o a r a tCr p h a n uTng t r e n k h i t o n g hgp dirge 0,5 m o l H e l i Cho biet so Avogadro N A = 6,02.lO'^ mor\ A 52,98.10'' M e V B , " M e V C " M e V D 8.10" MeV Van b ) N a n g lirprng l i e n k e t h a t L i t i 6e 4: N A N G L l / O N G L I E N K E T W|k = Am.c^ = , u.c^ = , PHLfdNG PHAP * T o n g k h o ' i lUcJng p r o t o n v a n c f t r o n l i i c d a u W„ = Z.m,, + N m , , * K h o i liTong s a u : m = m, I * D p h u t k h o i : A m = m„ - m * N a n g lufcfng l i e n k e t : = 52,7877 M e V C h o m n = 1,0087 u ; m p = 1,0073 u ; l u = M e V / c ' Hat n h a n " A l c6 k h o i l i r g n g l a , u v a h a t n h a n Tom tat Hiidng W • m n = 1,0087 u Nhan A • mp = 1,0073 u v a ?°P t h i • l u = MeV/c^ y: luong T r o n g p h a n uTng h a t n h a n : J A + ^| B hai mp = 29,970 u + So Cac h a t A , B , C, D c6: sanh dp b e n v C n g ciia h a t n h a n - N a n g l i r g n g l i e n k e t t u a n g dng l a : ff,^^ , + A,.E^^^) AE = ( W „ ^ + W „ J - ( W „ ^ + W „ ^ ) • A E = [ ( A m j , + A m u ) - ( A m ^ + Am3).c^ h a t H a t n a o c6 n a n g l u p n g l i e n k e t r i e n g I d n hcfn t h i h a t d o c a n g b i n vOrng h p n Cu the ta lam nhu sau: • m = mAi = , u - D o h u t k h o i tiTcfng uTng l a : A m ^ , A m ^ , A m ^ , Am,, - {A,.E,^ xet: D e so s a n h d p b e n vufng c i i a h a i h a t " A l mo = Z m p + N m n = , 0 u + , 0 u = , u - N a n g iLTgrng l i e n k e t r i e n g t i f o n g iJng l a : E^^ , E^^^ , E^^, , E^^^ AE = (A^.E^^ + A,.E^^^) gidi (*) X e t h a t ^3'Al , W^,^ , W^,^^^ T a CO n a n g l i / c f n g t o a ( t h u ) c u a p h a n uTng h a t n h a n dan C h u n g t a c a n so s a n h n a n g l i J p n g l i e n k e t r i e n g c i i a mAi = , u - N a n g l i / c f n g l i e n k e t r i e n g c a n g 16n t h i h a t c a n g b e n viirng c6 k h o i la , u N a n g liJcfng l i e n k e t r i e n g : E Litu B a i So s a n h d p b e n v O n g c u a h a i h a t n h a n l a 13 A l v a f g P W,,, = ( m „ - m ) c ' E, MeV • Wik = Amoc^ = ( m o - m)c^ W,,, = 0,2427u.c^ v = -> K = mv = 0, p = m v = N e n AE = K„ + Kx (*) ma AE = (mo - m)c^ = [ m u - (m„ + m^)]c^ = 15,1753 M e V PHl/OfNG P H A P The AE vao (*) ^ K„ + K x = 15,1753 C o n g thiJc: • A p dung d i n h luat bao toan dpng lucfng Dinh lu$t bho to^n dong lUdng P i + P2 = P3 + P Do p„ - Px ^ ^ 4,0015 K = 0; p = K: D o n g nSng cua h a t ^ P = Px do: | K X « 0,26 M e V = ? Ta c6: K„ = v„ = 2.14,91MeV 4,0015.931 MeV 43 N o t r o n c6 dong nSng Kn = 1,2 M e V bdn vao h a t n h a n L i t i dufng yen gay r a p h a n iirng: ^ n + ^ L i X + ^ He + a T i m h a t X Dap so: P r o t o n a i U r a n i \^^U sau m o t so p h o n g xa a K x = 1,75 M e V BAI TAPTRAC NGHIEM Cau + X^f^Na va P " bien t h a n h chi Pb theo -'^^ Pb + a + x p\m x Dap so: x = a i Poloni la chat phong xa l\° Po phong tia a bien -I'^Ph , chu k i ban ciia poloni la T Sau 69 t h i t i so klioi luong giOa Pb va Po \k 0,406 T i m chu ky ban ciia poloni H a t n h a n H e l i bay vuong goc v d i phiicfng cua h a t n h a n X T i m dong nfing K , cua h a t n h a n X va dong nSng K„ cua h a t n h a n H e l i Cho m.ie = 4,00160u Dap so: 138 n g a y 6i H i e n t r o n g quang t h i e n n h i e n c6 ca U^'"' va U^''^ theo t i le so nguyen m„ = l,00866u; mx = 3,01600u; m,,i = 6,00808u; l u = 931 MeV/c' tijf la 140: Gia t h i e t d thcri d i e m h i n h t h a n h T r a i D a t t i 1§ t r e n l a 1: A Kx = 0,393 MeV; K„e = 6,069.10"' M e V T i n h t u o i ciia T r a i D a t , biet chu k i ban cua U^''^ va U^'*'"' la T i = 4,5.10'-* B Kx = 0,293 MeV; K„e = 0,15 M e V n a m , T = 0,713.10" nSm C Kx - 0,52 MeV; K „ e = 0,67 D Kx = 0,65 MeV; K„„ - 0,45 Dap so: % 6,04.10'^nam MeV ^ a i P h a n hach m o t h a t n h a n ^^^U T r o n g 16 p h a n uTng se toa r a nSng liigtng MeV C a u 44 H a t n h a n g'/'Po phong xa p h a t r a mot h a t a va mot h a t n h a n X: ^fPo lHe+^ Cho m p o - 209,93730u; m , = 205,92944u; m „ o = 4,00150u; l u = 931 MeV/C T r o n g p h a n r a t r e n , h a t n h a n poloni diJng yen H a y t i n h dong nSng cua hat 200 M e V / h a t n h a n a) Neu p h a n hach 0,2 k g " ' t / t h i nSng li/ong toa r a b^ng bao nhieu? b) Can phai dot lu'cfng than bkng bao nhieu de c6 mot nhiet liTcmg tu'ofng duong? Cho nang suat toa nhiet ciia than: 2,93.10^J/kg, N A = 6,02.10^'* nguyen tCr/mol Dap so: a) 1,63936.lO'^J; b) 0,5590.lO^'kg B a i X e t p h a n iJng: ]H+ ]H->lHe + ln a) X^c d i n h nSng lu a n g toa r a b d i p h a n uTng d6 b) T i n h k h o i luong Dcfteri can t h i e t d l c6 t h e t h u dUofc nftng lircfng nhiet hach tuong difcfng v d i nSng luong t o a r a k h i dot 0,5kg t h a n Cho ]H = 2fiUSu;lHe = 3,0149M;(,'« = 1,0087M , l u - MeV/c' B i e t nan lugng toa r a k h i dot 1kg t h a n l a 30 000 k J Dap so: a) 5,06464.IQ-'^J; b) 1,96.10-'* g Cau Cau Cau Cau Cau Cau Cau 10 Chpn D 13 Chpn A 16 Chon D 19 Chpn D 22 Chpn D 25 ChpnA 28 Chpn A N ->p + X 11 Chpn B 14 Chpn C 17 Chpn A 20 Chpn A 23 Chpn D 26 Chpn A 29 Chon C C a u C a u ^]"Po CO 84p, 126n -> Chpn C Tinh C a u Z = 3, N = 4, A = N + Z = - ^ Chpn C dpng nSng cua h a t n h a n X Cho = 4,0015u; nip = 1,0073 C a u Z - , N = 2, A = N + Z = ^ Chpn B Dap so: 2MeV C a u B a i D u n g m o t h a t p r o t o n c6 dong nSng K,, = 2,16MeV de b i n vao h a t nhan f^Na dang dufng y e n t a t h u diJOc h a t a va h a t Ne B i e t dong n i n g cua hat « tao r a l a 3,12MeV Cho mwa = 22,9837u; mNe = 19,9869u; m,, = l,0073u; m „ p = 4,0015u; l u = M e V / c l Dong nSng cua h a t N e l a lau U 220 a + ?,;^'Th -> Chon B Ra 222 a + ^ ; ; R n ^ Chpn A 00 Ifiu 2,Co ^ ° , e +™Ni ^ Chpn B C S u f H + ;)X -> ^He + ;,n + 17,6 C a u ^=Mg + ,^X Dap so: 1,4606 M e V C a u 10 B a i H a t n h a n ^^"Po phong xa phat r a mot h a t a va m o t h a t nhSn X U ^ X ^ JT ^ Chpn A f^Na + a - > ,^X ^ j H = Jp ^ Chpn A xct + y p - + Pb 238 92 U - ^ x ^ H e + y ° , e + 82'Pb A p dung d i n h l u a t bao toan so k h o i va dien tich [238 = 4x + O.y + 206 Cho biet h u t k h o i ciia cac h a t n h a n A mpo = l,7721u; A mx = l,74796u; l u = 931 M e V / c l NSng liTpng toa r a cua phan iJng t r e n l a 5,92116 Mev Tim dp h u t k h o i ciia h a t a Ddp so: A m„ = 0,0305u B a i 10 H a t n h a n If'Po ph a + X Cho biet dp h u t k h o i cua cac h a t n h a n A mp„ = l,7721u; A m„ = 0,0305u; l u = 931 M e V / c l NSng liTpng toa r a ciia p h a n iJng t r e n l a 5,92116 Mev Tim nang lupng l i e n k e t cua h a t X Ddp so: 1627,35Mev B a i 11 Cho biet nSng liTpng l i e n k e t r i e n g cua ^°Ne, "He va '^C I a n lupt l£l 8,03 MeV; 7,07 M e V va 7,68 MeV, nSng lupng can t h i e t de t d c h m p t h a t nhan ^"Ne t h a n h h a t a va h a t n h a n '^C l a bao nhieu? Dap so: l l , 8 M e V P H A N III:D A P A N T R A C N G H I E M CHl/OfNG I 12 Chpn 15 Chpn 18 Chpn 21 Chpn 24 Chpn 27 Chon U CO 92p, 143n -> Chpn c ' B i e t v a n toe ciia p r o t o n b ^ n r a c6 phucrng vuong goc v d i v a n t6'c cua h a t 13,9992u; mx = 16,9947u; l u = 931 MeV/c'; l e V = 1,6.10-'^ (J) Cau Cau Cau Cau Cau Cau DAP AN BAI TAP TRAC NGHIEM CHLfOfNG IX B a i D u n g h a t a c6 dpng nftng K„ = 7,44 M e V b d n vao h a t n h a n ' ^ N diJug yen, gay r a p h a n ufng: a + Cau Cau Cau Cau Cau Cau Cau X |92 = x - y + |x = ^ |y = Chon D 3fiu 11 ^ X Chpn A ZavL 12 Chpn C ' a u 13 f O CO Z = 8, N = • Neu thay p r o t o n bang ncftron va ngiTOc l a i t h i Z = 7, N = -» A = N + Z = - > ^X H f X = ;^N ' Chpn C :;au 14 N = — N A = - 6.02 lO'^ (hat) A • h a t n h a n c6 3p ^.6,02.10^^ h a t CO 2,58.10^^1 Chpn D ' a u 15 • N = n N A = 0,02.6,02.lO'^ = 1,204.10^^ h a t ^ P b • l'°'^Pb c6 206 h a t C a u Chpn A C f i u Chpn A C a u Chpn C C a u 4, ChpnA C a u Chpn D C a u Chpn C C a u Chpn A C a u Chpn B C a u Chpn D 1,204.10"' h a t Chon A Pb CO 2,48024.10="' h a t B D D B D D C i i u I B M = 75,4% m3,^, + 24,6% m,,^^ = 0,754.34.969u + 0,246.36,966u = 35,46u C a u 28 H = 0,7Ho ^ Ho ^ = 0,7Ho 2"^ = 0,7 = 2-°'"'»« Chon D t = 0,5145.T = 2881,6 n&m -> Chon A C a u 17 M = mo 2~T = 200 « = 50 g -> Chon C C a u 29 D o i T = n a m = 2.365.24.3600 s = 63072.10^ s 16 C a u 18 • m = mo- 2'T = 500 2'» = 125 (g) -> K h o i lUgrng b i p h a n r a Am = mo - m = 500 - 125 = 375 (g) Chon D i T 14 63072.10' ' 210 6,02.10 23 « 1,575.10" B q « 4256 (Ci) -> Chon A C a u 19 m = mo ^ = 100 2' = 25 g K h o i lirong b i b i e n doi t h a n h chat khac la k h o i luang hi p h a n r a Am = mo - m = 100 - 25 = 75 g -^^ Chon B - ^ T = tuan C a u 20 m = mo ^ - » 125 = 500 ^ 2"' = ^ -> T Chon C A C a u 30 A p dung cong thiJc m T h = -^.Amu= A, - ^ ( m o „ -m„) = ^ ( l _ 2"^) -> Chon A C a u 31 > t = 3T = n a m C a u 21 m = mo 2"^ -> I m ^ = mo ^ ^ 2-' = 2'^ ^ T Chon D C a u 22 • K h i bi phan het ^ khoi lucmg ban dau -> khoi luomg c6n lai m = ^ m,, ' Cau tao h a t n h a n IfX c6 82p, 124n ^ Chpn A 31.2 A p dung cong thu'c mx = ^ A m p o = ' ^.(1-2"T)m , po = 206 -— — (1 - 2" ) 400 « 343 210 Chon D Ta c6: m = mo ^ -> -m^ = mo.2 T ^ = - » Chon C C a u 32 A N , = No - N , = No - No 2' ^ = N o ( l - 2" ^ ) De cho A N = l , A N i ma H = Ho.2 ^ = 737,4 g ln2.NA « 3,29.10-^ g « 3,29 (mg) • m = m,, + m„ = 30,9787u Do mo < m -> p h a n uTng t h u n a n g lu^cfng AE = (mo - m)c^ * 2,98 M e V -> Chon B !au 34 mo = 2mo = 4,0272 u • m = mx + mp = 4,0233 u Do mo > m -> p h a n ufng toa n a n g iMng AE = 3,63 M e V -> Chon C S u 35 • mo = mx = 209,93730 u • m = m„ + mx = 209,93094 u Do mo > m -> p h a n ufng toa n a n g lu'crng AE = (mo - m}c^ = 5,92 M e V Chon A T g Cau 36 • mo = mp + mx = , u G i a i (1), (2) • m = 2ma = 8,003012 u Do m,, > m -> p h a n iJng toa nSng luong AE = ( m - m)c^ « , M e V Chon D C a u 37 N = — N , = - 6,02.10*^^ = 6,02.10'' h a t A • E = N A E = 6,02.10^12,38 = 1,43276.10^" M e V ^ Chon D C a u 38 • N = — N A = n.^A = 0,5.6,02.10^' = 3,01.10^' h a t A -> E = , p ' l l , = 5,298.10^' M e V Chon A C a u 39 • m,, = Z.nip + N.nin = 4,032 u • Wik = (mo - m)c'' = 28,3 M e V -> Chon A • m = mu = 2,0136 u W,k = (mo - m ) c ' = 2,2344 M e V ^ ^ ^ Chon A C a u 44 • A p dung d i n h luat bao t o ^ n nSng lifong AE = K x + Kne V d i AE = [mpo - (m„e + m , ) ] c ' = 5,92116 M e V ^ K x + K„e = 5,92116 • P x + Pile = ^ • Px = PHe - > C a u 40 • mo = Z.m„ + N.mn = 2,016 u ^ [K,,, =6,069.10'' MeV = 1,1172 M e V -> Chon C C a u 41 P'x = Pne Pile = (2) Chon B a u 45 • l^Na + ;p He + X H a t ^^Na dufng y e n -> v = KHC KNH, PNa = + K x (*) V d i AE = (mo - m ) c ' = [(mNa + mp) - (m„e + mx)]c^ « 2,378 M e V • mo = Z.m,, + N.mn = 12,096 u (*) ^ + 2,378 = KHe + K x -> Kne + K x = 5,378 • m = mc = 12 u • De cho • W,k = (mo - m ) c ' = 89,376 M e V • Xet hat (1) =PHe ^ m x K x = 2m„eKHe205,92944Kx-4,0015KHe f K , « 0,112 M e V " K„ « 5,81 M e V G i a i (1), (2) Ta c6: Kp + AE = * X6t hat ' ' C E, = Px Px = -PHe Px • m = ma = 4,0015 u 2,2344 j K x = 0,393 M e V ^ W A • mo - Z.mp + N.m„ = 13.1,0073u + 14.1,0087u= 27,2167u • m = mAi = 27u • Wik = (m„ - m ) c ' = 201,7477 M e V W |KX « 4,48 M e V = mv ^ 19,986950KHe - 4,001506Kx = Chon A C a u 46 .a+ K„ - A l Jn+?5P + AE = K„ + Kp (*) V d i AE =(mo - m ) c ' = [(m„ + mAi) - (nin + mp)]c^ = -2,6999 M e V = 7,472 M e V (*) -> - 2,6999 = Kn + K p < ^ K n + Kp = 1,3001 A Do nang lugng hen ket rieng cua n h o m 16n hcfn cacbon nen nhom ben hdn cacbon ^ Chon B (1) • Pa = Pn + Pp De cho a v„ v„ - p„ p„ C a u 43 H a t L i duTng y e n ^ VLJ = -> pu = 0, K u = K„ + AE = K x + K„e (*) V d i AE = (mo - m)c^ = [(mn + m u ) - (mx + mi,e)]c^ = -0,80066 M e V (1) • Pn = Pne + P x H i n h ve -> pf, = pf„ + p^^ 3,016 K x + 4,0016 K,ie = 1,210392 ^ fKn, =0,89 MeV ^ (*) -> 1,2 - 0,80066 = K x + Kee «^ K , + K„e = 0,39934 M e V = vx = = 7,448 M e V II A\ • E, = VHe (2) H i n h ve cho Pp = pf, + p^ -> 2mpKp = 2mnKn +.2m„K„ 1,0087K„ - 29,97005Kp = -16,006 K , = 0,74 M e V giai(l),(2)^|^^^^^^g^^^ ^ Chon C (1) (2) (2) D A P A N B A I T A P L U Y E N T A P CHLfaNG IX I J a i a) A E = (m,, - m ) c ' = [ ( m „ + m „ ) - ( m „ „ + mn)|c^ = 3,1654 M e V = 5,06464.10"'^ (J) B a i 'ilMg hay + X^'il-Na llMg+^X^f,Na 238 f,f ,I2 B a i U ~^ + 8^He = + 2.8 B a i ^^°Po ^ T a c6: m T a c6: 0,5 k g t h a n t o a 0 k J - > Q = 0 K J = 15.10*^ J = E z^^lP + lHe^ 206 g2 P b 82 TT b) D e c h o k g t h a n t o a 0 k J + a X Til p h a n \ing t a t h a y : h a t D o t e r i toa AE = 5,06464.10"''' J + x"je = N = ? ^ a + ^°''Pb N = = , - > mpb = , mpo mpo(2'" - ) (2) ^ 5,923422.10".2 6,02.10 23 = 1,96.10^^ (g) K „ - A E + K p + K x (*) V d i A E = (nio - m)c^ = [ ( m „ + m N ) - (nip + nix)lc^ = - , M e V m p o ( ' ^ - 1) = , mpo ^ W i k = Amx.c^ = , M e V ?Bai 11 ^"Ne ^ N = 5,123.10^' h a t t o a E = N A E = 1,0246.10^^ M e V = 1,63936.10^^ ( J ) 1,63936.10" 2,16 + , = 3,12 + KNO O K N ^ - 1,4606 M e V ; ^ h a t toa AE = 200 M e V m = (*) J a i A E = [(Am„ + A m x ) - (Ampo)lc^ 2a + " C T a c6: A E = A x - E , + A^.E^^, - A^^^.E^^^ = 24.7,07 + 12.7,68 - 20.8,03 = - 1 , 8 M e V V a y n a n g l u g n g c a n t h i e t de t i c h m o t h a t ^"Ne t h a n h h a t a v a h a t '-^C l a 11,88 M e V • Mat trofi: - K h o i lucmg bkng 333 000 Ian khoi lircmg T r a i Dat ( k h o ^ g 1,99.10^° kg) ChiTomg X Tlf VI MO DEN VI MO - N h i f t dp be m a t 6000K, n h i # t dp t r o n g 16ng M a t T r d i k h o ^ n g t r e n chuc t r i e u cong suat p h a t xa 3,9.10^'^ W P H A N I: T O M T A T L I T H U Y E T • C a c h a n h t i n h : Co h a n h t i n h theo thiJ tir tCr ngoai vao t r o n g : H d i Vuong t i n h , T h i e n VifOng t i n h , T h d t i n h , MQC t i n h , Hoa t i n h , T r d i D a t , K i m tinh, Thiiy tinh yan de 1: C A C HAT SO C A P • Sao c h o i v a t h i e n t h a c h Hgt s6 c^p: Cdc h a t v i mo, c6 k h o i l u o n g k i c h thudc nho hcfn h a t n h a n - nguyen tit (electron, p r o t o n , ncftron, ) - T h i e n t h a c h : Nhufng tang da chuyen dong quanh M a t t r d i Thien thach d i vao k h i quyen T r a i Dat, nong sdng vk hoc chAy tao t h a n h bang P h a n loai c^c h?t s d c^p * Photon * Lepton: S a o c h o i : Nhufng k h o i k h i dong b a n g I a n dd c6 dudng k i n h v ^ i k i l o m e t , chuyen dong quanh M a t T r d i theo quy dao h i n h elip det m < 200me Van de 3: S A O - THIEN HA * H a d r o n : m > 200 / n ^ h a t h a d r o n duoc p h a n t h a n h Sao: M o t k h o i k h i n o n g sang - M e z o n 7i,K C^c loai s a o - N u c l o n p, n - M a t T r d i cung di/oe xem la m p t ngoi - Hiperon - Sao b i e n quang la c6 sdng t h a y d o i (c6 l o a i la b i e n quang T i n h ch^t che khua't, b i e n quang n n dan) - M o i l o a i h a t so cap c6 mot t h d i gian t o n t a i cua m i n h , t i n h tCr luc sinh den luc p h a n h u y va b i e n t h a n h h a t khac diTdc goi la thcfi gian song - M o i h a t so cap c6 m p t p h a n h a t tuong iJng - Sao m d i c6 dp sdng t a n g dot ngot l e n h a n g ngkn, h a n g v a n I a n r o i sau d6 dp sdng g i d m t d t d - TUdng tSc cCia c^c hgt s d c^p: C6 l o a i tifong tdc cor b a n sau Punxa, ncftron la bufc xa n a n g Idong t h a n h nhuTng xung s6ng d i p n t d ra't m a n h - Tuong tac d i e n tii: Tuong tdc giiifa p h o t o n va cdc h a t m a n g d i $ n , giuTa cac h a t m a n g d i ^ n v(Ji n h a u - Lo den: Ca'u tao b ^ n g ncftron n h d n g c6 k h o i Iddng r i e n g r a t I d n K h o n g p h a t sdng hay bat k y l o a i song d i ^ n td nao - Tuong tac m a n h : Tuong tac giCa cAc h a d r o n - T i n h v a n : D d m b u i k h o n g 16 dddc r o i sdng b d i cdc d g i n n6 - Tuong tac yeu: Tucrng tac giOra cdc l e p t o n ThiSn - Hp t h d n g gom n h i e u loai va t i n h vSn T o n g s6' t r o n g T h i e n - Tuong tdc hap d a n : TiTOng tac giiifa cdc h a t c6 k h o i lifong Hat quae: T a t ca cac h a d r o n deu cau tao tir cac h a t nho h o n C6 h a t quae Ha hang t r a m t i k i hieu la u, d, s, c, b, t, c6 p h a n h a t quae v d i d i ^ n t i c h c6 dau ngifcfc lai- - D d d n g k i n h k h o a n g 100 000 n a m d n h sang D i ^ n t i c h cac h a t quae va p h a n quae b k n g ± — ; ± — • T h i e n h a c u a c h i i n g ta: G o i la N g a n H a , - Co dang x o ^ n oc p h ^ n g N g o ^ i cac h a t b a r i o n la to hop cua ba quae (protSn duoc t o n g h o p tCf u, u, d; h a t ncftron duoe t o n g hop tif u, d, d) - Kho'i Idong k h o a n g 150 t i I a n k h o i Idgfng M a t T r d i Van de 2: C A U TAO VU T R y H0 M $ t Trdi: • D a m T h i e n H a : Tap hop gom v a i chuc T h i e n H a M a t T r d i gom M a t Trcfi, cac h a n h t i n h , tieu h a n h t i n h , ve t i n h , choi v ^ T h i e n t h a c h M a t T r d i dong v a i t r quyet d i n h den si/ h i n h t h ^ n h , phat t r i e n va chuyen dong cua he - Dddng k i n h k h o a n g 100.000 n a m d n h sdng _^ Thuyet Big B a n g : T h u y e t cho r i n g vu t r u dddc tao td m ^ t v u nS I d n cdch k h o a n g 14 t i n a m va h i p n dang d a n n d va l o a n g dan TRAC N G H I f M a i l I I ) I ' n i U H dixac tao n e n tii b a quae l a LI T H U Y E T A u, d , d C a u T r o n g cac h a n h t i n h sau d a y t h u p c H o M a t T r d i , h a n h t i n h n a o x a M a t Trdi nhat? A T h i i y t i n h (Sao T h u y ) B T r a i D a t C K i m t i n h (Sao K i m ) D T h o t i n h (Sao Th6^) t i n h , T h u y t i n h (sao T h u y ) , T r a i D a t ; h a n h t i n h n a o g a n M a t T r d i B Moc C T h i i y t i n h D T r a i D a t B Moc t i n h nhat? tinh C T h u y t i n h D T r a i D a t C a u T i n h tCr M a t T r d i r a x a t h i T r a i D a t l a h a n h t i n h t h i J A B C C a u K h o a n g e a c h tii T r a i D a t d e n M a t T r d i A u, d d B u, u, d D khoang B 200 k m D 1000000 n a m a n h sang A t = 3000 000 n a m B t = 30 000 n a m C t - 0 0 n a m D t = 0000 000 a u 15 C h o n cau P h o t o n CO k h o i lUOng n g h i B N h o han (H): D i ? n tich D B k n g C ( I ) , ( I I I ) , ( I V ) D (I), (II), (HI), (IV) C a u G o i ( I ) : P h o t o n ( I I ) L e p t o n ( I I I ) M e z o n ( I V ) B a r i o n Cdc l o a i h a t so c a p l a A (I), (H), ( H I ) B (I), (H), (IV) C (I), ( I I I ) , ( I V ) D (I), (II), (III), (IV) A 1,99.10"" k g electron B 1,99.10'" k g cd 0.1,99.10^'kg D 1,99.0^'kg C 4 0 k m D 384 000 SLU 17 C h o n c a u d i i n g M a t T r a n g each T r a i D a t l a A 300 000 k m &u B 400 000 k m 18 T r u e q u a y ciia T r a i D a t q u a n h m i n h n6 A 23''27' B 24°27' C " ' D 26°27' P H A N 11: B A I T A P T R A C N G H I E M ( I ) : Tucrng t a c d i ^ n tii + BAI TAP L U Y E N T A P ( I I I ) : T u o n g tac yeu PHl/dNG ( I V ) : Tifong tac m a n h PHAP D i n h l u a t Hdrp-Bota gom A (I), (ID, (III) B (I), ( I I ) , ( I V ) C ( I ) , ( H I ) , ( I V ) D (I), (II), (HI), (IV) C a u D i ^ n t i c h c u a m o i quae, h a y p h a n quae l a m p t t r o n g so cdc gid t r i n a o V = H.d Trong do: * v : T o e c h a y r a x a cua T h i e n Ha ( m / s ) * d: K h o a n g e a c h t i f T h i e n H a d e n T r a i D a t ( n a m d n h s a n g ) * H : H a n g so H d p - b o r n ( H - 1,7.10"" m/s ( n a m a n h s a n g ) L i f u y : n a m a n h s a n g = 9,46.10^" k m km nghieng tren mat p h i n g d a o cua n o q u a n h M a t T r d i m o t goe l a b a o n h i e u ? ( I I ) : Tirong tac h a p dan sau day? n g h i cua fiu 16 K h o i l u g n g cua M a t T r d i v a o B (I), ( I I ) , (IV) T u o n g t a c c i i a cac h a t so cap electron k h o i l u o n g n g h i cua p r o t o n C L d n h o n k h o i iMng A (I), (H), (HI) nam dung ( I ) : K h o i l u c t n g n g h i mo gom km a u 14 T h e o t h u y e t B i g B a n g , cac n g u y e n tijT dau t i e n x u a t h i e n vao thbi d i e m nko? A N h o h o n k h o i l u g n g n g h i cua (IV): T h d i gian song t r u n g binh D 12 C 0 0 n a m d n h s a n g D 15000 t r i e u k m (HI): Spin C 0 k m B 10000 n a m a n h s d n g C 1500 t r i e u k m C a u G p i D s, c b A 1000 n a m a n h s a n g B 150 t r i e u k m Cac dac t r u f t g c h i n h cua h a t so c a p C u s, c •au 13 Ducfng k i n h ciia m o t T h i e n H a v a o cof A 15 t r i e u k m C a u G o i D s, c, b C a u 11 N o r t r o n difdc t a o n e n tii quae l a A 6378 k m Moc C a u T r o n g H e M a t TrcJi, t h i e n t h e n a o sau d a y k h o n g p h a i l a h a n h t i n h ? A M a t TrSng C u, s, c C a u 12 B a n k i n h T r a i D a t d x i c h dao c6 g i a t r i n a o s a u d a y ? C a u T r o n g cac h a n h t i n h sau d a y c i i a H e M a t T r d i : T h i e n v u o n g t i n h , A T h i e n viTcfng t i f i h B u, u, d ^ quy BAI TAP TRAC NGHIEM BAI TAP MAU B a i Khoang each giCa mot Thien Ha va chiing ta la 8,31.10^' km Tim toe chay xa cua thien Tom tat • d = 8,31.10^' km Tim Hiidng dan Ap dung dinh luat Hdp-bcfn V V 1,7.10-^ s •H= nam anh sang gidi 1,7.10-"s 9,46.10'== km = nam anh sang V =15000 m « 15.10^" cua Thieng Lang la 0,14841 — s C 0,834.10^'km D 83,4.10^'km Tinh toe lui xa cua Thien Lang d each ehung ta 8,73 nam anh sang A 1.48 m/s B 0,148 km/s C 0,148 km/h D 0,148 m/s A bi dich luc ve phia do, lue ve phia t i m Do dich cue dai la 0,5 A'* Van toe cUc dai theo phiTong nhin cua cac phan doi la 34,5km/s BiTcJc s6ng cua vach cham Hy\k , 6 C 0,122 D 1,875 B Do dich ve phia ciia vach quang I ciia mgt quaza la A/l Van t6'c rori xa ciia quaza la 48.10^kmys Ti so giiJa dich ve phia d6 cua vach quang A va bude song X la A 0,14 B 0,15 C 0,16 D 0,17 Mat Trdi bi giam di mot lugng la « 1,37.10'^ kg/nam G i a t r i cua P la HU&ng dan gidi A 1,95.10^'k W Ap dung dinh luat Hdp-bon 0,14841 1,7.10 -2 V v = H.d d = H d = 8,73 nam anh sang m B a i Cong suat bufc xa toan phan cua Mat Trbi la 3,9.10^*W Cho c = 3.10* g De phat nSng luong nay, khoi lifcJng Mat Trdi gidm di moi la bao nhieu? B 1,95.102*'W C 3,9.10'®kW D 3,9.10^^ W BAI TAP LUYEN TAP Bai Tinh bude s6ng cua hai photon sinh sir huy cua cap electron- pozitron d trang thai nghi (dong nang ban dau cac hat bkng khong) Dap so: « 2,42 (pm) Bai Trong qua t r i n h va cham trUc di$n giufa mgt electron va mgt pozitron, c6 su hiiy cap tao hai photon c6 nang lifcfng 0,5 pm chuyen dgng theo hai chieu ngifcJc Dong nang ciia hai hat tri/de va cham la Dap so: 1,9725 MeV P H A N I I I : D A P A N L i T H U Y E T CHlTCfNG Tom tat P = 3,9.10^^ m C = 3.10*7 Tim m = ? t = = 24.3600 •= 86400 s Hii&ng dan E = P.t Vdi t = = 24.3600 s = 86400 s -> E = 3,9.10^^86400 = 3,3696.10^' (J) Mat khac: E = me^ ^ m = = 3,3696.10' ,8x2 (3.10')' X gidi Ap dung eong thiJc E c6 bude s6ng Bai Cong suat biJc xa toan phan cua Mat Trdi la P Moi nam, khoi lucfng Tom tat Tim d = ? B 8,34.10^'m A , 4 B km B a i Tim khoang each giffa Thieng Lang va chiing ta Biet toe dp lui xa • V = 0,1484 — s A 8,34.10^'km a i Sao ^ chom Dai Hung la mot doi Vach cham = H.d 1,7.10-^—8,31.10" (km) V B a i Khoang each den mpt Thien Ha eo toe dp lui xa Idn nha't bkng 15000km/s m = 3,744.10''kg/ngay fiu Chon D C a u ChgnC C a u Chgn A fiu Chgn B C a u ChonB C a u Chon D fiu Chgn D C a u Chon D C a u Chgn D fiu 10 Chgn B C a u 11 Chgn A C a u 12 Chgn A .fiu 13 Chgn C C a u 14 Chgn C C a u 15 Chgn D fiu 16 ChonB C a u 17 Chon D C a u 18 Chgn A BAI TAP TRAC N G H I E M (ChuWng X) A p d u n g d i n h l u a t b a o t o a n n f t n g lu'gng K' + 1,7.10'15000.— = ^ d s namanhsang C a u T a c6: V = H d ^ m a t k h a c d i n h l u a t b a o t o a n d o n g lifpng P r ^ - ^ d d * 8,34.10^' k m 9,46.10'Vkm Chpn A = 0,148 m/s Chon D „ „ , V C a u T a co: c M , = — => A = A^.c i - 0,434.10''* m = , 4 (t.im) Chon A V AX C a u — = c > AX 48.10' _ — = — = 0,16 ^ 3.10" C h o n C C a u T a c6: E = m c ' = 1,37.10'^(3.10**)^ = 1,233.10'"' ( J ) ma E = p.t -> p - = o p « 3,9.10-*^ W t 365.24.3600 Chon D DAP A N BAI TAP LUYEN TAP C H l / a N G X B a i Sir h i i y c a p e l e c t r o n - p o z i t r o n °ie + ';,e ^ y + y A p dung dinh luat bao toan dpng lupng 2m E = m«c^ = 9,1.10~^\(3.10*)^ = , " " ( J ) Birdc s o n g ciia h a t E = (1) (2) Tif (1), (2) - > p + p ' = ^ p" = - p ^ m , K " = m „ K " K " (3) T h e ( ) v a o (*) ^ K * + 2m„c^ = E 1,7.10-™ V = 1,7.10"^ ^ — 8,73 n a m a n h s a n g n a m a n h sang ^ +Py P,+P, = hay p ' = -p*' ^ C a u V r H d V +P"= D o d e c h o h a t p h o t o n c h u y e n d p n g t h e o c h i e u ngUpc n h a u n e n 1,7.10-H rr> 15000.10'^ m / s = + 2m,.c'^ = 28 (*) X -^X^ — z = 2,42.10"'" ( m ) 2,42 ( p m ) B a i T a c6 p h a n iJng sU h u y cSp giufa e l e c t r o n v a p o z i t r o n °ie + ?e y +y ^ K * + 2me.c' = — X Vay K" - C5 « 1,9725 M e V = 3,156.10"''^ ( J ) » 1,9725 M e V MUC LUC LCJl NOI D A U Chiforng I DONG LlJC HOC V A T RAN Phan I : TOM T A T LI THUYET Phan II: B A I TAP TRAC NGHIEM + B A I TAP LUYEN TAP 16 Phan III: D A P A N C A U HOI TRAC NGHIEM CHl/ONG I 32 C H l / d N G II: DAO DONG C d Phan I : TOM T A T L i THUYET 58 • Phan II B A I TAP T R A C NGHIEM + B A I TAP LUYEN TAP Phan III: D A P A N C A U HOI T R A C NGHIEM C H U O N G IT Chifofng III SONG CO Phan I : TOM T A T LI THUYET 58 69 127 160 160 Phan II B A I TAP T R A C NGHIEM + B A I TAP LUYEN TAP 170 Phin III: D A P A N L I THUYET T R A C NGHIEM C H U O N G I I I 200 Chiforng IV DAO DONG V A SONG D I E N Tlf Phan I : TOM T A T LI THUYET 220 220 Phan II: B A I TAP T R A C NGHIEM + B A I TAP LUYEN TAP 228 Phan III: D A P A N LI THUYET T R A C NGHIEM C H U O N G IV 235 Chifcfng V DONG D I ^ N XOAY C H I ^ U Phan I : TOM T A T LI TUYET 242 242 Phan II B A I TAP T R A C NGHIEM + B A I TAP LUYEN TAP 256 Phan III: D A P A N LI THUYET T R A C NGHIEM CHl/CfNG V 303 Chi/tfng VL SONG ANH SANG 320 Phan I : TOM T A T L I THUYET 320 Phan II B A I TAP T R A C NGHIEM + B A I TAP LUYEN TAP Phan III: D A P A N L I THUYET TRAC NGHIEM CHUCfNG VI 327 370 370_ 382 P H A N L O A I V A PHU'OfNG P H A P G I A I C H I T I E T Phan I : T O M T A T L I T H U Y E T 382 B A I T A P T R A C N G H I E M V A T L I 12 ( T R O N G T A M ) Phan I I B A I T A P T R A C N G H I E M + B A I T A P L U Y E N T A P 392 T h S Tran Thanh Binh Chiftfng V I I L L / N G T L T A N H S A N G Phan I I I : D A P A N L I T H U Y E T T R A C N G H I E M C H U O N G V I I Chifrfng V I I I SCJ L\J0C V E T H U Y E T TL/dNG DOI H E P 415 423 Phan I : T O M T A T L I T H U Y E T 423 Phan I I : B A I T A P T R A C N G H I E M + B A I T A P L U Y E N T A P 425 Phan I I I : D A P A N L I T H U Y E T T R A C N G H I E M C H U d N G V I I I 429 Chifrfng IX H A T N H A N N G U Y E N T\J 432 Phan I : T O M T A T L I T H U Y E T 432 Phan I I : B A I T A P T R A C N G H I E M + B A I T A P L U Y E N T A P 439 Phan I I I : D A P A N T R A C N G H I E M C H U O N G I X Chiftfng X T C V I M O D E N V I M O 460 NHA X U A T B A N DAI HOC Qudc G I A TP HO CHI MINI! K P 6, P L i n h Trung, Q Thu Dufc, T P H C M So Cong tradng Quoc te, Q.3, T P H C M D T : 38239172, 38239170 F a x : 38239172; E m a i l : vnuhp@vnuhcm.edu.vn 468 Phan I : T O M T A T L I T H U Y E T 468 Phan I I : B A I T A P T R A C N G H I E M + B A I T A P L U Y E N T A P 471 Phan I I I : D A P A N L I T H U Y E T C H U O N G X 473 Chiu trdch nhiem xuat ban: TS H U Y N H B A L A N To chile ban thdo vd chiu, trdch nhicni ve tdc quyen DOAN V A N K H A N H Bien tap N G U Y E N DLfC M A I L A M Siia ban in THAN T H I HONG Trinh bay bia DIEM JK.03.VL(V) 791.2013/CXB/12-40 E)HQG.HCIVI-13 K H A N H TK.VL.452-13(T) 'n 1.000 cudn, kho 16 x 24cm So dang ky KHXB: - / C X B / - / D H Q G T P H C M Quyet djnh xuat ban so: 3 / Q D - D H Q G T P H C M 21 thang nam 2013 cua Nha xuat ban OHQG T P H C M In Tai Cong ty In Song Nguyen, nop lUu chieu thang 10 nam 2013 ... V20^ + 20 ' = 20 V2 Q (1) - > UAN = 5V2 20 V2 -e^ = 20 0(V) Vdi ZAN = + = (1) coscp = Vdi ZMB = yJiZ^-Zc? (2) UMB = 5X /2. 20 ^ U „ „ coscp = - = 100% /2 V2 42 = p h u t = s U MB Q = R l ' t = 100 (2. .. C.T2 = 3.10 ^23 17L2C2 i = " V o s l 0 t t (A) hay i = 2. 10-^7isin(1007it + ^ ) (A) C a u 12 i = 0 T " ^ s i n ( 0 T t + C = 0 , 126 .10-'F = 0 , 126 .nF ^ = 0 ,2. 10'^ F = 0 ,2 ^iF ^ = 47I2LC (T^ t i le... xoay chieu dat vao dau doan m a c h la 22 0 (Vi A 2, 2 A C K J 23 .1 Den sang n h u the nao? A Den sang b i n h t h u d n g cUcfng dp dong d i e n l a A A B 0,6 K J RL; L /2S 222 2SV B A u = 40V2cosl007tt

Ngày đăng: 28/04/2021, 13:41

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w