- HS nàõm âæåüc caïc tênh cháút cuía hai tiãúp tuyãún càõt nhau; nàõm âæåüc thãú naìo laì âæåìng troìn näüi tiãúp tam giaïc, tam giaïc ngoaûi tiãúp âæåìng troìn; hiãøu âæåüc âæåìng troìn[r]
(1)Ngày soạn 10/11
Tiết : 28 TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU A MỤC TIÊU :
- HS nắm tính chất hai tiếp tuyến cắt nhau; nắm đường tròn nội tiếp tam giác, tam giác ngoại tiếp đường tròn; hiểu đường tròn tiếp tam giác
- Biết vẽ đường tròn nội tiếp tam giác trước Biết vận dụng tính chất hai tiếp tuyến cắt vào tập tính tốn chứng minh
- Biết cách tìm tâm vật hình trịn "thước phân giác"
B PHƯƠNG PHÁP : Nêu giải vấn đề C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : + Bảng phụ ghi câu hỏi, tập định lý
+ Thước thẳng, compa, êke, phấn màu + Thước phân giác (H83.SGK)
- HS : + Ơn tập định nghĩa, tính chất, dấu hiệu nhận biết tiếp
tuyến
đường tròn
+ Thước kẻ, compa, êke
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức : II Bài cũ : (8 phút)
GV nêu câu hỏi kiểm tra (Một HS lên bảng kiểm tra)
- Phát biểu định lý, dấu hiệu nhận biết tiếp tuyến đường tròn
- Phát biểu định lí tr 110 SGK Chữa tập 44 tr 134 SBT Cho
tam giác ABC vuông A Vẽ đuờng tròn (B, BA) đường tròn C, CA) Chứng minh CD tiếp tuyến đường tròn (B)
- Chữa tập HS vẽ hình
Chứng minh : ABC DBC có AB = BD = R (B) AC=DC=R (C) BC chung
=> ABC = DBC (ccc)
=> BAC = BDC = 900
GV nhận xét, cho điểm GV hỏi thêm: CA có tiếp tuyến đường trịn (B) khơng?
Như vậy, hình vẽ ta có CA CD hai tiếp tuýên cắt đường trịn (B) Chúng có
=> CD BD
=> CD tiếp tuyến đường trịn (B)
Cọ CA BA
(2)tính chất ? Đó nội dung hôm
III Bài mới :
Họat động thầy trò Nội dung kiến thức
Hoạt động ĐỊNH LÝ VỀ HAI TIẾP TUYẾN CẮT NHAU (12 phút)
GV yêu cầu HS làm (?1)
Một HS đọc to (?1) SGK HS nhận xét OB = OC = R
AB = AC; BAO = CAO
GV gợi ý : Có AB, AC tiếp tuyến đường trịn (O) AB, AC có tính chất ?
AB OB; AC OC (GV điền ký hiệu vuông góc vào
hình) Xét ABO ACO có Bˆ Cˆ= 900 (tính chất tiếp tuyến)
OB = OC = R
=> ABO = ACO (cạnh huyền -cạnh góc vng)
=> AB = AC ; Aˆ1 Aˆ2;Oˆ1 Oˆ2;
- Hãy chứng minh nhận xét
GV giới thiệu : Góc tạo hai tiếp tuyến AB AC góc BAC, góc tạo hai bán kính OB OC góc BOC Từ kết nêu tính chất hai tiếp tuyến đường tròn cắt điểm
HS nêu nội dung định lý hai tiếp tuyến đường tròn cắt
GV yêu cầu HS đọc định lý tr 114 SGK tự xem chứng minh SGK GV giới thiệu ứng dụng định lí tìm tâm vật hình trịn "thước phân giác" GV đưa "thước phân giác" cho HS quan sát, mô tả cấu tạo cho HS
Ta đặt miếng gỗ hình trịn tiếp xúc với hai cạnh thước
- Kẻ theo "tia phân giác thước, ta vẽ đường kính hình trịn" - Xoay miếng gỗ làmtiếp tục trên, ta vẽ đường kính thứ hai
- Giao điểm hai đường kính tâm miếng gỗ hình trịn làm (?2) Hãy nêu cách tìm tâm
một miếng gỗ hình trịn "thước phân giác"
Hoạt động ĐƯỜNG TRÒN NỘI TIẾP TAM GIÁC (10 phút)
Thế đường tròn ngoại tiếp tam gáic Tâm đường trịn ngoại tiếp tam giác vị trí ? GV yêu cầu HS làm (?3) GV vẽ hình Một HS đọc to (?3)
HS vẽ hình theo bi (?3)
(3)Vỗ I thuọỹc phỏn giaùc goùc A nón IE = IF
Vỗ I thüc phán giạc gọc B nãn IF = ID
Vậy IE = IF = ID
=> D, E, F nằm đường tròn (I, ID)
Chứng minh ba điểm D, E, F nằm đường trịn tâm I - Sau GV giới thiệu đường tròn (I, ID) đường tròn nội tiếp ABC ABC tam giác ngoại tiếp (I)
Đường tròn nội tiếp tam giác đường tròn tiếp xúc với ba cạnh tam giác
Tâm đường tròn nội tiếp tam giá giao điểm đường phân giác tam giác
Tâm cách ba cạnh tam gáic
- GV hỏi : Vậy đường tròn nội tiếp tam giác, tâm đường tròn nội
Tiếp tam giác vị trí ? Tâm quan hệ với ba cạnh tam giác ?
Hoạt động ĐƯỜNG TRỊN BNG TIẾP TAM GIÁC (8 phút)
GV cho HS làm (?3) (Đề bi hỡnh v
õổa lón baớng phuỷ) Vỗ K thuọỹc tia phỏn giaùc cuớa xBCnón KF = KD Vỗ K thüc tia phán
giạc ca HS âc (?3) vaỡ quan saùt hỗnh veợ
Chng minh ba im D, E, F nằm đường trịn có tâm K
GV giới thiệu : Đường tròn (K, KD) tiếp xúc với cạnh tam giác tiếp xúc với phần kéo dài hai cạnh gọi làđường tròn bàng tiếp xúc tam giác ABC
Bcy nên KD = KE => KF = KD = KE Vậy D, E, F nằm đường tròn (K, KD)
- Đường tròn bàng tiếp tam giác đường tròn tiếp xúc với cạnh tam giác phần kéo dài hai cạnh lại Tâm đường tròn bàng tiếp tam giác giao điểm đường tròn phân giác tam giác GV hỏi : Vậy đường
tròn bàng tiếp tam giác
(4)GV lưu ý : Do KF = KE => K nằm phân giác góc A nên tâm đường tròn bàng tiếp tam giác giao điểm phângiác phân giác góc khác tam giác
Một tam giác có ba đường trịn bàng tiếp nằm góc A, góc B, góc C
Một tam giác cómấy đường tròn bàng tiếp
GV đưa lênbảng tam giác ABC có ba đường trịn để HS hiểu rõ
IV Củng cố (5 phút)
Phát biểu định lí hai tiếp tuyến cắt đường tròn
HS nhắc lại định lý tr 114 SGK Bài tập: Hãy nối nối ô cột trái với mộtô cột phải để khẳng định
1 Đường tròn nội
tiếp tam giác a đường tròn qua ba đỉnh củatam giác 1-b
2 Đường tròn bàng
tiếp tam giác b đường tròn tiếp xúc với bacạnh tam giác 2-d Đường tròn ngoại
tiếp tam giác c giao điểm ba đường phân giáctrong tam giác 3-a Tâm đường tròn
nội tiếp tam giác d đường tròn tiếp xúc với mộtcạnh tam giác phần kéo dài hai cạnh
4-c Tâm đường tròn
bàng tiếp tam giác e giao điểm hai đường phân giácngoài tam giác 5-e
V Hướng dẫn nhà (2 phút)
Nắm vững tính chất tiếp tuyến đừơng tròn dấu hiệu nhận biết tiếp tuyến
- Phân biệt định nghĩa, cách xác định tâm đường tròn ngoại tiếp, đường tròn nội tiếp, đường tròn bàng tiếp tam giác
- Bài tập nhà số 26, 27, 28, 29, 33 tr 115, 116 SGK số 48, 51 tr 134, 135 SBT
Ngăy soạn 12/11 Tiết : 29 LUYỆN TẬP
A MUÛC TIÃU :
- Củng cố tính chất tiếp tuyến đường tròn, đường tròn nội tiếp tam giác
- Rèn luyện kĩ vẽ hình, vận dụng tính chất tiếp tuyến vào tập tính tốn chứng minh
- Bước đầu vận dụng tính chất tiếp tuyến vào tập quỹ tích dựng hình
- HS có tinh thần xây dựng tốt
(5)-GV +Bảng phụ ghi câu hỏi, tập, vẽ hình Thước thẳng, compa, êke, phấn màu
- HS + Ôn tập hệ thức lượng tam giác vng, tính chất tiếp tuyến
+ Thước kẻ, compa, êke + Bảng phụ nhóm
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức : II Bài cũ : (15 phút)
Baìi 26 tr 115 SGK
GV yêu cầu HS lên bảng vẽ hình chữa câu a, b (Đề đưa lên bảng
HS1 : Chữa 26 (a, b) SGK
a Có AB = AC (tính chất tiếp tuyến)
OB = OC = R (O)
=> OA laì trung trỉûc ca BC => OA BC (tải H) v HB = HC b Xẹt CBD cọ :
CH = HB (chứng minh trên) CO = OD = R (O)
=> OH đường trung bình tam giác
=> OH //BD hay OA//BD Sau HS trỗnh baỡy cỏu a vaỡ b,GV
a hình vẽ câu c lênbảng phụ yêu cầu HS lớp giải câu c
c Trong tam giaïc vuäng ABC AB =
2
OB
OA (âënh lyï Pytago) =
2
2 2
4 = (cm)
Sin A =
2
OA OB
=> Aˆ1= 30
=> BAC = 600
ABC có AB = AC (tính chất tiếp tuyến)
=> ABC cán
Có BAC = 600 = ABC
Vậy AB = AC = BC = (cm)
HS2 chữa tập 27 SGK (Đề đưa lên bảng)
Coï DM = DB; ME = CE
(tính chất hai tiếp tuyến cắt nhau)
(6)HS lớp nhận xét, chữa
GV nhận xét, cho điểm AD + DE+EA = AD = DM + ME + EA
= AD + DB + CE + EA = AB + CA = 2AB
III Bài mới :
Họat động thầy trò Nội dung kiến thức
LUYỆN TẬP (28 phút) Bài 30 tr 116 SGK
(Đề đưa lên bảng
GV hướng dẫn HS vẽ hình
a Chứng minh COD = 900
(Ghi lại chứng minh HS trình bày,
bổ sung cho hồn chỉnh) a Có OC phân giác AOM có ODlà phân giác MOB (tính chất hai tiếp tuyến cắt nhau)
Aom kề bù với MOB => OC OD
hay COD = 900
b Chứng minh CD = AC + DB b Có CM = CA, MD = MB
(tính chất hai tiếp tuyến cắt nhau)
= CM + MD = CA + BD Hay CD = AC + BD c Chứng minh AC BD không đổi
M di chuyển nửa đường tròn
GV: AC.BD tích ? AC.BD = CM.MD
- Tại CM MD không đổi ? - Trong tam giác vuông COD có OM
CD (tính chất tiếp tuyến)
=> CM.MD = OM2 (hệ thức lượng
trong tam giác vuông) => AC.BD =R2 (không đổi)
HS lớp vừa tham gia chứng minh, vừa chữa
Baìi 31 tr 116 SGK
(Đề đưa lên bảng Hoạt động nhóm
GV yêu cầu HS hoạt động theo
nhọm Bi lm
GV gợi ý: Hãy tìm cặp đoạn thẳng hình
Các nhóm hoạt động khaỏng phút GV u cầu đại diện nhóm lên trình bày
a Coï AD = AF; BD=BE; CF-CE
(7)Đại diện nhóm lên trình bày
HS lớp nhận xét, chữa Bài 32 tr 116 SGK
HS trả lời miệng
GV đưa hình vẽ sẳn đề đưa lên bảng phụ
AB+AC-BC
=AD + DB+AF+FC-BE-EC
= AD+DB+AD+FC-B-FC = 2AD
b Các hệ thức tương tự hệ thức câu a :
2BE = BA + BC - AC 2CF = CA + CB - AB OD = 1cm => AD = 3cm
(theo tính chất trung tuyến)
Trong tam giạc vng ADC cọ Cˆ
=600
DC = AD Cotg 600 = 3
3
=
(cm)
= BC = 2DC = (cm)
SABC=
2 2
AD
BC = 3
3 (cm2)
Vậy D.3 cm2
Diện tích ABC :
A 6cm2 B 3cm2
C
4
3 cm2 D 3 3 cm2
Baìi 28 tr 116 SGK
GV đưa hình vẽ sau lên bảng phụ - Các đường tròn (O1), (O2), (O3)
tiếp xúc với hai cạnh góc xAy, tâm O nằm đường ?
Baìi 29 tr 116 SGK
Cho góc xAy khác góc bẹt, điểm B thuộc tia Ax Hãy dựng đường tròn (O) tiếp xúc với Ax B tiếp xúc với Ay
GV đưa hình vẽ tạm lên để HS phân tích
Theo tính chất hai tiếp tuyến cắt đường trịn, ta có tâm o nằm tia phân giác góc xAy
Đường trịn (O) phải thoả mãn
(8)- Vậy tâm O phải nằm đường ?
- GV hướng dẫn dựng hình thứơc kẻ compa
- Tâm O phải nằm đường thẳng d vuông góc với Ax B tâm O phải nằm tia phân giác Az góc zAy
Vậy O giao điểm đường thẳng d tia AX
IV Củng cố : Nắm cách giải tập chữa V Hướng dẫn nhà (2 phút)
- Bài tập nhà số 54, 55, 56, 61, 62 tr 135 -> 137 SBT
- Ơn tập định lí xác định đường trịn Tính chất đối xứng đường trịn
Ngày soạn 18/11
Tiết : 30: VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRỊN A MỤC TIÊU :
- HS nắm ba vị trí tương đối hai đường trịn, tính chất hai đường tròn tiếp xúc (tiếp điểmnằm dường nối tâm), tính chất hai đường trịn cắt (hai giao điểm đối xứng qua đường nối tâm)
- Biết vận dụng tính chất hai đường trịn cắt nhau, tiếp xúc vào tập tính tốn chứng minh
- Rèn luyện tính xác phát biểu, vẽ hình tính tốn
B PHƯƠNG PHÁP : Nêu giải vấn đề C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Một đường tròn dây thép để minh hoạ vị trí tương đối với đường tròn vẽ sẳn bảng
Bảng phụ vẽ hình 85, 86, 87 SGK định lý, câu hỏi, tập Thước thẳng compa, phấn màu, êke
- HS : Ôn tập định lý xác định đường trịn Tính chất đối xứng đường trịn
Thước kẻ, compa
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức :
II Bài cũ : (kiểm tra 15 phút)
Từ điểm A bên ngồi đường trịn (O, R) vẽ hai tiếp tuyến AB, AC với đường trịn Đường thẳng vng góc với OB O cắt AC AB Đường thẳng vng góc với OC O cắt tia AB M
a Chứng minh tứ giác AMON hình thoi III Bài :
Họat động thầy trò Nội dung kiến thức
Hoảt âäüng 1
(9)(?1) Vì hai đường trịn phân biệt khơng thể có q điểm chung
Theo định lí xác định đường trịn, qua ba điểm khơng thẳng hàng, ta vẽ đường trịn Do hai đường trịn có từ ba điểm chung trở lên chúng trùng hai đường trịn phân biệt khơng thể có q điểm chung
GV vẽ đường tròn (O) cố định lên bảng, cầm đường tròn (O/) dây thép (sơn trắng)
dịch chuyển để HS thấy xuất ba vị trí tương đối hai đường tròn
- đường tròn (O/) ngồi với (O)
- đường trịn (O/) tiếp xúc ngồi
với (O)
- đường trịn (O/) cắt (O)
- đường tròn (O) đựng (O/)
- đường tròn (O/) tiếp xúc trong
với (O)
- đường tròn (O/) cắt (O)
- đường trịn (O/) ngồi (O)
a Hai đường tròn cắt GV vẽ
HS ghi vẽ vào
GV giới thiệu : Hai đường trịn có hai điểm chung gọi hai đường trịn cắt
Hai điểm chung (A, B) gọi hai giao điểm
Đoạn thẳng nối hai điểm (đoạn AB) gọi dây chung
(10)b Hai đường tròn tiếp xúc hai đường trịn có điểm chung
Tiếp xúc Tiếp xúc
Điểm chung (A) gọi tiếp điểm
c Hai đường trịn khơng giao hai đường trịn khơng có điểm chung
Ở ngồi Đựng
Hoạt động TÍNH CHẤT ĐƯỜNG NỐI TÂM (15 phút)
GV vẽ đường tròn (O) (O/) có O
O/
Giới thiệu : Đường thẳng Ô/ gọi
là đường nối tâm; đoạn thẳng Ô/
gọi đoạn nối tâm Đường nối tâm OO/ cắt (O) C D, cắt (O/)
ở E F
Tại đường nối tâm OO/ lại là
trục đối xứng hình gồm hai đường trịn ?
GV u cầu HS thực (?2) a Quan sát hình 85, chứng minh
rằng OO/ đường trung trực của
đoạn thẳng AB
GV bổ sung vào hình 85
Đường kính CD trục đối xứng (O), đường kính EF trục
đối xứng đường trịn (O/) nên
đường nối tâm Ơ/ trục đối
xứng hình gồm hai đường trịn
a Cọ OA= OB = R (O) ; O/A = O/B =
R(O/)
=> OO/ đường trung trực của
đoạn thẳng AB Hoặc có OO/ là
trục đối xứng hình gồm hai đường tròn
=> A B đối xứng với qua OO/
=> OO/ đường trung trực của
đoạn thẳng AB
(11)GV ghi (O) (O/) cắt A
vaì B
=> OO/ AB taûi I
IA = IB
GV yêu cầu HS phát biểu nội dung tính chất
b Quan sát hình 86, dự đốn vị trí điểm A
đường nối tâm OO/
GV ghi (O) (O/) tiếp xúc nhau
tại A => O, O/, A, thẳng hàng
GV yêu cầu HS đọc định lí tr 119 SGK
GV yêu cầu HS làm (?3)
a Hãy xác định vị trí tương đối hai đường trịn (O) (O/)
b Theo hình vẽ AC, AD đường trịn (O) (O/)
- Chứng minh BC//OO/ ba điểm
A, B, D thẳng hàng (GV gợi ý cách nối AB cắt OO/ I
vaì AB OO/)
b Vì A điểm chung hai dường tròn nên A phải nằm trục đối xứng hình tức A đối xứng với Vậy A phải nằm đường nối tâm
a Hai đường trịn (O) (O/) cắt
nhau tải A v B
b AC đường kính (O)
AD đường kính (O/)
- Xét ABC có AO = OC = R (O) AI = IB (tính chất đường nối tâm) => OI đường trung bình ABC
=> OI//CB hay OO///BC
Chứng minh tương tự => BD//OO/
=> C, B, D thẳng hàng theo tiên đề Ơclít
IV Củng cố (4 phút)
Nêu vị trí tương đối hai đường tròn số điểm chung tương ứng - Phát biểu định lí tính chất đường nối tâm
- Bài tập 33 tr 119 SGK (Đề hình 89 đưa lên bảng)
Chứng minh :OAC có OA = OC = R (O)
=> OAC cán => C ˆ Aˆ1
Chứng minh tương tự có O/AD
cán
=>Aˆ2 Dˆ MàA ˆ1 Aˆ2 (i nh)=>
D C
OC//O/D vỗ coï hai goïc so le trong
bằng
- Sử dụng tính chất : Khi hai đường trịn tiếp xúc A A nằm đường nối tâm
GV hỏi thêm : Trong chứng minh này, ta sử dụng tính chất đường nối tâm ?
V Hướng dẫn nhà (1 phút)
- Nắm vững ba vị trí tương đối hai đường trịn, tính chất đường nối tâm
(12)Ngày soạn 22/11
Tiết : 31 VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRỊN (T2)
A MỦC TIÃU :
- HS nắm hệ thức đoạn nối tâm bán kính hai đường trịn ứng với vị trí tương đối hai đường tròn Hiểu khái niệm tiếp tuyến chung hai đường tròn
- Biết vẽ hai đường tròn tiếp xúc ngoài, tiếp xúc trong, biết vẽ tiếp tuyến chung hai đường tròn nhựa
- Biết xác định vị trí tương đối hai đường trịn dựa vào hệ thức đoạn nối tâm bán kính
- Thấy hình ảnh số vị trí tương đối hai đường trịn thực tế
B PHƯƠNG PHÁP : Nêu giải vấn đề C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Bảng phụ vẽ sẳn vị trí tương đối hai đường trịn, tiếp tuyến chung hai đường trịn, hình ảnh số vị trí tương đối hai đường tròn thực tế, bảng tóm tắt tr 121, đề tập
- HS : Ơn tập bất đẳng thức tam giác, tìm hiểu đồ vật có hình dạng kết cấu liên quan đến vị trí tương đối hai đường trịn
Thước kẻ, compa, êke, bút chì
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức : II Bài cũ : (8 phút)
GV nêu yêu cầu kiểm tra
HS1: Giữa hai đường trịn có vị trí tương đối ? (GV đưa bảng vẽ vị trí tương đối hình 85, 86, 87 để HS minh hoạ) Nêu định nghĩa
HS1: Trả lời câu hỏi vào hình vẽ để minh hoạ
- Phát biểu tính chất đường nối tâm, địnhlý hai đường tròn cắt nhau, hai đường tròn tiếp xúc với (chỉ hình vẽ minh hoạ)
HS2: Chữa tập 34 tr 119 SGK (GV đưa hình vẽ sẳn trường
hợp lên bảng phụ) Có IA = IB =
2 AB
= 12 (cm) Xẹt AIO cọ Iˆ = 900
OI = OA 2 AI2 (âënh lyï Pytago) = 20 2 122 = 16 (cm)
Xẹt AIO/ cọ
Iˆ = 900
IO/ = O/A2 AI2
(âënh lyï Pytago)
= 15 2 122 = (cm)
+ Nếu O O/ nằm khác phía
đối với AB:
(13)+ Nếu O O/ nằm phía
đối với AB
OO/ = IO-O/I = 16-9=7 (cm)
HS giáo viên nhận xét cho điểm
III Bài :
Họat động thầy trò Nội dung kiến thức
Hoạt động HỆ THỨC GIỮA ĐOẠN NỐI TÂM V CÁC BÁN KÍNH
(20 phụt) GV thäng bạo : Trong mủc ny ta
xét hai đường tròn (O,R) (O/,
r) với R t
a Hai đường tròn cắt
GV đưa hình 90 SGK lên bảng hỏi : có nhận xét độ dài đoạn nối tâm Ơ/ với bán kính R, r ?
Nhận xét tam giác ƠA/ có OA -O/A
<OO/< OA +O/A (bất đẳng thức )
Hay R - r <OO/ < R + r
GV: Đó u cầu (?1) b Hai đường trịn tiếp xúc GV đưa hình 91 92 lên bảng hỏi : Nếu hai đường tròn tiếp xúc tiếp điểm hai tâm quan hệ ?
Tiếp điểm hai tâm nằm đường thẳng
- Nếu (O) (O/) tiếp xúc ngồi
thì đoạn nối tâm OO/ quan hệ với
các bán kính ?
- Nếu (O) (O/) tiếp xúc ngoài
=> A nằm O O/
=> OO/ vaì OA + AO/ hay OO/ = R +r
- Hỏi tương tự với trường hợp
(O) (O/) tiếp xúc - Nếu (O) (O
/) tiếp xúc trong
=> O/ nằm O A
=> Ä/ + O/A = OA
=> OO/ = OA - O/A hay OO/ = R - r
GV yêu cầu HS nhắc lại hệ thức chứng minh phần a, b c Hai đường trịn khơng giao GV đưa hình 93 SGK lên bảng hỏi : Nếu (O) (O/) ngồi thì
đoạn thẳng nối tâm OO/ so với
(R+r) ?
OO/ = OA + AB + BO/
OO/ = R + AB + r
=> OO/ > R + r
GV đưa tiếp hình 94 SGK lên hỏi : Nếu đường trịn (O) đựng hình trịn (O/) OO/ so với (R-r) như
thế ?
Đặc biệt O O/ đoạn nối tâm
OO/ ?
GV đưa lên bảng kết
chứng minh OO
/ = OA - O/B - BA
OO/ = R -r -BA
(14)GV cho biết : Dùng phương pháp phản chứng, ta chứng minh mệnh đề đảo mệnh đề ghi chép dấu mũi tên ngược (<=) vào mệnh đề
Gv yêu cầu HS làm tập 35 tr 122 SGK
(Đề đưa lên bảng phụ) HS điền vào bảng OO/ = d; R>r
(O) (O/) đồng tâm OO/ = O
(O) (O/) cắt => R - r < OO/
< R+ r
(O) (O/) tiếp xúc => OO/
= R + r
(O) (O/) tiếp xúc => OO/ =
R - r
(O) (O/) => OO/ > R
+ r
(O) v (O/) âỉûng => OO/ < R
-r
Bảng tóm tắt tr 121 SGK Vị trí tương đối
hai đường tròn Số điểm chung Hệ thức d, R, r
(O, R) âæûng (O/, r) O d < R - r
Ơí ngồi d > R + r
Tiếp xúc d = R + r
Tiếp xúc d = R - r
Cắt R - r < d < R + r
Hoạt động TIẾP TUYẾN CHUNG CỦA HAI ĐƯỜNG TRÒN (8 phút)
- Các tiếp tuyến chung hình 95 96 đoạn nói tâm OO/
khác ?
Ở hình 96 có m1, m2 tiếp
tuyến chung hai đường tròn (O) (O/)
- Các tiếp tuyến chung d1, d2
hình 95 khơng cắt đoạn nối tâm OO/
GV giới thiệu tiếp tuyến chung không cắt đoạn nối tâm tiếp tuyến chung Các tiếp tuyến chung cắt đoạn nối tâm tiếp tuyến chung
Các tiếp tuyến chung m1, m2
hình 96 cắt đoạn nối tâm OO/
Hình 97 a có tiếp tuyến chung ngồi d1 d2, tiếp tuyến chung
trong m
Hình 97b có tiếp tuyến chung d1 d2
- GV yêu cầu HS làm (?3) (Đề hình vẽ đưa lên bảng phụ) GV đưa lên hình 98 SGK giải thích cho HS hình cụ thể
IV Củng cố (7 phút)
Bài tập 36 tr 123 SGK (GV đưa hình
vẽ sẳn lên bảng phụ bảng) HS đọc đề SGK
(15)a Xác định vị trí tương đối
hai đường trịn a Có O
/ trung điểm AO =>
O/ nằm A O
=> AO/ + O/O = AO
=> O/O= AO - AO/
Hay O/O = R - r
Vậy hai đường tròn (O) (O/)
tiếp xúc
b Chứng minh AC = CD b Cách : ACO có
AO/ = O/O = O/C = r (O/)
=> ACO vng C (vì có trung tuyến CO/ =
2 AO
)=> OC AD => AC = CD (định lý đường kính dây)
Tuỳ thời gian, nêu cách chứng minh, cách khác HS tiếp tục làm
Cách : Sau có OC AD (chứng minh trên) xét cân AOD có OC đường cao xuất phát từ đỉnh nên đồng thời làđường trung tuyến,do AC = CD
Cách : Chứng minh O/C //OD do
có hai góc đồng vị (do
1
ˆ
C = Dˆ Aˆ)
- Chứng minh O/C đường trung
bỗnh ADO=> AC = CD
V Hng dn v nhà (2 phút)
- Nắm vững vị trí tương đối hai đuờng tròn hệ thức, tính chất đường nối tâm
- Bài tập nhà 37, 38, 40 tr 123 SGK số68 tr 138 SBT - Đọc em chưa biết (vẽ chắp nối trơn) tr 124 SGK
Ngày soạn 25/11
Tiết : 32 LUYỆN TẬP
A MUÛC TIÃU :
- Củng cố kiến thức vị trí tương đối hai đường trịn, tính chất đường trịn nối tâm, tiếp tuyến chung hai đường tròn
- Rèn luyện kĩ vẽ hình, phân tích, chứng minh thơng qua tập
- Cung cấp cho HS vài ứng dụng thực tế vị trí tương đối hai đường tròn, đường thẳng đường trịn
- Học sinh có ý thức học tập tốt
B PHƯƠNG PHÁP : Gợi mở C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Bảng phụ ghi đề tập, vẽ hình 99, 100, 101, 102,103
SGK
- HS:Ôn kiến thức vị trí tương đối hai đường trịn, làm tập GV giao
(16)II Bi c : (8 phụt)
GV nêu u cầu kiểm tra
HS1 : Điền vào ô trống bảng sau
R R d Hệ thức Vị trí tương đối HS1 điền vào
trống
bảng (những ô in đậm ban đầu để trống, sau HS điền, phần in đậm kết quả)
4 D = R + r Tiếp xúc
4 D = R - r Tiếp xúc
5 3,
5 R - r < d < R + r Cắt
3 <
2 D > R + r Ơí ngồi
5 1,
5 D < R - r Âæûng
HS2: Chữa 37 tr 123 SGK HS2:
Chứng minh AC = BD
Giả sử C nằm A D (nếu D nằm A C, chứng minh tương tự)
Hạ OH CD OH AB HS lớp nhận xét làm
bạn, chữa Theo định lí đường kính dây, ta có HA = HB HC = HD
=> HA - HC = HB - HDHay AC = BD GV nhận xét, cho điểm
III Bài mới :
Họat động thầy trò Nội dung kiến thức
Hoạt động LUYỆN TẬP (28 phút)
Baìi 38 tr 123 SGK
(Đề hình vẽ đưa lên bảng phụ
- Có đường trịn (O/, 1cm) tiếp
xúc ngồi với đường trịn (O, 3cm)
thì OO/ ? Hai đường trịn tiếp xúc ngồi
nãn OO/ = R + r ; OO/ = 3+1 = 4
(cm)
Vậy tâm O/ nằm đường
nào ? Vậy điểm O
/ nằm đường
tròn (O; 4cm) - Có đường trịn I, 1cm) tiếp
xúc với đường trịn O, 3cm) OI
(17)- Vậy tâm I nằm đường tròn (O; 2cm)
Vậy tâm I nằm đường ?
Bài 39 tr 123 SGK (Đề đưa lên bảng) GV hướng dẫn HS vẽ hình
a Chứng minh BAC = 900
GV gợi ý áp dụng tính chất hai
tiếp tuyến cắt a Theo tính chất hai tiếp tuyếncắt nhau, ta có :
IB = IA; IA = IC=> IA = IB = IC =
2 BC
=> ABC vng A có trung tuyến IA
2 BC
b Tính số đo góc OIO/ b Có IO phân giác BIA, có IO/ là
phân giác AIC (theo tính chất hai tiếp tuyến cắt nhau)
Mà BIA kề bù với AIC=> OIO/ = 900
c Tính BC biết OA = 9cm c Trong tam giác vng OIO/ có IA
là đường cao O/A = 4cm
GV : Hãy tính IA => IA2 = OA.AO/ (hệ thức lượng
trong tam giác vuông) GV mở rộng tốn : Nếu bán
kính (O) R, bán kính (O/) r độ dài BC bằng
bao nhiãu ?
IA2= 9,7 => IA =6 (cm)
=> BC =2IA = 12 cm
Bài74 tr 139 SBT Đường tròn (O/) cắt đường tròn
(O, OA) tải A v B nãn OO/ AB
(tính chất đường nối tâm)
Tương tự, đường tròn (O/) cắt
đường (O, OC) C D nên OO/
CD
=> AB//CD (cuìng OO/)
(Đề hình vẽ đưa lên bảng) HS chứng minh miệng
(18)GV hỏi : đường tròn (O) (O/) cắt
nhau A B, theo tính chất đường nối tâm, ta có điều ? - Vậy KB AB
a.Cọ AB OO/ tải H v HA = HB
- Xét AKB có AI = IK (gt) HA = HB (t/c đường nối tâm)
=> IH đường trung bình tam giác => IH//KB Có IH AB => KB AB
b.- A E cách điểm K KB AE AB = BE
=> KB l trung trỉûc ca AE => KA = KE
- Tứ giác AOKO/ hình bình hành
vì có hai đường chéo cắt trung điểm đường => OK//AO/ AO//O/K
Có AC AO/ AC tiếp tuyến
ca (O/) => OK AC
=> OK l trung trỉûc ca AC
(đ/l đường kính dây) => KA = KC
b Chứng minh bốn điểm A, C, E, D nằm đường tròn - A E cách điểm ? Vì ?
- Taûi KA = KC ?
- Chứng minh tương tự => O/K là
trung trực AD => KA = KD Vậy KA = KE = KC = KD
=> Bốn điểm E, A, C, D thuộc đường tròn (K, KA)
Hoạt động ÁP DỤNG VAÌO THỰC TẾ (7 phút)
Bài 40 tr 123 SGK Đố (GV đưa dề
bài hình 99 SGK lên bảng phụ) Kết
GV hướng dẫn HS xác định chiều quay bánh xe tiếp xúc :
- Nếu hai đường trịn tiếp xúc ngồi hai bánh xe quay theo hai chiều khác
- Hình 99a,99b hệ thống bánh chuyển động
- Nếu hai đường trịn tiếp xúc hai bánh xe quay chiều
- Hình 99c hệ thống bánh khơng chuyển động
Sau GV làm mẫu hình 99a = Hệ thống chuyển động GV gọi hai HS lên nhận xét hình 99b 99c
* Hướng dẫn đọc mục "Vẽ chắp nối trơn" tr 24 SGK
GV õổa hỗnh 100 vaỡ 101 lãn baíng
phụ giới thiệu cho HS HS nghe GV trình bày đọc thêmSGK
- Ở hình 100; đoạn thẳng AB tiếp xúc với cung BC nên AB vẽ chắp nối trơn với cung BC
(19)GV đưa tiếp hình 102, 103 SGK lên bảng giới thiệu hai cung chắp nối trơn (khác với trường hợp bị "gãy")
Ưïng dụng : Các đường ray xe lửa phải chắp nối trơn với đổi hướng
IV Củng cố : Nắm dạng tập luyện V Hướng dẫn nhà (2 phút)
- Tiết sau ôn tập chương II hình học - Làm 10 câu hỏi ôn tập chương II vào
- Đọc ghi nhớ "Tóm tắt kiến thức cần nhớ"
Ngày soạn29/11
Tiết : 33 ÔN TẬP CHƯƠNG II (tiết 1) A MỤC TIÊU :
- HS ôn tập kiến thức học tính chất đối xứng đường tròn, liên hệ dây khoảng cách từ tâm đến dây, vị trí tương đối đường thẳng đường tròn, hai đường tròn
- Vận dụng kiến thức học vào tập tính tốn chứng minh
- Rèn luyện cách phân tích tìm lời giải tốn trình bày lời giải, làm quenvới dạng tập tìm vị trí điểm để đoạn thẳng có độ dài lớn
B PHƯƠNG PHÁP : Nêu giải vấn đề C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Bảng phụ ghi câu hỏi, tập, hệ thống kiến thức, giải mẫu
Thước thẳng, compa, êke, phấn màu
- HS : Ơn tập theo câu hỏi ơn tập chương làm tập Thước kẻ, compa, êke
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức : II Bài cũ : (18 phút)
GV nêu yêu cầu kiểm tra Hai HS lên kiểm tra
HS1: Nối ô cột tráivới ô cột phải để khẳng định
HS1 : ghép đường trịn ngoại tiếp
tam giác giao điểm đườngphân giác Đápán
1-8 đường tròn nội tiếp
tam giác đường tròn qua bađỉnh tam giác 2-12
3 Tâm đối xứng đường
tròn giao điểm đườngtrung trực cạnh tam giác
(20)4 Trục đối xứng đường
trịn 10 Chính tâm đườngtrịn 4-11
5 Tâm đường tròn nội
tiếp tam giác 11 đường kínhnào đường tròn
5-6 Tâm đường tròn ngoại
tiếp tam giác 12 đường tròn tiếp xúccả ba cạnh tam giác 6-9 HS2: Điền vào chỗ ( ) để
các định lý HS2: Điền vào chỗ ( )
1 Trong dây đường
tròn, dây lớn đường kính
2 Trong đường trịn :
a Đường kính vng góc với
dây qua trung điểm dây
b Đường kính qua trung điểm
cuía mäüt dáy khäng âi qua tám
Thì vng góc với dây
c Hai dây cách tâm
Hai dây cách tâm
d Dây lớn gần
Tám hån
Dây tâm gần
lớn
HS lớp nhận xét làm HS1 HS2
GV nhận xét, cho điểm HS1, HS2
GV nêu tiếp câu hỏi Giữa đường thẳng đường
trịn có ba vị trí tương đối
- Đường thẳng khơng cắt đường tròn
- Đường thẳng tiếp xúc với đường trịn
- Nêu vị trí tương đối đường thẳng đường trịn - Sau GV đưa hình vẽ ba vị trí tương đối đường thẳng đường tròn lên bảng, yêu cầu HS3 điền tiếp hệ thức tương ứng
- Đường thẳng cắt đường tròn) (d>R; d=R; d<R)
- Phát biểu tính chất tiếp tuyến đường trịn
Nêu tính chất tiếp tuyến tính chất hai tiếp tuyến cắt
GV đưa bảng tóm tắt vị trí tương đối hai đường trịn, u cầu HS4 điền vào ô trống
Điền vào hệ thức bảng (phần chữ in đậm)
Vị trí tương đối hai đường tròn Hệ thức
Hai đường tròn cắt R - r < d < R + r
Hai đường tròn tiếp xúc d = R + r
Hai đường tròn tiếp xúc d = R - r
Hai đường trịn ngồi d > R + r
Đường tròn lớn đựng đường tròn nhỏ d < R +r
(21)HS nhận xét làm HS3 HS4
GV cho điểm HS3 HS4
III Bài mới :
Họat động thầy trò Nội dung kiến thức
LUYỆN TẬP (25 phút)
Bài tập 41 tr 128 SGK (Đề đưa lên bảng)
GV hướng dẫn HS vẽ hình
- Đường trịn ngoại tiếp tam giác vng HBE có tâm đâu ?
- Tương tự với đường tròn ngoại tiếp tam giác vng HCF
GV hi :
a Hãy xác định vị trí tương đối (I) (O)
ca (K) v (O) a Cọ BI + IO = BO => IO = BO - BI
nên (I) tiếp xúc với (O)
Cuía (I) v (K) - Cọ OK + KC = OC
=> OK = OC - KC
Nên (K) tiếp xúc với (O) - Có IK = IH + HK
=> Đường trịn (I) tiếp xúc ngồi với (K)
b Tứ giác AEHF hình chữ nhật ABC có AO = BO = CO =
2 BC
=> ABC vng có trung tuyến AO
2 BC
=> Aˆ = 900
Vậy Aˆ Eˆ Fˆ =900 =>AEHF hình
chữ nhật có ba góc vng c Tam giác vng AHB có HE AB (gt)
=> AH2 = AE.AB (hệ thức lượng
trong tam giác vuông) b Tứ giác AEHF hình
Hãy chứng minh
c Chứng minh đẳng thức
AE.AB = AF.AC
Tương tự với tam giác vng AHC có HF AC (gt)
=> AH2 = AF.AC
Vậy AE.AB = AF.AC = AH2
- Nêu cách chứng minh khác, gợi
ý : Hoặc chứng minh
AE.AB=AF.AC AEF ACB 9g.g)
AB AC AF
AE
=> AB
AF AC AE
=> AE.AB=AF.AC
AEF ACB
(22)- Muốn chứng minh đường thẳng tiếp tuyến đường tròn ta cần chứng minh điều ?
Ta cần chứng minh đường thẳng qua điểm đường trịn vng góc với bán kính qua điểm
- Đã có E thuộc (I) Hãy chứng
minh EFEI - GEH có GE =GH (theo tính chấthình chữ nhật)
Gọi giao điểm AH EF G => GEH cân => E ˆ1 Hˆ1
IEH coï IE = IH = r(I)
=> IEH cán => E ˆ2 Hˆ2
Vậy Eˆ1Eˆ2 Hˆ1Hˆ2 = 900
Hay EF EI => EF tiếp tuyến (I)
Chứng minh tương tự => EF tiếp tuyến (K)
Hoặc chứng minh GEI = GHI (ccc) => GEI = GHI = 900
e Xác định vị trí H để EF có
độ dài lớn e
- EF đoạn ? - EF = AH ( tính chất hình chữ
nhật) - Vậy EF lớn AH lớn
AH lớn ? - Có BC AD (gt) => AH=HD =
2 AD
(đ/l đường kính dây)
Vậy AH lớn AD lớn AD đường kính
H O
- Hãy nêu cách chứng minh khác HS : Có EF = AH mà AH AO, AO =
R (O) không đổi
=> EF có độ dài lớn AO
H O
IV Củng cố : Nắm lý thuyết phần tập vừa luyện V Hướng dẫn nhà (2 phút)
- Ôn tập lý thuyết chương II
- Chứng minh định lí Trong dây đường trịn, dây lớn đường kính
- Bài tập nhà số 42, 43 tr 128 SGK số 83, 84, 85, 86 tr 141 SBT
- Tiết sau tiếp tục ơn tập chương II Hình học
- Ngaìy
soản :5/12
Tiết : 34 ÔN TẬP CHƯƠNG II (tiết2) A MỤC TIÊU :
(23)- Vận dụng kiến thức học vào tập tính tốn chứng minh, - Rèn luyện kĩ vẽ hình, phân tích tốn, trình bày tốn
- Học sinh có thái độ học tập tốt
B PHƯƠNG PHÁP : Nêu giải vấn đề C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Bảng phụ ghi câu hỏi, tập, giải mẫu
- HS : Ơn tập lí thuyết chương II hình học làm tập GV
yêu cầu
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức : II Bài cũ :
GV nêu yêu cầu kiểm tra Ba HS lên kiểm tra
HS1: Chứng minh định lí Trong dây đường trịn, dây lớn đường kính
HS1: Chứng minh định lí tr 102, 103 SGK
HS2: Cho góc xAy khác góc bẹt Đường trịn (O, R) tiếp xúc với hai cạnh Ax Ay tạiB, C Hãy điền vào chỗ ( ) để có khẳng định
HS2: Điền vào chỗ ( )
a Tam giạc ABO l tam giạc Vng
b Tam giạc ABC l tam giạc Cán
c Đường thẳng AO Trung trực
Ca âoản BC
d Ao l tia phán giạc ca gọc BAC
HS3 : Các câu sau hay sai a Qua ba điểm vẽ đường tròn mà thơi
b Đường kính qua trung điểm dây vng góc với dây
c Tâm đường tròn ngoại tiếp tam giác vuông trung điểm ạnh huyền
HS3: Xạc âënh âụng hay sai ca cạc cáu
a
Sai (bổ sung: ba điểm khogn thẳng hàng)
b Sai (bổ sung: dây không qua tâm)
c.Đúng d Nếu đường thẳng qua
một điểm đường trịn vng góc với bán kính qua điểm đường thẳng tiếp tuyến đường trịn
d Âụng
e Nếu tam giác có cạnh đường kính đường trịn ngoại tiếp tam giác tam giác vng
e Âụng
HS nhận xét làm bạn
GV nhận xét, cho điểm
III Bài mới :
Họat động thầy trò Nội dung kiến thức
(24)HS tự làm tập tìm kết
Cho đường trịn (O, 20cm) cắt
đường tròn (O/, 15cm) A B;
O O/ nằm phía AB Vẽ
đường kính AOE đường kính
AO/F, biết AB = 24cm Kết
a Đoạn nối tâm OO/ có độ dài
l :
A 7cm B 25cm C 20cm
a
B 25cm
b Âoản EF cọ âäü daìi laì : b
A 50cm B 60cm C 20cm A 50cm
c Diện tích tam giác AEF :
A 150 cm2 B 1200 cm2 C.
600cm2 600 cm
2
Cho HS tự làm khoảng phút, sau GV đưa hình vẽ lên bảng , yêu cầu HS tìm kết
Baìi 42 tr 128 SGK
(Đề đưa lên bảngphụ Một HS đọc to đề GV hướng dẫn HS vẽ hình Chứng minh
a - Có MO phân giác BMA (theo tính chất hai tiếp tuyến cắt nhau)
Tỉång tỉû MO/ l phán giạc AMC,
BMA kề bù với AMC => MO MO/
=> OMO/ =900
- Có MB =MA (tính chất hai tiếp tuyến cắt nhau)
OB = OA = R (O)
=> MO l trung trỉûc ca AB => MO AB => MEA = 900
Chứng minh tương tự => MFA = 900
Vậy tứ giác MEMF hình chữ nhật (tứ giác có ba góc vng hình chữ nhật)
b Chứng minh đẳng thức b Chứng minh đẳng thức
ME.MO = MF.MO/ AE MO => MA2 ME.MO
c Chứng minh OO/ tiếp tuyến
của đường trịn có đường kính BC
Tam gạic vng MAO/ cọ
AF MO/ => MA2 = MF MO/
Suy : ME.MO = MF MO/
(25)- Đường trịn đường kính BC có
tâm đâu ? Có qua A khơng - Đường trịn đường kính BC cótâm M MB = MC = MA, đường trịn có qua A
- Tại OO/ tiếp tuyến của
đường tròn (M)
d Chứng minh BC tiếp tuyến
của đường trịn đường kính OO/ - Có OO
/ bạn kênh MA => OO/ l
tiếp tuyến đường trịn (M) d
- Đường trịn đường kính OO/ có
tâm đâu ? - Đường trịn đường kính OO
/ coï
tâm trung điểm OO/
- Gọi I trung điểm OO/.
Chứng minh M (I) BC IM - Tam giác vng OMO
/ cọ MI l
trung tuyến thuộc cạnh huyền
Baìi 43 tr 128 SGK
(Hình vẽ đưa lên bảng phụ) Một HS đọc to đề HS vẽ hình vào a Chứng minh AC = AD
- GV hướng dẫn HS kẻ OM AC, O/N AD chứng minh IA là
đường trung bình hình thang ƠMN/
=> MI =
2 /
OO
=> M (I)
Hình thang OBCO/ có MI ng
trung bỗnh (vỗ MB = MC vaỡ IO = IO/)=> MI//OB maì BCOB => BC
IM=> BC tiếp đường trịn
đường kính OO/
a Keí OM AC, O/N AD
=> OM//IA// O/N
Xeùt hỗnh thang OMNO/ coù IO=IO/ (gt)
IA//OM//O/N (chứng minh trên)
=> IA đường trung bình hình thang => AM = AN
Coï OM AC => MC = MA =
2 AC
(đ/l đường kính dây)
Chứng minh tương tự => AN = ND =
2 AD
Maì AM = ND = => AC = AD
b K điểm đối xứng với A qua I
Chứng minh KB AB b (O) (O
/) cắt A B
=> OO/ AB tải H v HA = HB
(tính chất đường nối tâm) Xét AKB có :
AH = HB (chứng minh trên) AI = IK (gt)
=>IH đường trung bình của=> IH//KB
Baìi 86 tr 141 SBT
HS nêu nhanh chứng minh câu a b
(Hình vẽ giả thiết, kết luận đưa lên bảng phụ)
Coï OO/ AB => KB AB
(O), đường kính AB Chứng minh :
a (O) v (O/) tip xỳc
vỗ OO/ = OB-O/B
= R(O) - r (O/)
C nằm A O
(O/) đường kính CB
(26)b AB DE => HD = HE Cọ HA = HC
V DE AC
=> ADCE hình thoi có hai đường chéo vng góc với trung điểm đường
c Cọ ADB vng tải D v CKB vng tải K
(định lí tam giác vng) => AD//CK (cùng BD)
Có AD//EC (cạnh đối hình thoi) => E, C, K thẳng hàng theo tiên đề ơclic
DE AB (tại H) DB cắt (O/) K
a (O) vaì (O/) cọ vë trê tỉång
đối ntn
b Tứ giác ADCE hình ? c E, C, K thẳng hàng
d HK tiếp tuyến (O/)
GV yêu cầu HS nêu nhanh chứng minh a, b
c GV: Làm để chứng minh E, C, K thẳng hàng
d GV gợi ý cho HS : Đã có K (O/)
=> CKO/ = KCO = HCE
- Coï HEC + HCE = 900
=> HKC + CKO = 90
IV Củng cố : Nắm dạng tập ôn chương V Hướng dẫn nhà ( phút)
(27)Ngaìy soản :3/12
Tiết : 35ƠN TẬP HỌC KÌ MƠN HÌNH HỌC A MỤC TIÊU :
- Vận dụng kiến thức học vào tập tổng hợp chứng minh tính tốn
- Rèn luyện cách vẽ hình, phân tích tìm lời giải trình bày giải, chuẩn bị cho kiểm tra học kì I mơn Tốn
- HS có ý thức học nghiêm túc
B PHƯƠNG PHÁP : Gợi mở C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Bảng phụ ghi câu hỏi, tập, giải mẫu
Thước thẳng, compa, êke, phấn màu
- HS : Ôn tập chương I II hình học, làm tập GV yêu
cầu
Thước thẳng, compa, êkê Bảng phụ nhóm, bút
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức : II Bài cũ : (3 phút)
GV nêu yêu cầu kiểm tra
Xem xẹt cạc cáu sau cho âụng hay
sai ? Một HS lên kiểm tra
Nếu sai sửa lại cho (Đề đưa lên bảng)
HS trả lời : a Nếu tam giác có
cạnh đường kính đường trịn ngoại tiếp tam giác tam giác vng
a Đúng b Đường kính qua trung điểm
của dây vng góc với dây
b Sai
Sửa trung điểm dây không qua tâm
c Nếu đường thẳng vng góc với bán kính đường trịn đường thẳng tiếp tuyến đường tròn
c Sai
Sửa : Nếu mộtd dường thẳng qua điểm đường trịn vng góc với bán kính đường trịn qua điểm
d Nếu hai đường trịn cắt đường nối tâm vng góc với dây chung chia đơi dây chung
(28)III Bài :
Họat động thầy trò Nội dung kiến thức
LUYỆN TẬP (40 phút) Bài : (Bài 85 tr 141 SBT)
(Đề đưa lên bảng)
GV vẽ hình bảng, hướng dẫn
HS vẽ hình vào Bài 85 tr 141 SBT
a Chứng minh NE AB
GV lưu ý : Có thể chứng minh AMB ACB vng có trung tuyến thuộc cạnh AB AB
a HS nêu cách chứng minh AMB có cạnh AB đường kính đường trịn ngoại tiếp tam giác AMB vng M Chứng minh tương tự có ACB vng C
Xét NAB có ACNB MBNA (c/m trên) => E trực tâm tam giác => NEAB (theo tính chất ba đường cao tam giác)
GV yêu cầu HS lên trình bày chứng minh bảng HS lớp tự ghi vào Sau GV sửa lại cách trình bày chứng minh cho xác
b Chứng minh FA tiếp tuyến (O)
- Muốn chứng minh FA tiếp tuyến (O) ta cần chứng minh điều ?
Ta cần chứng minh FA AO - Hãy chứng minh điều Một
HS lãn trỗnh baỡy
b T giỏc AFNE cú
MA = MN (gt); ME = MF (gt) AN FE (c/m trãn)
=> Tứ giác AFNE hình thoi (theo dấu hiệu nhận biết)
=> FA//NE (cạnh đối hình thoi) Có NE AB (c/m trên)
=> FA AB
=> FA tiếp tuyến (O) c Chứng minh FN tiếp tuyến
của đường tròn (B, BA) (HS trả lời miệng)
Cần chứng minh điều ? - Cần chứng minh N(B; BA) FN
(29)ABN có BM vừa trung tuyến (MA=MN) vừa đường cao (BMAN) => ABN cân B => BN = BA
Có thể chứng minh BF trung trực AN (theo định nghĩa)=>BN=BA
=> BN bán kính đường trịn (B; BA)
- Tải FN BN ? - AFB= NFB (c-c-c)
=> FNB = FAB = 900
=> FNBN
=> FN tiếp tuyến đường tròn (B; AB)
GV nêu yêu cầu HS trình bày lại vào câu c
Sau âọ GV nãu thãm cáu hi
d Chứng minh HS hoạt động theo nhóm
BM.BF=BF2-FN2 Baìi laìm
e Cho âäü daìi dáy AM = R d Trong tam giaïc vuäng ABF
(R bán kính (O) ( Aˆ =900) có AM đường cao
Hy âäü di cạc cảnh ca
tam giạc ABF theo R => AB
2 = BM.BF (hệ thức lượng
trong tam giác vuông) Trong tam giác vuông NBF GV yêu cầu HS hoạt động nhóm
lm cáu d v e (Nˆ =90
0) coï BF2-FN2 = NB2
(âënh lyï Pytago) Maì AB=NB (c/m trãn) => MB-BF=BF2 - FN2
e
GV kiểm tra nhóm hoạt động Có sinB
1 =
2
R R AB AM
=> Bˆ1 = 30
Trong tam giạc vng ABF cọ AB=2R; Bˆ1=300
AF=AB tgB1=2Rtg300 =
3 2R
cos B1 =
BF AB
=> BF =
1
cos B AB
GV cho cạc nhọm hoảt âäüng
khoảng phút dừng lại =>BF=
2 30 cos
2
0
R R
Đại diện nhóm trình bày câu d => BF=
(30)Sau đại diện nhóm khác trình
bày câu e (hoặc có Bˆ1 = 300=> AF = 2
BF
=> BF=2AF=
2 BF
GV nhận xét, sửa
Bài (Đề hình vẽ đưa lên
bng) Bi
Cho nửa đường trịn tâm O, đường kính AB=2R, M điểm tuỳ ý đường tròn (MA; B)
Kẻ hai tia tiếp tuyến Ax By với nửa đường tròn
Qua M kẻ tiếp tuyến thứ ba lần
lượt cắt Ax By C D HS trình bày miệng a Theo định lý hai tiếp tuyến cắt đường tròn,
a Chứng minh CD=AC+BD
COD=900 * Coï AC = CM
b Chứng minh AC.BD=R2 BD=MD
c OC cắt AM E, OD cắt BM
F Chứng minh EF=R >AC+BD=CM+MD=CDCó O ˆ1 Oˆ2; O ˆ4 Oˆ3
d Tìm vị trí M để CD có độ
dài nhỏ =>
ˆ ˆ O
O =O ˆ2 Oˆ3
maì O ˆ1 Oˆ4+O ˆ2 Oˆ3 = 1800
=> COD=O ˆ2 Oˆ3=
2 1800
=900
b Trong tam giác vng COD có OM đường cao
=> CM.MD = OM2 (hệ thức lượng
trong tam giác vuông) GV yêu cầu HS chứng minh miệng
cạc cau a, b, c m CM=AC, MD=BD, OM=R => AC.BD=R2
c AOM cân (OA=OM=R) có OE phân giác góc đỉnh nên đồng thời đường cao : OEAM Chứng minh tương tự OF MB Vậy tứ giác MEOF hình chữ nhật có Eˆ Oˆ Fˆ = 900
=> EF=OM=R (tính chất hình chữ nhật)
d GV hỏi : M vị trí để CD có độ dài nhỏ ?
GV gợi ý HS trả lời
- C Ax, DBy mà Ax
đối với By ? - Ax//By (cùng AB)- Khoảng cách Ax By đoạn AB
Khoảng cách Ax By đoạn ?
So sánh CD AB Từ tìm vị
trớ im M - Cú CDAB
GV õa hỗnh veỵ minh hoả <=> CD//AB
(31)=> M điểm AB HS vẽ hình câu d vào ghi chứng minh
IV Củng cố :
V Hướng dẫn nhà ( phút)
- Ôn tập kĩ định nghĩa, định lý, hệ thức chương I chương II
- Làm lại tập trắc nghiệm tự luận, chuẩn bị tốt cho kiểm tra học kỳ I
Ngaìy soản 4/10
TIẾT 36 : TRẢ BAÌI KIỂM TRA KÌ I
A MUÛC TIÃU :
- Các kiến thức học kiểm tra đề - Khả vận dụng làm học sinh
- Thái độ làm cẩn thận nghiêm túc B.CHUẨN BỊ CỦA GV,HS
GV: Kết kiểm tra toàn lớp - Ưu điểm khuyết điểm
C TIẾN TRÌNH LÊN LỚP:
GV: Nêu nhận xét làm toàn lớp
Giỏi : Khá : Tb: Yếu : Kém -Nêu đáp án phần hình học cho toàn lớp
Câu 6: Một tam giác có cạnh 8cm diện tích tam giác : A
3
8 cm2 B.
3
cm C.16cm2 D 20cm2
Câu 7: Nếu r bán kính đường trịn nội tiếp tam giác có cạnh 6,8,10 độ dài r bằng: A.1 B.2 C.3 D.4
Câu 8:Nếu R bán kình đường trịn ngoại tiếp tam giác vng cân có cạnh góc vng a độ dài R :
A
2
a B.
3
a C.
2
2a D.a
Bài 3:
a) Xác định hàm số bậc biết : f(-1) = f(2) = -5
b) Vẽ đồ thị hàm số vừa xác định câu a mặt phẳng tọa độ Oxy
(32)1 Chứng minh:
a) MI tia phân giác AMB
b) MB tiếp tuyến đường tròn (O) Cho AMB = 60O.Tính độ dài đoạn thẳng IM.
I.TRẮC NGHIỆM (3đ) câu đầu, câu 0,5đ câu sau, câu 0,25đ
Câu
Đáp án C A B B D C B A
Bài 4:(3đ)
1.a C/m: AOB cân O có OI AB => AOI = BOI C/m : AOM = BOM => AMO = BMO
=> MI phân giác AMB (đpcm)
b AOM = BOM => OAM = OBM = 900
hay MB OB => MB tiếp tuyến đường tròn (O)
AMB = 600 => OMA = 300 => OM = OA = 10 (cm)
AM = 3(cm) => IM = 7,5 (cm)
D CỦNG CỐ VAÌ HƯỚNG DẪN VỀ NHAÌ :
Xem kí phần đề hình học để rút kinh nghiệm cho sau
O A
B
(33)Ngy soản :
CHƯƠNG III: GĨC VỚI ĐƯỜNG TRỊN
Tiết 37 GĨC Ở CUNG - SỐ ĐO CUNG
A MUÛC TIÃU :
- HS nhận biết góc tâm, hai cung tương ứng, có cung bị chắn
- Thành thạo cách đo góc tâm thước đo góc, thấy rõ tương ứng số đo (độ) cung góc tâm chắn cung trường hợp cung nhỏ cung đường tròn HS biết suy
số đo (độ) cung lớn (có số đo lớn 1800 bé bằng
3600
- Biết so sánh hai cung đường trịn - Hiểu định lí "Cộng hai cung"
- Biết vẽ, đo cẩn thận suy luận hợp lơ gíc - Biết bác bỏ mệnh đề phản ví dụ
B PHƯƠNG PHÁP : Nêu giải vấn đề C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Thước thẳng, compa, thc o gúc, ng h
Baớng phuỷ hỗnh 1, 3, (tr 67, 68 SGK)
- HS : Thước thẳng, compa, thước đo góc, bảng nhóm
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức : II Bài cũ :
III Bài :
GV: Ở chương II, học đường tròn, xác định tính chất đối xứng nó, vị trí tương đối đường thẳng đường trịn, vị trí tương đối hai đường tròn
Chương III học loại góc với đường trịn, góc tâm, góc nội tiếp, góc tạo tia tiếp tuyến dây cung, góc đỉnh bên hay bên ngồi đường trịn
Ta cịn học quỹ tích cung chứa góc, tứ giác nội tiếp cơng thức tính độ dài đường trịn, cung trịn, diện tích hình trịn, hình quạt trịn
Bài đầu chương học "Góc tâm - số đo cung"
Họat động thầy trò Nội dung kiến thức
Hoạt động : GÓC Ở TÂM (12 phút) GV treo bảng phụ vẽ hình tr 67
SGK a Âënh nghéa
- Hãy nhận xét góc AOB
(34)- Góc AOB góc tâm Vậy góc tâm ?
- Khi CD đường kính COD có
là góc tâm khơng ? COD góc tâm COD có đỉnhlà tâm đường trịn
- COD có số đo độ
? - Có số đo 180
0
GV: Hai cạnh AOB cắt đường tròn điểm A B, chia đường trịn thành hai cung Với góc (0o<< 1800), cung nằm bên
trong góc gọi "cung nhỏ", cung nằm bên ngồi góc gọi "cung lớn"
Cung AB kí hiệu: AB Để phân biệt cung có chung
mút A B ta kí hiệu : AmB, AnB
GV: Hy chè "cung nh", "cung
lớn" hình 1(a), 1(b) + Cung nhỏ : AmB+ Cung lớn : AnB
+ Hình 1(b) : cung đường tròn
GV: Cung nằm bên góc gọi cung bị chắn
GV: Hãy cung bị chắn
mỗi hình AmB cung bị chắn góc AOB.- Góc bẹt COD chắn nửa đường trịn
GV: Hay ta cịn nói : Góc AOB chắn cung nhỏ AmB
GV cho HS làm trập (tr68 SGK)
GV treo bảng phụ vẽ sẳn hình đồng hồ để HS quan sát
HS quan sát nêu số đo góc tâm ứng với thời điểm
a : 900
b : 1500
a b d c : 1800
d : 00
e : 1200
d e
GV lưu ý HS dễ nhầm lúc góc tâm 2400 ! (giải thích : số
âo gọc 1800)
Hoạt động 2: SỐ ĐO CUNG (5 phút) GV: Ta biết cách xác định số
(35)Người ta định nghĩa số đo cung sau :
GV đưa định nghĩa tr 67 SGK lên hình, yêu cầu HS đọc to định nghĩa
Định nghĩa SGK GV giải thích thêm : Số đo
nửa đường tròn 1800 bằng
số đo góc tâm chắn nó, số đo đường tròn 3600, số đo cung lớn
bằng 3600 trừ số đo cung nhỏ
Cho AOB = Tính số đo ABnhỏ số
o ABln
AOB = thỗ : sõ AB nh = v
sđ AB lớn = 3600 -
- GV yêu cầu HS đọc ví dụ SGK - GV lưu ý học sinh khác số đo góc số đo cung số đo góc 1800
0 số đo cung 3600
GV cho HS âoüc chuï yï SGK tr 67 Chuï yï tr 67 SGK
Hoảt âäüng :
SO SAÏNH HAI CUNG (12 phụt) Ta chè so sạnh cung mäüt
đường tròn đường tròn
Cho góc tâm AOB, vẽ phâ giác OC
(C (O)) OC l tia phán giạc ca AOB
GV: Em có nhận xét cung AC
v CB Coù AOC = COB (vỗ OC laỡ phỏn giaùc)
=>
CB sâ COB sâ
AC sâ AOC â
s
sâAC = sâ CB GV: sâ AC = sâ CB
ta noïi : AC = CB
Vậy đường tròn hai đường tròn nhau, hai cung
Trong đường tròn hai đường tròn nhau, hai cung gọi chúng có số đo
- Hãy so sánh số đo cung AB số
đo cung AC Có AOB > AOC=> số đo AB > số đo AC
Trong đường trịn (O) cung AB có số đo lớn số đo cung AC
(36)GV: đường tròn hai đường tròn nhau, cung ? cung lớn cung
Trong đường tròn hai đường tròn :
+ Hai cung gọi chúng có số đo
+ Trong hai cung, cung có số đo lớn gọi cung lớn
- GV : Làm để vẽ cung
bằng - Dựa vào số đo cung : + Vẽ góc tâm có số đo
GV cho HS laìm (?1) tr 68 SGK Mäüt HS lãn bng v
HS lp lm vo v
GV õổa hỗnh veợ
- Nói AB =CD hay sai ? Tại Sai, so sánh cung đường tròn đường tròn
- Nếu nói số đo AB số đo
CD có khơng ? - Nói số đo AB số đo CD làđúng số đo hai cung số đo góc tâm AOB
Hoảt âäüng :
KHI NO THÇ sâ AB = sâ AC + sâ CB (8 phụt) GV: Cho HS laìm baìi toạn sau :
Cho (O), AB, điểm C AB
HS1 lên bảng vẽ hình (2 trường hợp)
Hãy so sánh AB với AC, CB trường hợp
CAB nhỏ C AB lớn
GV: Yêu cầu HS1 lên bảng vẽ hình, HS lớp vẽ vào
GV: Yêu cầu HS2 dùng thước đo góc xác định số đo AC, BC, AB
C thuộc cung ABnhỏ Nêu nhận xét
sâ: AC = sâ: AC = sâ: AC =
=> sâ AB = sâ AC + sâ CB Âënh lê :
Nếu C điểm nằm cung AB :
sđ AB = sđ AC+ sđ CB GV: Em chứng minh đẳng
(37)
AOB AB
sâ
COB CB
sâ
AOC AC
sâ
(đ/n số đo cung)
Có AOB = AOC + COB (tia OC nằm tia OA, OB)
=> sđ AB = sđ AC+ sđ CB GV: Yêu cầu HS nhắc lại nội dung
định lí nói : CABlớn, định
lí
IV Củng cố : (3 phút)
GV: yêu cầu HS nhắc lại định nghĩa góc tâm, số đo cng, so sánh cung định lí cộng số đo cung
HS đứng chỗ nhắc lại kiến thức học
V Hướng dẫn nhà ( phút)
- Hoüc thuäüc caïc âënh nghéa, âënh lê ca bi
Lưu ý để tính số đo cung ta phải thơng qua số đo góc tâm tương ứng
(38)Ngaìy soản :
Tiết 38 LUYỆN TẬP
A MUÛC TIÃU :
- Củng cố cách xác định góc tâm, xác định số đo cung bị chắn số đo cung lớn
- Biết so sánh hai cung, vận dụng định lí cộng hai cung - Biết vẽ, đo cẩn thận suy luận hợp lơgíc
B PHƯƠNG PHÁP : Gợi mở C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Compa, thước thẳng, tập trắc nghiệm bảng phụ
- HS : Compa, thước thẳng, thước đo góc
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức : II Bài cũ : (8 phút)
GV nêu yêu cầu kiểm tra :
HS1: Phát biểu định nghĩa góc
tâm, định nghĩa số đo cung HS1: Phát biểu định nghĩa tr 66,67 (SGK)
Chữa số tr 69 SGK Chữa số tr 69 SGK
(Đề hình vẽ đưa lên hình)
Cọ OA AT (gt) vaì OA = AT (gt)
=> AOT vuäng cán taûi A
=> AOT = ATO = 450
coï B OT => AOB = 450
Cọ sâ ABnh = AOB = 450
=> sđ ABlớn = 3600 - 450 = 3150
GV goüi HS2 lãn baíng
- Phát biểu cách so sánh hai cung ? HS2: Phát biểu cách so sánh hai cung
- Khi sđ AB = sđ AC + sđ BC - Chữa số tr 69 SGK
- Chữa số tr 69 SGK
a Tính AOB Xét tứ giác AOBM: Có Mˆ AˆBˆAOB = 3600
(t/c tổng góc ) Có Aˆ Bˆ = 1800 => AOB = 1800- Mˆ
b Tính AB nhỏ, AB lớn Có sđ AB = AOB
=> sâAB nh = 1450
(39)=> sđ AB lớn = 2150
III Bài :
Họat động thầy trò Nội dung kiến thức
LUYỆN TẬP (30 phút) Bài tr 69 SGK GV yêu cầu HS đọc to đề
baìi
Goỹi mọỹt HS lón baớng veợ hỗnh
GV: Muốn tính số đo góc tâm AOB, BOC, COA ta làm ?
Coï AOB = BOC=COA (C-C-C) => AOB = BOC = COA
Maì AOB + BOC + COA = 1800.2 =
3600
=> AOB = BOC = COA =
3 3600
=1200
b Tính số đo cung tạo hai ba điểm A, B, C
GV goüi mäüt HS lãn baíng, HS caí
lớp làm vào sđAB=sđBC=sđCA=120
0
=> sâABC=sâBCA=sâCAB=2400
Bài tr 69 SGK Một HS đứng chỗ đọc to đề
baìi
(Đề hình vẽ đưa lên hình)
GV: a Em có nhận xét số đo cung nhỏ AM, CP, BN, DQ ?
Các cung nhỏ AM, CP, BN, DQ có số đo
b Hãy nêu tên cung nhỏ
nhau ? AM=QD; BN=PC; AQ=MD; BP=NC
c Hãy nêu tên hai cung lớn
nhau ? AQDM= QAMD BPCN= PBNC
Bài tr 70 SGK GV yêu cầu HS đọc kĩ đề
v gi mäüt HS v hỗnh trón baớng
CAB nh CABln
(40)GV: Trường hợp C nằm cung nhỏ AB số đo cung nhỏ BC cung lớn BC ?
sâBCnhoí = sâAB-sâ AC=1000-450 =
550
sđBClớn = 3600-550 = 3050
GV: Trường hợp C nằm cung lớn AB Hãy tính sđ BCnhỏ, sđBClớn
C nằm cung lớn AB
sâBCnhoí = sâAB + sâAC
= 1000 + 450 = 1450
sđBClớn = 3600 - 1450 = 2150
GV cho HS hoảt âäüng nhọm bi
tập : HS hoạt động theo nhóm
Bảng nhóm Bài tập : Cho đường trịn (O; R)
đường kính AB Gọi C điểm cung AB Vẽ dây CD=R Tính góc tâm DOB Có đáp số ?
a Nếu D nằm cung nhỏ BC
Có sđAB=1800 (nửa đường trịn).
C điểm cung AB
=> sâ CB = 900
Có CD=R=OC=OD => OCD => COD = 600
Cọ sâ CD=sâCOD =600
Vì D nằm BC nhỏ => sđ BC=sđ CD+ sđ DB
=> sâ DB=sâBC-sâCD = 900-600=300
=>sâBOD=300
b Nếu D nằm cung nhỏ AC (DD/)
=> BOD/ = sâBD/
= sâBC+sâCD = 900+600=1500
Bài tốn có đáp số GV cho lớp chữa
nhóm, nêu nhận xét đánh giá
IV Củng cố (5 phút)
GV: Đưa tập trắc nghiệm lên bảng phụ
Yêu cầu HS đứng chỗ trả lời Bài 1: (Bài tr 70 SGK)
Mỗi khẳng định sau hay sai ? Vì ?
a Hai cung có số đo
bằng a Đúng
b Hai cung có số đo
bằng b Sai Khơng rõ hai cung có cùngnằm đường trịn khơng
c Trong hai cung, cung có số
(41)d Trong hai cung đường trịn, cung có số đo nhỏ nhỏ
d Âụng
V Hướng dẫn nhà ( phút)
- Bài tập 5, 6, 7, tr 74, 75 SBT
- Đọc trước : §2 Liên hệ cung dây
Ngaìy soản :
Tiết 39 §2 LIÊN HỆ GIỮA CUNG V DÂY A MỤC TIÊU :
- HS hiểu biết sử dụng cụm từ "cung căng dây" "dây căng cung"
- HS phát biểu định lí 2, chứng minh định lí HS hiểu định lí phát biểu cung nhỏ đường tròn hay hai đường tròn
- HS bước đầu vận dụng hai định lí vào tập
B PHƯƠNG PHÁP : Nêu giải vấn đề C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Bảng phụ giấy (đèn chiếu) ghi định lí 1, định lí
2, đề bài,
hình vẽ sẳn 13, 14 SGK nhóm định lí liên hệ đường kính,
cung v dáy
Thước thẳng, compa, bút dạ, phấn màu
- HS : Thước thẳng, compa, bút
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức : II Bài cũ :
III Bài :
Họat động thầy trò Nội dung kiến thức
Hoảt âäüng 1:
(42)GV: Bài trước biết mối liên hệ cung góc tâm tương ứng
Bài ta xét liên hệ cung dây
GV vẽ đường tròn (O) dây AB
và giới thiệu : Người ta dùng cụm từ "cung căng dây" dây căng cung để mối liên hệ cung dây có chung hai mút
Trong đường tròn, dây căng hai cung phân biệt
Vê duû : dáy AB hai cung AmB vaì AnB
Trên hình, cung AmB cung nhỏ, cung AnB cung lớn
Cho đường trịn (O), có cung nhỏ AB cung nhỏ CD
Em có nhận xét hai dây
căng hai cung Hai dây
- Hãy cho biết giả thiết, kết luận
của định lí Gt Cho đường trịn (O)ABnhỏ = CD nhỏ
KL: AB=CD
- Chứng minh định lí Xét AOB COD có
AB=CD=>AOB=COD (liên hệ cung góc tâm)
OA=OC=OB=OB = R(O)
=> AOB=COD (C-G-C)
=> AB=CD (hai cạnh tương ứng)
- Nêu định lí đảo định lí GT : Cho đường trịn (O)
AB = CD KL ABnhoí = CD nhoí
- Chứng minh định lí đảo AOB=COD (C-C-C)
=> AOB= COD (hai góc tương ứng) => AB=CD
- Vậy liên hệ cung dây ta có định lí ?
(43)- GV nhấn mạnh : định lí áp dụng với cung nhỏ đường tròn hai đường tròn (hai đường trịn có bán kính) Nếu hai cung cung lớn định lí
GV yêu cầu HS làm 10 tr 71 SGK (đề đưa lên bảng
BT10 tr71
Một HS đọc to đề
a - Cung AB có số đo 600 thì
góc tâm AOB có số đo ?
a sâ AB=600
=> AOB = 600
- Vậy vẽ cung AB ? - Ta vẽ góc tâm AOB = 600
=> sâ AB=600
- Vậy dây AB dài xentimet - Dây AB=R=2cm OAB cân (AO=OB=R), có AOB= 600 =>
AOB nên AB=OA=R=2cm - Ngược lại dây AB=R
OAB => AOB=600
=> sâAB=600
b Vậy làm để chia đường tròn thành cung ?
b Cả đường trịn có số đo
3600 chia thành cung bằng
nhau, số đo độ cung 600 => dây căng của
mỗi cung R
Cách vẽ : Từ điêmẻ a đường tròn, đặt liên tiếp dây có độ dài bừng R, ta cung
Còn với hai cung nhỏ khơng đường trịn ? Ta có định lí
Hoảt âäüng 2
(44)Cho đường trịn (O), có cung nhỏ AB lớn cung nhỏ CD Hãy so sánh dây AB CD
ABnhỏ > CDnhỏ, ta nhận thấy AB>CD
GV khẳng định Với hai cung nhỏ đường tròn hay hai đường tròn nhau:
a Cung lớn căng dây lớn b Dây lớn căng cung lớn (Định lí khơng u cầu HS chứng minh)
Hãy nêu giả thiết, kết luận
định lí Trong đường tròn tronghai đường tròn
a ABnhoí > CD nhoí => AB > CD
b AB>CD => AB nhoí > CD nhoí
Hoảt âäüng 3
LUYỆN TẬP (18 phút)
Bài tập 14 tr 72 SGK (Đề đưa lên hỡnh)
a GV veợ hỗnh
ng trũn (O) AB: đường kính GT : MN: dây cung
AM = AN KL : IM = IN Cho biết giả thiết, kết luận
baìi toạn
- Chứng minh toán AM=AN=> AM=AN (liên hệ
cung v dáy) Cọ OM=ON=R
Vậy AB đường trung trực MN => IM = IN
- Lập mệnh đề đảo toán - Mệnh đề đảo : Đường kính qua trung điểm dây qua điểm cung căng dây
- Mệnh đề đảo có khơng ?
Tại ? - Mệnh đề đảo không đúng,khi dây lại đường kính
Điều kiện để mệnh đề đảo
đúng Mệnh đề đảo dâu đókhơng qua tâm
Nhận xét bạn Nếu MN đường kính => IO Có IM = IN=R cung AM cung AN>
Nếu MN không qua tâm,
chứng minh định lí đảo - OMN cân (OM=ON=R) có IM = IN(gt) => OI trung tuyến nên đồng thời phân giác => O ˆ1 Oˆ2
(45)b Chứng minh đường kính qua điểm cung vng góc với dây căng cung ngược lại
b Theo chứng minh a, có AM=AN=> AB trung trực MN
=> AB MN Định lí đảo nhà chứng minh
GV: Liên hệ đường kính, cung
và dây ta có : Với AB đường kính (O)MN dây cung
Trong IM = IN giả thiết MN phải khơng qua tâm O (Đưa sơ đồ lên bảng)
Bài 13 tr 72 SGK (Đề hình vẽ đưa lên mn
hỗnh)
- Nờu gi thit, kt lun định
lí GT Cho đường trịn (O)
EF//MN
KL EM=FN
- GV gợi ý : Hãy vẽ đường kính AB vng với dây EF MN chứng minh định lí
Chứng minh :
ABMN => sđ AM = sđAN ABEF => sđAE = sđ AF Vậy sđ AM-sđAE=sđAN-sđAF hay sđEM=sđFN=> EM=FN
IV Củng cố : - Đã luyện V Hướng dẫn nhà ( phút)
- Học thuộc định lí liên hệ cung dây
- Nắm vững nhóm định lí liên hệ đường kính, cung dây (chú ý điều kiện hạn chế trung điểm dây giả thiết) định lí hai cung chắn hai dây song song
- Bài tập nhà số 11, 12 tr 72 SGK - Đọc trước §3 - góc nội tiếp
Ngy soản :
Tiết 40 §3 GĨC NỘI TIẾP
A MUÛC TIÃU :
- HS nhận biết góc nội tiếp đường trịn phát biểu định nghĩa góc nội tiếp
- Phát biểu chứng minh định lí số đo góc nội tiếp
ABMN(tải I)
(46)- Nhận biết chứng minh định lí số đo góc nội tiếp
- Nhận biết (bằng cách vẽ hình) chứng minh hệ định lí góc nội tiếp
- Biết cách phân chia trường hợp
B PHƯƠNG PHÁP : Nêu giải vấn đề C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Bảng phụ giấy (đèn chiếu) vẽ sẳn hình 13, 14, 15, 19, 20 SGK, ghi sẳn định nghĩa, định lí, hệ (hình vẽ minh hoạ hệ quả) số câu hỏi, tập
Thước thẳng, compa, thước đo góc, phấn màu, bút
- HS : Ơn tập góc tâm, tính chất góc ngồi tam giác Thước kẻ, compa, thước đo góc
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức :
II Bài cũ : Nhắc lại định lí 1, định lí liên hệ cung và
dáy
III Bài :
Họat động thầy trò Nội dung kiến thức
Hoảt âäüng : ÂËNH NGHÉA (10 phụt)
GV nói : Ở trước ta biết góc tâm góc có đỉnh trùng với tâm đường trịn GV đưa hình 13 tr 73 SGK lên hình giới thiệu :
Trên hình có BAC góc nội tiếp Hãy nhận xét đỉnh cạnh góc nội tiếp
BAC góc nội tiếp BC cung bị chắn Góc nội tiếp có :
- Đỉnh nằm đường trịn
- Hai cạnh chứa hai dây cung đường tròn
GV khẳng định : Góc nội tiếp góc có đỉnh nằm đường trịn hai cạnh chứa hai dây cung đường trịn
GV giới thiệu : cung nằm bên góc gọi cung bị chắn Ví dụ hình 13a Cung bị chắn cung nhỏ BC; hình 13b cung bị chắn cung lớn BC Đây điều góc nội tiếp khác tâm góc tâm chắn cung nhỏ nửa đường tròn
- GV u cầu HS làm (?1) SGK Vì góc hình 14 hình 15 khơng phải góc ni tip
GV õổa hỗnh 14 vaỡ 15 SGK lón maỡn hỗnh
C
C
B A
B A
(47)HS quan sát trả lời
- Các góc hình 14 có đỉnh nằm đường trịn nên khơng phải góc ni tip
Hỗnh 15
- Cỏc gúc hình 15 có đỉnh nằm đường trịn góc E 15a hai cạnh không chứa dây cung đường trịn Góc G hình 15b cạnh khơng chứa dây cung đường trịn
GV: Ta biết góc tâm có số đo
bằng số đo cung bị chắn (
1800) Cịn số đo góc nội tiếp có
quan hệ với số đo cung bị chắn ? Ta thực (?2)
Hoảt âäüng 2
ĐỊNH LÍ (18 phút) GV yêu cầu HS thực hành đo
SGK
- Dãy đo hình 16 SGK - dãy đo hình 17 SGK
- Dãy đo hình 18 SGK Định lí : SGK
GV ghi lại kết dãy thông báo yêu cầu HS so sánh số đo góc nội tiếp với số đo cung bị chắn
Số đo góc nội tiếp nửa số đo cung bị chắn GV yêu cầu HS đọc định lí tr73
SGK nêu giả thiết kết luận định lí
GT BAC : góc nội tiếp (O)
KL BAC=
2
sđ BC GV: Ta chứng minh định lí
3 trường hợp :
- Tâm đường trịn nằm cạnh góc
- Tâm đường trịn nằm bên góc
- Tâm đường trịn nằm bên ngồi góc
a Tâm O nằm cạnh góc
GV veợ hỗnh
HS v hỡnh: ghi gi thit, kt luận vào
(48)=> Aˆ Cˆ
Có BOC = Aˆ Cˆ (tính chất góc
ngoi ca ) => BAC =
2
BOC
mà BOC = sđ BC (có AB đường kính => BC cung nhỏ)
=> BAC =
2
sâ BC
- GV: Nếu BC = 700 BAC có số
đo bng bao nhiờu ? -BC= 70
0 thỗ BAC = 350
b Tâm O nằm bên góc - GV vẽ hình
- HS vẽ hình vào
c/m : GV: Để áp dụng trường
hợp a, ta vẽ đường kính AD Hãy chứng minh BAC=
2
sđBC trường hợp (có thể tham khảo cách chứng minh SGK)
- Vì O nằm BAC nên tia AD nằm hai tia AB AC:
BAC=BAD +DAC Maì BAD =
2
sâ BD (theo c/m a) DAC =
2
sâ DC (theo c/m a) => BAC =
2
sâ (BD + DC) =
2
sđ BC (Vì D nằm BC) c Tâm O nằm bên ngồi góc
GV vẽ hình, gợi ý chứng minh (vẽ đường kính AD, trừ vế hai đẳng thức) giao nhà hoàn thành
Hoạt động HỆ QUẢ (10 phút)
GV đưa lên hỡnh bi
Cho hỗnh veợ sau : a Coï ABC =
2
sâ AC CBD=
2
sâ CD AEC =
2
sâ AC
(49)Có AB đường kính, AC=CD =>ABC= CBD=AEC a Chứng minh
ABC= CBD = AEC
s So sạnh AEC v AOC b AEC=
1
sâ AC
c Tính ACB AOC = sđ AC (số đo góc tâm)
GV yêu cầu HS suy nghĩ
phút chứng minh => AEC=
1
AOC c ACB =
2
sâ AEB ACB =
2
.1800 = 900
Như từ chứng minh a ta có tính chất: đường trịn góc nội tiếp chắn cung chắn cung
Ngược lại, đường trịn, góc nội tiếp cung bị chắn nào?
- Trong đường trịn, góc nội tiếp cung bị chắn
- GV yêu cầu HS đọc hệ a b tr 74, 75 SGK
- Chứng minh b rút mối liên hệ góc nội tiếp góc tâm góc nội tiếp 900 ?
Từ chứng minh b ta rút : góc nội tiếp 900 có số đo
nửa số đo góc tâm chắn cung
GV õổa lón maỡn hỗnh hỗnh veợ
Cho MIN=1100 Tênh MON MIN=1100 =>MaN=2200
MIN = 1400 => MON = 1400
Vậy với góc nội tiếp lớn 900,
tính chất khơng cịn - Cịn góc nội tiếp chắn nửa
đường trịn ? - Góc nội tiếp chắn nửa đườngtrịn góc vuông
GV yêu cầu HS đọc to hệ góc nội tiếp
IV Củng cố (5 phút)
Bài tập 15 75 SGK (Đề đưa lên hình
bng phủ) a Âụng
b Sai Bài tập 16 Tr75 SGK
(Đề hình vẽ đưa lên hình bảng phụ)
a Biết MAN=300, tính PCQ a MAN = 300 => MBN= 600
PCQ = 1200
(50)b PCQ=1360 MAN có số đo là
bao nhiãu => MAN = 34
0
- Phát biểu định nghĩa góc nội tiếp
- Phát biểu định lí góc nội tiếp
V Hướng dẫn nhà ( phút)
- Học thuộc định nghĩa, định lí, hệ góc nội tiếp Chứng minh định lí trường hợp tâm đường trịn nằm cạnh góc tâm đường trịn nằm bên góc
- Bài tập nhà số 17, 18, 19, 20, 21 Tr 75, 76 SGK
Chứng minh lại tập 13 tr72 cách dùng định lí góc nội tiếp
Ngy soản :
Tiết 41 LUYỆN TẬP
A MUÛC TIÃU :
- Củng cố định nghĩa, định lí hệ góc nội tiếp - Rèn kĩ vẽ hình theo đề bài, vận dụng tính chất góc nội tiếp vào chứng minh hình
- Rn tỉ lägic, chênh xạc cho HS
B PHƯƠNG PHÁP : Gợi mở C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Bảng phụ giấy (đèn chiếu) ghi đề bài, vẽ sẳn
một số hình
Thước thẳng, compa, êke, bút dạ, phấn màu
- HS : Thước kẻ, compa, êke
Bng phủ nhọm, bụt dả
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức : II Bài cũ : (8 phút)
GV nêu yêu cầu kiểm tra: Hai HS lên kiểm tra
HS1: a Phát biểu định nghĩa
định lí góc nội tiếp HS1: a Phát biểu định nghĩa, địnhlí góc nội tiếp SGK
Vẽ góc nội tiếp 300 + Vẽ góc nội tiếp 300 cách
v cung 600
b Trong câu sau, câu sai A Các góc nội tiếp chắn cung B Góc nội tiếp có số đo nửa số đo góc tâm chắn cung
C Góc nội tiếp chắn nửa đường
trn l gọc vng b Chn B
D Góc nội tiếp góc vng
chắn nửa đường trịn Thiếu điều kiện góc nội tiếpnhỏ 900
HS2: Chữa tập 19 tr 75 SGK
(51)Nếu HS vẽ trường hợp SAB nhọn GV đưa thêm trường hợp tam giác tù (hoặc ngược lại)
SAB coï AMB = ANB = 900
(góc nội tiếp chắn
2
đường tròn)
=> AN SB, BM SA Vậy AN SB, BM SA
Vậy AN BM hai đường cao tam giác => H trực tâm => SH thuộc đường cao thứ ba (Vì tam giác, ba đường cao đồng quy) => SH AB
HS GV nhận xét, cho điểm
(52)Họat động thầy trò Nội dung kiến thức
LUYỆN TẬP (30 phút)
Bài 20 tr 76 SGK GV đưa đề lên hình yêu
cầu HS lên vẽ hình
Chứng minh C, B, D thẳng hàng Nối BA, BC, BD, ta có :
ABC = ABD = 900 (góc nội tiếp
chắn
2
đường tròn)
=> ABC + ABD = 1800
=> C, B, D thẳng hàng Bài 21 tr 76 SGK
(Đề hình vẽ đưa lên hình)
HS vẽ hình vào v
GV: MBN laỡ tam giaùc gỗ ? MBN l tam giạc cán
- Hãy chứng minh - Đường tròn (O) (O/) hai
đường tròn nhau, căng dây AB
=> AmB = AnB Coï Mˆ =21 AmB
Nˆ =
sâ AnB
theo định lí góc nội tiếp
Mˆ =Nˆ Vậy MBN cân B
Bài 22 tr 76 SGK (Đề đưa lên mn hỡnh)
HS veợ hỗnh
Hóy chng minh MA2 = MB.MC Chứng minh
Có AMB = 900 (góc nội tiếp chắn
2
đường tròn)
=> AM đường cao tam giác vuông ABC
MA2 = MB.MC (hệ thức lượng
(53)Bài 22 tr 76 SGK (Đề đưa lên hình)
HS hoảt âäüng theo nhọm
GV yêu cầu HS hoạt động nhóm a Trường hợp M nằm bên
đường tròn Nửa lớp xét trường hợp điểm M
nằm bên đường tròn
Nửa lớp xét trường hợp điểm M nằm bên ngồi đường trịn
Xẹt MAC v MDB coï :
2 ˆ
ˆ M
M (đối đỉnh)
Aˆ =Dˆ (hai góc nội tiếp
chắn CB)
=> MAC - MDB (g-g) (Chú ý HS xét cặp tam
giác đồng dạng khác MCB - MAD)
=>
MB MC MD
MA
=>MA.MB=MC.MD
b Trường hợp M nằm bên đường trịn
HS chứng minh Chứng minh : MAD MCB
MAC MDB vỗ coù M chung =>
MB MD MC
MA
=>MA MB=MC.MD
MAC = MDB (tính chất tứ giác nội tiếp ABDC)
Các nhóm hoạt động khoảng 3->4 phút đại diện hai nhóm lên trình bày
HS lớp nhận xét Bài 13 tr 72 SGK
Chứng minh định lí : Hai cung chắn hai dây song song
cách dùng góc nội tiếp Có AB//CD (gt)=> BAD = ADC (so le trong) Mà BAD = ADC (so le trong) Mà BAD =
2
sđBD (định lí góc nội tiếp)
ADC=
2
sđAC (định lí góc nội tiếp)
BD=AC GV lưu ý HS vận dụng định lí
để nhà chứng minh 26 SGK
(54)(Đề hình vẽ đưa lên hình bảng phụ)
a MBD laỡ gỗ ? a MBD coù MB = MD (gt)
BMD = Cˆ =600 (cùng chắn AB)
=> MBD
b So sạnh BDA v BMC b Xẹt BDA v BMC cọ :
BA = BC (gt)
2 ˆ
ˆ B
B = 600 (ABC đều)
2 ˆ ˆ B
B = 600 (BMD đều)
=> B ˆ1 Bˆ3
BD= BM ( BMD đều) => BDA = BMC (C-G-C)
=> DA = MC (hai cạnh tương ứng)
c Chứng minh MA = MB+ MC c Có MD = MB (gt)
DA = MC (CM trãn ) => MD + DA = MB + MC hay MA = MB + MC
IV củng cố : (5 phút)
Các câu sau hay sai ? HS trả lời
a Góc nội tiếp góc có đỉnh nằm đường trịn có cạnh chứa dây cung đường trịn
a Sai b Góc nội tiếp ln có số đo
bằng nửa số đo cung bị chắn
b Đúng c Hai cung chắn hai dây song
song c Đúng
d Nếu hai cung hai
dáy cung s song song d Sai
V Hướng dẫn nhà ( phút)
- Bài tập nhà số 24, 25, 26 tr 76 SGK, số 16, 17, 23 tr 76, 77 SBT
- Ơn tập kĩ định lí hệ góc nội tiếp
Ngy soản :
Tiết 42 §4: GĨC TẠO BỞI TIA TIẾP TUYẾN VAÌ DÂY CUNG A MỤC TIÊU :
- HS nhận biết góc tạo tia tiếp tuyến dây cung
- HS phát biểu chứng minh định lý số đo góc tạo tia tiếp tuyến dây cung (3 trường hợp)
- HS biết áp dụng định lý vào giải tập - Rèn suy luận logic chứng minh hình học
(55)C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Thước thẳng, compa, thước đo góc, bảng phụ, bút đèn chiếu giấy
- HS : Thước thẳng, compa
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức : II Bài cũ : (5 phút)
Yêu cầu kiểm tra
- Định nghĩa góc nội tiếp
- Phát biểu định lý góc nội tiếp
- Chữa tập 24 tr 76 SGK HS: Phát biểu định nhgiã, định lý
về góc nội tiếp Chữa 24 tr 76 SGK
Gọi MN = 2R đường kính đường tròn chứa cung tròn AMB Từ kết tập 23 tr 76 SGK có :
KA.KB=KM.KN KA.KB=KM.(2R-KM)
AB=40 (m) => KA=KB=20 (cm) => 20.20=3 (2R-3)
6R=400+9 R=
6 409
= 68,2 (m) GV: Mối quan hệ góc
đường trịn thể qua góc tâm, góc nội tiếp Bài học hôm ta xét tiếp mối quan hệ qua góc tạo tia tiếp tuyến dây cung
III Bài :
Họat động thầy trò Nội dung kiến thức
Hoảt âäüng 1
KHÁI NIỆM GÓC TẠO BỞI TIA TIẾP TUYẾN VAÌ DÂY CUNG (13 phút) - GV vẽ hình giấy (dây
(56)GV: Trên hình ta có góc CAB góc nội tiếp đường tròn (O) Nếu dây AB di chuyển đến vị trí tiếp tuyến đường trịn (O) điểm A góc CAB có cịn góc nội tiếp khơng ?
Góc CAB khơng góc nội tiếp HS khác trả lời
Góc CAB góc nội tiếp
GV khẳng định: Góc CAB lúc góc tạo tia tiếp tuyến dây cung, trường hợp đặc biệt góc nội tiếp, trường hợp giới hạn góc nội tiếp cát tuyến trở thành tiếp tuyến
GV yêu cầu HS quan sát hình 22 SGK tr 77, đọc hai nội dung mục để hiểu kĩ góc tạo tia tiếp tuyến dây cung
HS đọc mục (SGK tr 77) ghi bài, vẽ hình vào
- GV vẽ hình lên bảng giới thiệu góc tạo tia tiếp tuyến dây cung
BAx, BAy góc tạo tia tiếp tuyến dây cung
BAx có cung bị chắn cung nhỏ AB
BAy có cung bị chắn cung lớn AB
GV nhấn mạnh : Góc tạo tia tiếp tuyến
và dây cung phải có : - Đỉnh thuộc đường trịn
- Một cạnh tia tiếp tuyến
- Cạnh chứa dây cung đường tròn
* GV cho HS làm (?1) Các góc hình 23, 24, 25, 26
khơng phải góc tạo tia tiếp tuyến dây cung :
(Yêu cầu HS trả lời miệng) - Góc hình 23 : khơng có cạnh
nào tia tiếp tuyến đường trịn
- Góc hình 24 : khơng có cạnh chứa dây cung đường trịn - Góc hình 25 : khơng có cạnh tiếp tuyến đường tròn
(57)GV cho HS laìm (?2)
HS1: Thực ý a Vẽ hình
HS2, : Thực ý b có rõ cách tìm số đo cung b chn
s ABln = 2400
HS2: Hỗnh 1: sõ AB = 600 vỗ
Ax l tiếp tuyến (O)
=> OAx = 900 maì BAx = 300 (gt)
nãn BAO = 600
maì OAB cán OA = OB = R
Vậy OAB => AOB = 600
sâ AB = 600
HS3 : Hỗnh 2: sõ AB = 1800 vỗ Ax laỡ tia
tip tuyn ca (O) => OAx = 900
maì BAx = 900 (gt)
A, O, B thẳng hàng => AB
ng kớnh hay s AB =1800
Hỗnh :
- Kéo dài tia AO cắt (O) A/
=> sâ AA/ = 1800 vaì A/Ax = 900 =>
A/AB=300
=> sđ A/B = 600 (đ/l góc nội tiếp)
Vậy sđ ABlớn = sđ AA/ + sđ A/B= 1800
+ 600 = 2400
GV: Qua kết (?2)
nhận xét ? Số đo góc tạo tia tiếptuyến dây cung nửa số đo cung bị chắn
GV: ta chứng minh kết luận Đó định lí góc tạo tia tiếp tuyến dây cung
Hoảt âäüng 3
ÂËNH LÊ (15 phuït)
GV âoüc âënh lê SGK tr 78 Âënh lê SGK tr 78
GV: Có trường hợp xãy góc nội tiếp Với góc tạo tia tiếp tuyến dây cung có trường hợp tương tự Đó :
(58)- Tâm đường trịn nằm bên ngồi góc
- Tâm đường trịn nằm bên góc
GV: Đưa hình vẽ sẵn ba trường hợp bảng phụ
a Tâm đường tròn nằm cạnh chứa dây cung (yêu cầu HS chứng minh miệng)
HS1:
a Tâm O nằm cạnh chứa dây cung AB
0
180 sâAB
0
90
BAx
=> BAx =
2
sđ AB b Tâm O nằm bê BAx Sau GV u cầu HS hoạt động
theo nhọm
Nửa lớp chứng minh trường hợp b) tâm O nằm bên ngồi BAx Nửa lớp cịn lại chứng minh trường hợp c) tâm O nằm bên Bax
K OHAB tải H; OAB cán nãn
2 ˆ
1
O AOB
Trường hợp b chứng minh
cách khác Có ƠOAB)1 = BAx (vì phụ với góc
Vẽ đường kính AC, nối BC
Có ABC = 900 (góc nội tiếp chắn
nửa đường tròn) =>
1
AOB = BAx => BAx = BCA (cùng phụ với BAC
maì BCA =
2
sâ AB
mà AOB = sđ AB Vậy BAx =
2
sâ AB => BAx =
2
sâAB
c Tâm O nằm bên BAx
HS hoạt động nhóm khoảng phút GV yêu cầu đại diện nhóm lên trình bày giải
Kẻ đường kính AC theo trường hợp ta có :
xAC=
2
sâAC
HS lớp bổ sung BAC nội tiếp chắn BC
=> CAB =
2
(59)maì BAx = BAC+ CAx => BAx=
2
sâAC +
2
sâBC BAx=
2
sđBA lớn
GV cho HS nhắc lại định lí, sau
đó u cầu lớp làm tiếp (?3) (?3)
So sánh số đo BAx ACB với số đo cung AmB
BAx=
2
sđAmB (định lí góc tia tiếp tuyến dây cung)
ACB=
2
sđAmB (định lí góc nội tiếp)
GV: Qua kết (?3) ta rút
kết luận => BAx=ACBTrong đường trịn, góc tạo
bởi tia tiếp tuyến dây cung góc nội tiếp chắn cung
GV: Đó hệ định lí ta vừa học HS ghi hệ
(SGK) Hệ SGK
GV nhấn mạnh nội dung hệ tr79 SGK
IV Củng cố (10 phút)
Một HS đọc đề 27 Bài tập 27 tr 79 SGK
(GV vẽ sẳn hình)
Ta cọ PBT=
2
sđPmB (định lí góc tạo tia tiếp tuyến dây) PAO=
2
sđPmB (định lý góc nội tiếp)
=> PBT = PAO
AOP cỏn (vỗ AO=OP= baùn kờnh) => PAO= APO
Vậy : APO = PBT (T/c bắc cầu)
1HS đọc đề 30 Bài 30 tr 79 SGK
(Đề đưa lên bảng phụ)
(60)V OH AB
Theo đầu : BAx =
2
sâAB maì Ä1 =
2
sâAB => Ä1 = BAx
Coï Á1+ Ä1 = 900 Á1+BAx=900
hay AOAx
Nghĩa : Ax tia tiếp tuyến (O) A
GV: Kết tập cho ta định lí đảo định lí góc tạo tia tiếp tuyến dây cung Hãy nhắc lại định lý (thuận
và đảo) Một HS nhắc lại nội dung địnhlý
V Hướng dẫn nhà ( phút)
- Cần nắm vững nội dung hai định lý thuận, đảo hệ góc tạo tia tiếp tuyến dây cung
- Làm tốt tập 28, 29, 31, 32 tr 79, 80 SGK
Ngaìy soản :
Tiết 43 LUYỆN TẬP
A MUÛC TIÃU :
- Rèn kĩ nhận biết góc tai tiếp tuyến dây - Rèn kĩ áp dụng định lí vào giải tập
- Rèn tư lơ gíc cách trình bày lời giải tập hình
B PHƯƠNG PHÁP : Gợi mở C CHUẨN BỊ CỦA GV VAÌ HS:
- GV : Thước thẳng, compa, bảng phụ đưa sẳn hình - HS : Thước thẳng, compa, bảng nhóm, bút
D CÁC BƯỚC LÊN LỚP : I Ổn định tổ chức : II Bài cũ : (6 phút)
GV nêu yêu cầu kiểm tra
- Phát biểu định lí, hệ góc tạo tia tiếp tuyến dây cung
(61)Theo đầu TPB có góc tia tiếp tuyến dây cung => TPB =
2
sđBP mà BOP = sđ BP (góc tâm)
BOP = TPB GV HS lớp đánh giá HS
được kiểm tra Cú BTP + BOP = 90
0 (vỗ OPT = 900) => BTP + TPB = 900
III Bài mới :
Họat động thầy trò Nội dung kiến thức
Hoảt âäüng :