1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tiet 17 Chia da thuc da sap xep

10 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 328,5 KB

Nội dung

[r]

(1)

b) 9x4 : (- 3x2 ) c) -12x7 : 3x2 d) – 6x10 : (- 2x2)

= 3x y z = - 3x2

= - 4x5

= 3x8

TÝnh A – B theo cét däc 6x4 – 7x3 + 6x4 – 3x3 + x2 + 2 A – B = – 4x3 - x2 + 5

Gi¶i:

2x2.(3x2 +2x– 2) = 6x4 + 4x3 – 4x

(2)

1-PhÐp chia hÕt :

VÝ dơ: Thùc hiƯn phÐp chia ®a thøc (2x4 – 13x3 + 15x2 + 11x – 3) : (x2 – 4x – 3) * Đặt phép chia

* Chia hạng tử bậc cao đa thức bị chia cho hạng tử bậc cao nhÊt cđa ®a thøc chia 2x4 : x2 =

* Nhân 2x2 với đa thức chia

2x2 (x2 - 4x -3) =

* Chia h¹ng tư bËc cao nhÊt cđa d thø nhÊt cho hạng tử bậc cao đa thức chia - 5x3 : x2 =

* Nh©n - 5x víi ®a thøc chia - 5x.(x2 – 4x – 3) =

* LÊy d thø nhÊt trõ ®i tích vừa nhận đ ợc

* Tiếp tục thực t ơng tự nh 2x4 13x3 + 15x2 + 11x – x2 – 4x –

2x4 – 8x3 - 6x2 2x2

D thø nhÊt - 5x

- 5x3 + 20x2 + 15x

D thø hai

+

x2 – 4x - 3 0

D cuèi cïng

Ta đ ợc th ơng : 2x2 5x + 1

* Lấy đa thức bị chia trừ ®i tÝch võa nhËn ® ỵc

Khi ta có:

(2x4 – 13x3 + 15x2 + 11x – 3) : (x2 – 4x – 3) = 2x2 – 5x + 1

2x2

- 5x 2x4 – 8x3 - 6x2

- 5x3 + 20x2 + 15x

- 5x3 + 21x2 + 11x

- x2

– 4x -

ThÕ nµo lµ phÐp chia

hÕt ?

(3)

KiÓm tra l¹i :

(2x2 – 5x + 1) =

(x2 – 4x – 3). 2x4 – 13x3 + 15x2 + 11x –

VÝ dơ: Thùc hiƯn phÐp chia ®a thøc (2x4 – 13x3 + 15x2 + 11x – 3) : (x2 – 4x – 3)

Tổng quát: A đa thức bị chia B đa thức chia (B 0) A chia hết cho B Q đa thức th ¬ng

Ta cã : A = 2x4 – 13x3 + 15x2 + 11x – x2 – 4x – 2x4 – 8x3 - 6x2 2x2

D thø nhÊt - 5x

- 5x3 + 20x2 + 15x

D thø hai

+

x2 – 4x - 3

0 D cuèi cïng

PhÐp chia cã d b»ng lµ phÐp chia hÕt - 5x3 + 21x2 + 11x

- x2

– 4x -

?

* Đặt phép chia

* Chia hạng tử bậc cao đa thức bị chia cho hạng tử bậc cao đa thức chia 2x4 : x2 =

2x2 (x2 - 4x -3) =

* Chia h¹ng tư bËc cao nhÊt cđa d thø nhÊt cho h¹ng tư bËc cao nhÊt cđa ®a thøc chia - 5x3 : x2 =

* Nhân - 5x với đa thức chia - 5x.(x2 – 4x – 3) =

* LÊy d thø nhÊt trõ ®i tÝch võa nhËn đ ợc

* Lấy đa thức bị chia trừ ®i tÝch võa nhËn ® ỵc

2x2

- 5x 2x4 – 8x3 - 6x2

- 5x3 + 20x2 + 15x * Nhân 2x2 với đa thøc chia

(4)

1-PhÐp chia hÕt :

Bài tập: 67 (SGK-31)

Sắp xếp đa thức sau theo luỹ thừa giảm dần biến làm phÐp chia :

a) (x3 – 7x + 3– x2) : (x – 3)

(x3 - 7x +3 – x2) : (x – 3) = (x3 – x2 - 7x + 3) : (x – 3) x3 – x2 - 7x + 3 x – 3

x2 + 2x - 1 x3 – 3x2

2x2 – 7x + 3 2x2 – 6x

- x + - x +

VËy : (x3 – x2 – 7x + 3) : (x – 3) = x2 + 2x - 1 Gi¶i :

PhÐp chia cã d b»ng lµ phÐp chia hÕt

* Đặt phép chia

* Chia hạng tử bậc cao đa thức bị chia cho hạng tư bËc cao nhÊt cđa ®a thøc chia

* Nhân th ơng vừa tìm đ ợc với đa thức chia

* Chia h¹ng tư bËc cao nhÊt cđa d thø nhÊt cho h¹ng tư bËc cao nhÊt cđa ®a thøc chia

* LÊy d thø nhÊt trõ ®i tÝch võa nhËn ® ỵc

* TiÕp tơc thực t ơng tự nh

* Lấy ®a thøc bÞ chia trõ ®i tÝch võa nhËn ® îc

(5)

1-PhÐp chia hÕt : 2-PhÐp chia cã d :

VÝ dơ: Thùc hiƯn phÐp chia ®a thøc (5x3 – 3x2 + 7) : (x2 + 1)

5x3 – 3x2 + 7 x2 + 1 5x - 5x3 + 5x

- 3x2 – 5x + 7 - 3x2 - 3

- 5x + 10

BËc cña ®a thøc d -5x+10 nhá h¬n bËc cđa đa thức chia x2+1

nên phép chia tiếp tục đ ợc Phép chia tr ờng hợp gọi phép chia có d - 5x + 10 gọi đa thức d

Đa thøc d Ta cã:

5x3 – 3x2 + = (x2 + 1).(5x – 3) + (- 5x + 10) Chú ý

* Đặt phép chia

* Chia hạng tử bậc cao đa thức bị chia cho hạng tử bậc cao đa thức chia

* Nhân th ơng vừa tìm đ ợc với đa thức chia

* Chia hạng tư bËc cao nhÊt cđa d thø nhÊt cho h¹ng tư bËc cao nhÊt cđa ®a thøc chia

* LÊy d thø nhÊt trõ ®i tÝch võa nhËn ® ỵc

* TiÕp tơc thùc hiƯn t ¬ng tù nh

* Lấy đa thức bị chia trừ tích vừa nhận đ ợc

* Nhân th ơng vừa tìm đ ợc với đa thức chia

Có nhận xét b c đa thức d - 5x + 10

(6)

1-PhÐp chia hÕt : 2-PhÐp chia cã d :

VÝ dơ: Chia ®a thøc (5x3 – 3x2 + 7) : (x2 + 1) 5x3 – 3x2 + 7 x2 + 1

5x - 5x3 + 5x

- 3x2 – 5x + 7 - 3x2 - 3

- 5x + 10 §a thøc d Ta cã: 5x3 – 3x2 + = (x2 + 1).(5x – 3) + (- 5x + 10) Chó ý

Hai ®a thøc t ý A vµ B cđa cïng mét biÕn (B ≠ 0),

tồn cặp đa thức Q vµ R | A = B Q + R

- Nếu R A không chia hết cho B ≠ - NÕu R = th× A chia hết cho B

* Đặt phép chia

* Chia hạng tử bậc cao đa thức bị chia cho hạng tử bậc cao đa thức chia

* Nhân th ơng vừa tìm đ ợc với đa thức chia

* Chia hạng tử bËc cao nhÊt cđa d thø nhÊt cho h¹ng tư bËc cao nhÊt cđa ®a thøc chia

* LÊy d thứ trừ tích vừa nhận đ ợc

* TiÕp tơc thùc hiƯn t ¬ng tù nh

* Lấy đa thức bị chia trừ tích vừa nhận đ ợc

* Nhân th ơng vừa tìm đ ợc với đa thức chia

trong R = bậc R < bậc B (R đ ợc gọi d phép chia A cho B)

(7)

1-PhÐp chia hÕt : 2-PhÐp chia cã d :

Bài tập: 69 (SGK-31)

Cho đa thức : A = 3x4 + x3 + 6x - vµ B = x2 + 1 T×m d R phÐp chia A cho B råi viÕt A d íi d¹ng A = B.Q + R

x2 + 1 3x4 + x3 + 6x -

3x2 + x - 3 3x4 + 3x2

x3 - 3x2 + 6x - 5 x3 + x

- 3x2 + 5x - 5 - 3x2 +

5x -

VËy :

Vµ: 3x4 + x3 + 6x - = (x2 + 1).(3x2 + x - 3) + (5x – 8) Gi¶i:

d R = 5x -

* Đặt phép chia

* Chia hạng tử bậc cao đa thức bị chia cho hạng tử bậc cao đa thức chia

* Nhân th ơng vừa tìm đ ợc với đa thức chia

* Chia hạng tư bËc cao nhÊt cđa d thø nhÊt cho h¹ng tư bËc cao nhÊt cđa ®a thøc chia

* LÊy d thø nhÊt trõ ®i tÝch võa nhËn ® ỵc * TiÕp tơc thùc hiƯn t ¬ng tù nh

* Lấy đa thức bị chia trừ tích vừa nhận đ ợc

* Nhân th ơng vừa tìm đ ợc với đa thức chia Hai đa thøc t ý A vµ B cđa cïng mét biÕn (B 0),

tồn cặp ®a thøc Q vµ R | A = B.Q+R

- Nếu R A không chia hết cho B ≠ - NÕu R = th× A chia hÕt cho B

trong R = bậc R < bậc B (R đ ợc gọi d phép chia A cho B)

(8)

2-PhÐp chia cã d :

Bài tập nhà Bài 67 đến 74 (SGK - trang 31+32 )

Bài 50 đến 52 (SBT - trang 8) Bài 74 (SGK – 32)

Tìm số a để đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + - Thực phép chia đa thức

- T×m d cuèi cïng (sÏ chøa sè a)

- Cho d cuèi cïng giải tìm đ ợc a - Kết luận: với a = ?

* Đặt phÐp chia

* Chia h¹ng tư bËc cao nhÊt đa thức bị chia cho hạng tử bậc cao đa thức chia

* Nhân th ơng vừa tìm đ ợc với đa thức chia

* Chia h¹ng tư bËc cao nhÊt cđa d thø nhÊt cho hạng tử bậc cao đa thức chia

* LÊy d thø nhÊt trõ ®i tÝch võa nhận đ ợc

* Tiếp tục thực t ơng tự nh

* Lấy đa thức bị chia trừ tích vừa nhận đ ợc

* Nhân th ơng vừa tìm đ ợc với đa thức chia

Hai đa thức tuỳ ý A B cđa cïng mét biÕn (B ≠ 0),

tån t¹i cặp đa thức Q R | A = B.Q+R

- NÕu R th× A kh«ng chia hÕt cho B ≠ - NÕu R = th× A chia hÕt cho B

trong R = bậc R < bậc B (R đ ợc gọi d phép chia A cho B)

(9)

* Chia hạng tử bậc cao đa thức bị chia cho hạng tử bậc cao đa thức chia

* Nhân th ơng vừa tìm đ ợc với đa thức chia

* Chia hạng tử bËc cao nhÊt cđa d thø nhÊt cho h¹ng tư bËc cao nhÊt cđa ®a thøc chia

* LÊy d thứ trừ tích vừa nhận đ ợc

* TiÕp tơc thùc hiƯn t ¬ng tù nh

* Lấy đa thức bị chia trừ tích vừa nhận đ ợc

* Nhân th ơng vừa tìm đ ợc với đa thức chia

Bi 68 : (SGK-31) Áp dụng đẳng thức đáng nhớ để thực phép chia

a) (x2+2xy+y2) : (x+y) = (x+y)2 : (x+y)

b) (125x3 + 1) : (5x+1) = (53.x3 +1) : (5x+1)

= [(5x)3 +1] : (5x+1)

= (5x+1).[(5x)2-5x+1] : (5x+1)

Hai ®a thøc t ý A vµ B cđa cïng mét biÕn (B 0),

tồn cặp ®a thøc Q vµ R | A = B.Q+R

- Nếu R A không chia hết cho B ≠ - NÕu R = th× A chia hÕt cho B

trong R = bậc R < bậc B (R đ ợc gọi d phép chia A cho B)

(10)

Cã nhËn xÐt g× vÒ d cuèÝ cïng ?

2-PhÐp chia cã d :

Bài 52 : (SBT - 8) Tìm giá trị nguyên n để giá trị biểu thức 3n3 + 10n2 - chia hết cho giá trị biểu thức 3n +

Hai đa thức tuỳ ý A B biến (B ≠ 0), tồn cặp đa thức Q R | A = B.Q+R R = bậc R < bậc B (R đ ợc gọi d phép chia A cho B) - Nếu R A khơng chia hết cho B ≠ - Nếu R = A chia hết cho B

3n3 + 10n2 - 5 3n + 1 n2 + 3n - 1 3n3 + n2

9n2 - 5 9n2 + 3n

- 3n - - 3n - -

§Ĩ 3n3+10n2-5 chia hÕt cho 3n+1

cần có điều kiện d ?

(3n+ 1)

Ngày đăng: 19/04/2021, 21:27

w