1. Trang chủ
  2. » Cao đẳng - Đại học

Giải toán bằng cách lập phương trình bài có nội dung hình học

4 39 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 329,61 KB

Nội dung

- Toán Nâng Cao THCS: Cung cấp chương trình Toán Nâng Cao, Toán Chuyên dành cho các em HS THCS lớp 6, 7, 8, 9 yêu thích môn Toán phát triển tư duy, nâng cao thành tích học tập ở trườn[r]

(1)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | Vững vàng tảng, Khai sáng tương lai

GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH BÀI CĨ NỘI DUNG HÌNH HỌC

Kiến thức cần nhớ:

- Diện tích hình chữ nhật S = x.y ( xlà chiều rộng; y chiều dài) - Diện tích tam giác S 1x.y

2

= ( x chiều cao, y cạnh đáy tương ứng) - Độ dài cạnh huyền : c2 = a2 + b2 (c cạnh huyền; a,b cạnh góc vng) - Số đường chéo đa giác n(n 3)

2 −

(n số đỉnh)

Ví dụ 1: Tính kích thước hình chữ nhật có diện tích 40 cm2 , biết tăng kích thước

thêm cm diện tích tăng thêm 48 cm2 Giải:

Gọi kích thước hình chữ nhật x y (cm; x, y > 0)

Diện tích hình chữ nhật lúc đầu x.y (cm2) Theo ta có pt x.y = 40 (1) Khi tăng chiều thêm cm diện tích hình chữ nhật Theo ta có pt (x + 3)(y + 3) – xy = 48  3x + 3y + = 48 x + y = 13(2)

Từ (1) (2) suy x y nghiệm pt X2 – 13 X + 40 =

Ta có  = −( 13)2−4.40=    =9

Phương trình có hai nghiệm

13 13

X 8; X

2

+ −

= = = =

Vậy kích thước hình chữ nhật (cm) (cm)

Ví dụ 2: Cạnh huyền tam giác vng m Hai cạnh góc vng 1m Tính cạnh góc vng tam giác?

Giải:

Gọi cạnh góc vng thứ x (m) (5 > x > 0) Cạnh góc vng thứ hai x + (m)

Vì cạnh huyền 5m nên theo định lý pi – ta – go ta có phương trình x2 + (x + 1)2 = 52 2

2x 2x 24 x x 12

 + −  + − =

2

1

1 4.( 12) 49 Phương trình co hai nghiệm phan biệt

1 7

x (tho¶ m·n); x 4(lo¹i)

2

 = − − =   =

− + − −

= = = = −

Vậy kích thước cạnh góc vng tam giác vng m m

Cho tam giác vuông Nếu tăng cạnh góc vng lên 4cm 5cm diện tích tam giác tăng thêm 110cm2 Nếu giảm hai cạnh 5cm diện tích giảm 100cm2 Tình hai cạnh góc vng tam giác

(2)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | Vững vàng tảng, Khai sáng tương lai

Gọi x (cm), y (cm) độ dài hai cạnh góc vuông (x > 5, y > 5) Theo đề ta có hệ pt: 200

45 x y x y + =   + = 

Giải hệ pt ta 20

25 x y =   =

 (thỏa ĐK)

Vậy độ dài hai cạnh góc vng 20cm 25cm

Ví dụ 3: Cho tam giác vng có cạnh huyền 5cm, diện tích 6cm2 Tìm độ dài cạnh góc

vng

HD GIẢI: Gọi x (cm), y (cm) độ dài hai cạnh góc vng (0 < x, y < 5) Vì tam giác có cạnh huyền 5cm nên ta có pt: x2 + y2 = 25 (1) Vì tam giác có diện tích 6cm2 nên ta có pt:

2xy =  xy = 12 (2)

Từ (1) (2) ta có hệ pt:

2 25 12 x y x y  + =  =  

( ) 25

12

x y xy

x y  + − =  =  

( ) 49

12 x y x y  + =  =   12 x y x y + =   =

 ( x, y > 0)

Giải hệ pt ta

4 x y =   =

4 x y =   =

 (thỏa ĐK)

Vậy độ dài hai cạnh góc vng 3cm 4cm

Bài tâp

Bài 1: Một hình chữ nhật có đường chéo 13 m, chiều dài chiều rộng m Tính diện tích hình chữ nhật đó?

Bài 2: Một ruộng hình chữ nhật có chu vi 250 m Tính diện tích ruộng biết chiều dài giảm lần chiều rộng tăng lần chu vi ruộng khơng thay đổi

Bài 3: Một đa giác lồi có tất 35 đường chéo Hỏi đa giác có đỉnh?

Bài 4: Một sân hình tam giác có diện tích 180 m2 Tính cạnh đáy sân biết tăng cạnh đáy m giảm chiều cao tương ứng m diện tích khơng đổi?

Bài 5: Một miếng đất hình thang cân có chiều cao 35 m hai đáy 30 m 50 m người ta làm hai đoạn đường có chiều rộng Các tim đừng đường trung bình hình thang đoạn thẳng nối hai trung điểm hai đáy Tính chiều rộng đoạn đường biết diện tích phần làm đường

4 diện tích hình thang Đáp số

(3)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | Vững vàng tảng, Khai sáng tương lai

Bài 2: Diện tích hình chữ nhật 3750 m2 Bài 3: Đa giác có 10 đỉnh

(4)

W: www.hoc247.net F: www.facebook.com/hoc247.net Y: youtube.com/c/hoc247tvc Trang | Vững vàng tảng, Khai sáng tương lai

Website HOC247 cung cấp môi trường học trực tuyến sinh động, nhiều tiện ích thông minh, nội dung giảng biên soạn công phu giảng dạy giáo viên nhiều năm kinh nghiệm, giỏi kiến thức chuyên môn lẫn kỹ sư phạm đến từ trường Đại học trường chuyên danh tiếng

I.Luyện Thi Online

- Luyên thi ĐH, THPT QG: Đội ngũ GV Giỏi, Kinh nghiệm từ Trường ĐH THPT danh tiếng xây dựng khóa luyện thi THPTQG mơn: Tốn, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học Sinh Học - Luyện thi vào lớp 10 chuyên Tốn: Ơn thi HSG lớp luyện thi vào lớp 10 chuyên Toán trường PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An trường Chuyên khác TS.Trần Nam Dũng, TS Pham Sỹ Nam, TS Trịnh Thanh Đèo Thầy Nguyễn Đức Tấn

II.Khoá Học Nâng Cao HSG

- Toán Nâng Cao THCS: Cung cấp chương trình Tốn Nâng Cao, Tốn Chun dành cho em HS THCS lớp 6, 7, 8, u thích mơn Tốn phát triển tư duy, nâng cao thành tích học tập trường đạt điểm tốt kỳ thi HSG

- Bồi dưỡng HSG Tốn: Bồi dưỡng phân mơn Đại Số, Số Học, Giải Tích, Hình Học Tổ Hợp dành cho học sinh khối lớp 10, 11, 12 Đội ngũ Giảng Viên giàu kinh nghiệm: TS Lê Bá Khánh Trình, TS Trần Nam Dũng, TS Pham Sỹ Nam, TS Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc Bá Cẩn đơi HLV đạt thành tích cao HSG Quốc Gia

III.Kênh học tập miễn phí

- HOC247 NET: Website hoc miễn phí học theo chương trình SGK từ lớp đến lớp 12 tất môn học với nội dung giảng chi tiết, sửa tập SGK, luyện tập trắc nghiệm mễn phí, kho tư liệu tham khảo phong phú cộng đồng hỏi đáp sôi động

- HOC247 TV: Kênh Youtube cung cấp Video giảng, chuyên đề, ôn tập, sửa tập, sửa đề thi miễn phí từ lớp đến lớp 12 tất mơn Tốn- Lý - Hố, Sinh- Sử - Địa, Ngữ Văn, Tin Học Tiếng Anh

Vững vàng tảng, Khai sáng tương lai

Học lúc, nơi, thiết bi – Tiết kiệm 90%

Học Toán Online Chuyên Gia

I.Luyện Thi Online - Luyên thi ĐH, THPT QG: - Luyện thi vào lớp 10 chuyên Toán II.Khoá Học Nâng Cao HSG III.Kênh học tập miễn phí - HOC247 TV:

Ngày đăng: 18/04/2021, 11:29

TỪ KHÓA LIÊN QUAN

w