A. Một hình chóp có đáy là tam giác đều cạnh bằng 2 và có chiều cao bằng 4. Tính thể tích khối chóp đó.. Cho hình chóp S ABCD. Cho hình chóp. S ABCD có đáy là hình vuông cạnh a , [r]
(1)1/6 - Mã đề 105 SỞ GD&ĐT BẮC NINH
TRƯỜNG THPT HÀN THUYÊN (Đề thi có 06 trang)
KÌ THI THỬ TỐT NGHIỆP THPT 2021 LẦN NĂM HỌC 2020 - 2021
MƠN Tốn – Khối 12
Thời gian làm : 90 phút (không kể thời gian phát đề)
Họ tên học sinh : Số báo danh :
Câu Cho hàm số y x= 3−6x2+7x+5 có đồ thị ( )C Phương trình tiếp tuyến ( )C điểm có hồnh độ là:
A y=5 13x+ B y= − −5 13x C y= − +5 13x D y=5 13x− Câu Giá trị giới hạn 2
1
2
lim
1 x
x x
x
→−
+ +
+
A −2 B Không tồn C 1 D 2
Câu Cho hàm số y f x= ( ) liên tục có bảng biến thiên
Tìm m để phương trình ( )f x m+ = có nghiệm phân biệt
A m = −1 B m = −2 C m =4 D m =2 Câu Tìm số mặt hình đa diện hình vẽ bên:
A 9 B 11 C 10 D 12
Câu Có số tự nhiên gồm chữ số đôi khác nhau? A
10
C B
9
9.A C
10
A D
9 9.C Câu Cho hàm sốy ax b
cx d
+ =
+ có đồ thị hình vẽ Khẳng định sau đúng?
A ab >0 B ac >0 C ad bc> D cd >0 Câu Số giao điểm đồ thị hàm số y x= 3−3x2−9x−2 với trục hoành là:
A 2 B 1 C D 3
(2)2/6 - Mã đề 105
Câu Cho tứ diện OABC có OA, OB, OC đơi vng góc OA OB= =OC=3a Tính khoảng cách hai đường thẳng AC OB
A 3 2
a . B 3
4
a. C
2
a . D 3
2
a
Câu Cho hàm số y f x= ( ) có bảng biến thiên sau
Hàm số cho đồng biến khoảng
A (− +∞ 2; ) B (−∞ − ; 1) C (−∞;2) D (−1;1) Câu 10 Hàm số sau khơng có cực trị?
A y x= 3+3 1x+ . B y x= 2−2x. C y x= 3−3 1x− . D y x= 4+4x2+1 Câu 11 Đồ thị hàm số có dạng đường cong hình vẽ sau
A y x= −3x2. B y x= 3−3x2. C y= − +x4 3x2. D y= − +x3 3x2 Câu 12 Số đường tiệm cận đồ thị hàm số
2
y x
=
−
A B 1 C 3 D 2
Câu 13 Một hình chóp có đáy tam giác cạnh 2 có chiều cao Tính thể tích khối chóp
A 4
3 B 2 C 4 D
Câu 14 Cho hàm số y f x= ( ) có đồ thị hàm f x hình vẽ '( )
Số điểm cực trị hàm số cho
A 4 B 1 C 2 D 3
Câu 15 Giá trị lớn hàm số f x( ) 2= x4−3x2+1 đoạn [ ]0;3 bằng:
(3)3/6 - Mã đề 105
Câu 16 Số cách chia 15 học sinh thành nhóm A, B, C gồm 4, 5, học sinh là:
A
15 15 15
C +C +C B 15 .11
C C C C
15 .11
A A A D
15 11
C +C +C Câu 17 Cho hàm số y f x= ( ) có bảng biến thiên sau
Hàm số cho đạt cực đại
A x =3 B x =2 C x = −2 D x = −3
Câu 18 Cho hình chóp S ABCD có đáy hình vng cạnh a , SA⊥(ABCD), SB a= Tính thể tích V khối chóp S ABCD theo a
A
6
a
V = B V a= 2. C
3
a
V = D 3
3
a
V =
Câu 19 Cho hàm số y f x= ( ) có đạo hàm f x'( ) 2x 22, x
x
= − ∀ ≠ Giá trị nhỏ hàm số (0;+∞ )
A f ( )1 B f ( )3 C f ( )0 D f − ( )2
Câu 20 Cho hình chóp S ABCD có đáy hình vng cạnh a , mặt bên SAB tam giác nằm mặt phẳng vuông góc với đáy Thể tích khối chóp S ABCD
A 3
a . B a3. C 3
6
a . D 3
3
a
Câu 21 Cho hàm số ( ) (3 2) 5
f x = − x mx+ + m+ x− Tập hợp giá trị tham số m để hàm số nghịch biến [ ]a b Khi ; 2a b−
A B −3 C 5 D −1
Câu 22 Tính tổng tất nghiệm phương trình sau 32 8x+ −4.3x+5+27 0= A
27
− B
27 C 5 D −5
Câu 23 Hàm số y= (x−1) (3 x+ có điểm cực trị? 1)
A 2 B 4 C 3 D 1
Câu 24 Cho hình chóp S ABC có SAvng góc với mặt phẳng (ABC SA a AB a), = , = ,AC=2 ,a
60 0
BAC = Tính diện tích hình cầu ngoại tiếp hình chóp S ABC A 20 aπ 2 B 5
3πa C 5 aπ D 203 πa2 Câu 25 Đặt log a2 = , log b3 = Tính log 2015 theo a b ta
A log 2015 12 1bab + =
+ B log 2015 21b aab + =
+ C log 2015 b ab1 ab1
+ +
=
+ D log 2015 21b abab + =
(4)4/6 - Mã đề 105
Câu 26 Cho hình chóp S ABC có ∆ABC vng B, BA a= , BC a= 3 Cạnh bên SA vng góc
với đáy SA a= Tính bán kính mặt cầu ngoại tiếp hình chóp S ABC
A
2
a
R = B
4
a
R = C R a= D R=2 5a
Câu 27 Cho hình chóp tứ giác S ABCD có cạnh đáy a , cạnh bên
2
a Số đo góc
hai mặt phẳng (SAB ) (ABCD là: )
A 300. B 900. C 450. D 600
Câu 28 Tính thể tích V khối lăng trụ tứ giác ABCD A B C D ′ ′ ′ ′ biết độ dài cạnh đáy lăng trụ đồng thời góc tạo A C′ đáy (ABCD ) 30°
A =
V B V =8 C V =24 D
3 =
V
Câu 29 Cho hình chóp S ABCD , đáy hình chữ nhật tâm O, AB a= , AD a= 3, SA=3a, SO
vng góc với mặt đáy (ABCD Thể tích khối chóp ) S ABC
A a3 6. B 2a3 6. C
3
a . D 2 6
3
a
Câu 30 Hình vẽ bên đồ thị hàm số nào?
A
3x
y = − B
3x
y = C y = − 3x D y =3x Câu 31 Cho a >1 Mệnh đề sau đúng?
A 3 a2
a > B
1
a > a C
5
a
a
− > . D
2016 2017
1
a <a
Câu 32 Tỷ lệ tăng dân số hàng năm Việt Nam 1,07% Năm 2016, dân số Việt Nam 93.422.000 người Hỏi với tỷ lệ tăng dân số năm 2026 dân số Việt Nam gần với kết nhất?
A 122 triệu người B 115 triệu người C 118 triệu người D 120 triệu người Câu 33 Cho hình lập phương ABCD A B C D ′ ′ ′ ′, góc A D' CD'bằng:
A 300. B 600. C 450. D 900
Câu 34 Cho hình lăng trụ đứng ABC A B C ′ ′ ′ có đáy tam giác vng cân A, AB AC a= = ,
AA′ = a Thể tích khối cầu ngoại tiếp hình tứ diện AB A C′ ′ A
3
a
π B 4 aπ 3 C π a3 D 4
3
a
π
Câu 35 Cho hình chóp S ABCD có SA⊥(ABCD), đáy ABCD hình chữ nhật vớiAC a= 3và
BC a= Tính khoảng cách SD BC
A a B
2
a. C
2
(5)5/6 - Mã đề 105 Câu 36 Cho hàm số
1
x m y
x
+ =
− có đồ thị đường cong ( )H đường thẳng ∆ có phương trình
y x= + Số giá trị nguyên tham số m nhỏ 10 để đường thẳng ∆ cắt đường cong ( )H hai
điểm phân biệt nằm hai nhánh đồ thị
A 26 B 10 C 24 D 12
Câu 37 Số giá trị nguyên tham số m để hàm sốy mx= 4−(m−3)x m2+ 2không có điểm cực đại
A 4 B 2 C 5 D
Câu 38 Cho hình lăng trụ đứng ABC A B C ′ ′ ′ có đáy ABC tam giác vuông A Biết ′
= =
AB AA a, AC=2a Gọi M trung điểm AC Diện tích mặt cầu ngoại tiếp tứ diện MA B C′ ′ ′
A 5πa2. B 3πa2. C 4πa2. D 2πa2
Câu 39 Tìm m để tiếp tuyến đồ thị hàm số( )C y: =(2m−1)x mx4− 2+ điểm có hồnh độ 8
x = vng góc với đường thẳng ( )d : 2x y− − =
A
2
m = B
2
m = − C
12
m = D m =2
Câu 40 Cho hình lăng trụ đứng ABC A B C ′ ′ ′ có đáy ABC tam giác vuông A, gọi M trung điểm cạnh AA', biết AB=2 ;a BC a= AA ' 6a= Khoảng cách A'B CM là: A 13
13
a . B 13
3
a . C 13a . D 3
13a
Câu 41 Cho tứ diện ABCD có AC AD BC BD= = = =1, mặt phẳng(ABC)⊥(ABD) (ACD)⊥(BCD) Khoảng cách từ A đến mặt phẳng (BCD là: )
A B 6
3 C 62 D 63
Câu 42 Cho hàm đa thức y f x= ( ) Hàm số y f x= '( ) có đồ thị hình vẽ sau
Có giá trị m∈[ ]0;6 ;2m∈ để hàm số g x( )= f x( 2−2 x− −1 2x m+ ) có 9 điểm cực trị?
A B 5 C 3 D
Câu 43 Cho hàm số y f x= ( ) xác định liên tục , có bảng biến thiên sau Hỏi đồ thị hàm số
( )1
y f x
=
(6)6/6 - Mã đề 105
A 5 B C 3 D
Câu 44 Cho hàm số ( )f x liên tục [ ]2;4 có bảng biến thiên hình vẽ bên
Có giá trị nguyên m để phương trình x+2 x2−2x m f x= ( ) có nghiệm thuộc đoạn [ ]2;4 ?
A 3 B C 5 D 4
Câu 45 Cho hàm số y=(x+1 1)( x+ )( x+ )(m+ 2x) y= −12x4−22x3−x2+10x+3 có đồ thị ( )C 1 ( )C có giá trị nguyên tham số 2 m đoạn [−2020;2020] để ( )C 1 cắt ( )C 2 điểm phân biệt
A 2020 B 4040 C 2021 D 4041
Câu 46 Cho hình chóp S ABC có SA x= , BC y= , AB AC SB SC= = = =1 Thể tích khối chóp
S ABC lớn tổng (x y+ )
A B 2
3 C D 43
Câu 47 Một hộp đựng viên bi màu xanh, viên bi màu đỏ, viên bi màu trắng viên bi màu đen Chọn ngẫu nhiên đồng thời từ hộp viên bi, tính xác suất để viên bi chọn khơng nhiều màu ln có bi màu xanh?
A 2295
5985 B 22595985 C 20855985 D 20585985
Câu 48 Cho 4 số a b c d thỏa mãn điều kiện , , , a b2+ =4a+6 9b− 3c+4d =1 Tìm giá trị nhỏ biểu thức P=(a c− ) (2+ −b d)2 ?
A 8
5 B
64
25 C 75 D 4925
Câu 49 Cho x y, số thực thỏa mãn log9 x=log12 y=log16(x+2y) Giá trị tỉ số xy A 2
2
− . B 2
2
+ . C
2 1+ D 1−
Câu 50 Cho hình chóp S ABCD có đáy hình vng, cạnh bên SA vng góc với đáy Gọi M , N trung điểm SA, SB Mặt phẳng MNCD chia hình chóp cho thành hai phần tỉ số thể tích hai phần S MNCD MNABCD
A 1 B 4
5 C
3
4 D
3
- HẾT -
(7)1 SỞ GD&ĐT BẮC NINH
TRƯỜNG THPT HÀN THUYÊN ĐÁP ÁN KÌ THI KHẢO SÁT CHẤT LƯỢNG MƠN Tốn – Khối 12 NĂM HỌC 2020 - 2021
Phần đáp án câu trắc nghiệm: Tổng câu trắc nghiệm: 50
105 216 327 438 5 4 9 660 771 8
1 C A C D B A A A
2 C D A C D D D D
3 B C D C C D C D
4 A B B B B C C C
5 B D B A C B D A
6 B B A D D C D B
7 D B D A D B A A
8 A A D B A D B B
9 B D C A C B A B
10 A B B D B A C C
11 B D A C C A B A
12 D A B C B D D B
13 A A B D A B B C
14 C C D D D B A C
15 D D C C B A A D
16 B C C A C A C B
17 A D A B A A D B
18 C C B D B C D D
19 A D C B B D C C
20 C C B C A C A A
21 B C A A C B C B
22 D A C B C D B A
23 C B D B A D C D
24 C B D D D B A A
25 D A A A D A B C
26 A A C C A C D D
27 D C D B A C B C
28 D D A A D C C A
29 C C D A B C B C
30 C B D D B D B D
31 C D A D A A D B
32 B B B C D D A B
(8)2
34 D A B A A A D C
35 A A D B C A A A
36 B C C D B C D A
37 A D B D C D B D
38 A D D B C B B D
39 C B B B C A A A
40 D A D A D D A C
41 D B B D C A D A
42 D A A D B D A B
43 A D C C C C B C
44 C D B B C A C C
45 C D A B D B A B
46 D B D A C A C C
47 A D D A C D A A
48 D C B C D A A D
49 D C C B A D C D
(9)1
BẢNG ĐÁP ÁN
1-C 2-C 3-B 4-A 5-B 6-B 7-D 8-A 9-B 10-A
11-B 12-D 13-A 14-C 15-D 16-B 17-A 18-C 19-A 20-C
21-B 22-D 23-C 24-C 25-A 26-A 27-D 28-D 29-C 30-C
31-C 32-B 33-B 34-A 35-A 36-B 37-A 38-A 39-C 40-C
41-D 42-D 43-C 44-D 45-C 46-D 47-A 48-D 49-D 50-D
HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: Chọn C
Ta có
0
' 12 7, 3, '
y x x x y y
Phương trình tiếp tuyến đồ thị C M0 2;3 có dạng y f x' 0 x x 0y0 thay số vào ta
5 13
y x y x Câu 2: Chọn C
Vì hàm số
3 2
2
1
x x
f x
x
xác định x nên
3
3
2
1
1 1
2
lim
1 1
x
x x
x
Câu 3: Chọn B
Xét phương trình
2 m
f x m f x
Từ bảng biến thiên ta thấy phương trình có nghiệm phân biệt đường thẳng
2 m
y cắt đồ thị
y f x điểm ohaan biệt
2 m
m
Câu 4: Chọn A Câu 5: Chọn B
Gọi số cần tìm có dạng: x abcd Chọn a có cách
Chọn bcd có A cách
Vậy có
9
(10)2
Giao đồ thị với trục hoành x b a
Dựa vào đồ thị ta có x b ab
a
nên loại A
Do lim x
a y
c
nên
a y
c
đường tiệm cận ngang đồ thị Dựa vào đồ thị ta có đường tiệm cận ngang
a y
c
nên chọn B 2
ad bc y
cx d
Dựa vào đồ thị ta có hàm số nghịch biến khoảng xác định nên ad bc loại C Do lim
d x
c y
nên x d c
đường tiệm cận đứng đồ thị Dựa vào đồ thị ta có đường tiệm cận đứng
0
d
x cd
c
nên loại D
Câu 7: Chọn D
Phương trình hồnh độ giao điểm y x 33x29x trục hoành 2
3
1,67
3 0, 24
4,91 x
x x x x
x
Vậy số giao điểm đồ thị hàm số cho với trục hoành Câu 8: Chọn A
(11)3
Vì OA OB OC, , đơi vng góc nên OB AC OB OAC
OB OA
Mà OKOACOBOK (2)
Từ (1) (2) suy
2 2
3
,
2
3
OA OC a a a
d AC OB OK
OA OC a a
Câu 9: Chọn B
Từ bảng biến thiên ta thấy hàm số đồng biến khoảng ; 1 1; Câu 10: Chọn A
Hàm số y x 33x có 1 y' 3 x2 vô nghiệm 3 0 Vậy hàm số y x 33x khơng có cực trị 1
Câu 11: Chọn B
Đồ thị hàm số hình vẽ đồ thị hàm số bậc ba có hệ số a Vậy chọn đáp án B Câu 12: Chọn D
Ta có: lim lim
2
xyxx Suy đồ thị hàm số có tiệm cận ngang y
2
3
lim lim
2
x yx x Suy đồ thị hàm số có tiệm cận đứng x Vậy đồ thị hàm số có hai đường tiệm cận
Câu 13: Chọn A
Ta có: 32
4
B (đvtt) 1 3.4
3 3
V Bh
(đvtt)
Câu 14: Chọn C
Từ đồ thị hàm f x' suy x điểm cực đại, x điểm cực tiểu hàm số cho Câu 15: Chọn D
0 0;3
3
' 0;3
2
0;3
x
f x x x x
x
(12)4
0
f
3 136
f
3
2
f
Vậy giá trị lớn hàm số đoạn 0;3 136 Câu 16: Chọn B
Số cách chia học sinh vào nhóm 15
:
A C Số cách chia học sinh vào nhóm
11
:
B C Số cách chia học sinh vào nhóm
6
:
C C
Theo quy tắc nhân ta có số cách chia 15 học sinh vào nhóm là: 15 11 C C C Câu 17: Chọn A
Nhìn vào bảng biến thiên suy hàm số đạt cực đại điểm x Câu 18: Chọn C
Trong tam giác vuông SBA ta có: SA SB2AB2 3a2a2 a 2.
Vậy thể tích V khối chóp S ABCD
3
1
3 ABCD 3
a
V S SA a a (đvtt)
Câu 19: Chọn A
Ta có f x' 2x 22 f x' x x
Bảng biến thiên f x 0;
x
'
f x +
f x
f 1 Dựa vào bảng biến thiên ta thấy
min0; f x f 1
(13)5
Gọi H trung điểm
2 a AB h SH
2
1 3
3
a a
V a
Câu 21: Chọn B
Ta có f x' x2 2mx3m2. Để thỏa mãn yêu cầu đề bà, ta cần có:
2 '
2 '
1
' 0,
'
y
y a
f x x mx m x m
m m
Suy a 2;b 1 2a b Câu 22: Chọn D
Biến đổi phương trình, ta có: 32x84.3x527 0 3x4 212.3x4 27 0. Đặt t3x4t 0 , phương trình trở thành 12 27 0 9.
3 t
t t
t
* Với t ta có 9, 3x4 9 3x4 3x x 4 2 x 2. * Với t ta có 3, 3x4 3 x 4 1 x 3.
Vậy tổng nghiệm phương trình 5. Câu 23: Chọn C
3
1
f x x x
2 3 2
' 1 1
f x x x x x x
2
' 1 27
2 16
x y
f x x x
x y
(14)6
' f
Bảng biến thiên: x
1
'
f x + +
f x
27 16
f x 27
16
Dựa vào bảng biến thiên ta thấy hàm số y x1 3 x có cực trị 1 Câu 24: Chọn C
Gọi I tâm đường tròn ngoại tiếp ABC
Gọi đường thẳng qua I vng góc với mặt phẳng ABC trục đường tròn ngoại tiếp ABC
Gọi E trung điểm SA
Trong SA,, gọi O giao điểm với đường trung trực cạnh SA
Ta có
thuộc đường trung trực cạnh SA OA OB OC O
(15)7
OS OA OB OC
O
tâm mặt cầu ngoại tiếp hình chóp S ABC, bán kinh R OA
2 2 2. . .cos 600 3 2
BC AB AC AB AC a
3 BC a
2
1 3
.sin 60
2 2
ABC
a
S AB AC a a
.2
4
4
ABC ABC
ABC ABC
AB AC BC AB AC BC a a a
S R a
R S a
AI a
Tứ giá AEOI hình chữ nhật
2
2 2
4
a a
AO AE AI a
a R
Diện tích mặt cầu:
2
2
4
2 a
S a
Câu 25: Chọn A
Ta có: 2
15
2 2
log 20 log 2
log 20
1
log 15 log log
a b ab
ab a b
Câu 26: Chọn A
Bán kính mặt cầu ngoại tiếp hình chóp S ABC là:
2
1
2 SA R R
(16)8
Bán kính đường trịn ngoại tiếp đáy: 1
2
AC a
R a
Ta có:
2
2 5.
2
a a
R a Câu 27: Chọn D
Gọi O giao điểm AC BD
Vì S ABCD hình chóp tứ giác nên SOABCD Gọi H trung điểm AB
Ta có SO AB AB SHO SHO SAB ; ABCD
OH AB
2
a
OH AD
1
2
a
OA AC
Trong tam giác vng SOA có
2
2 3.
2 2
a a a
SO SA OA
tanSHO SO SHO 60
OH
(17)9
Vì ABCD A B C D ' ' ' ' khối trụ tứ giác nên đáy hình vng cạnh bên vng góc với mặt đáy Hình chiếu 'A C mặt phẳng ABCD AC
A C ABCD' ; A C AC' ; A CA' 30 0
Trong tam giác vuông 'A AC có AC AB 2 2
' .tan 300
3
A A AC
2 4 ABCD
S AB
Thể tích V khối lăng trụ tứ giác ABCD A B C D ' ' ' ' ' ABCD
V S A A
Câu 29: Chọn C
Ta có
2
ABCD S ABCD
ABC S ABC
S V
S V
Ta có
2
2 2 3 2 2 2
2 AC
AC AB BC a a aSO SA a
Thể tích chóp S ABC
3
1
.2
2 6
S ABCD
S ABC ABCD
V a
(18)10
Câu 30: Chọn C
Ta có lim
xy tồn đồ thị nằm phía Ox , tức y 0, x nên chọn C Câu 31: Chọn C
Xét đáp án A có
1
3
1
1,
a
a a
a a
nên loại
Xét đáp án B có
1
3
2 , 1
a a a nên loại a Xét đáp án C có
3 a
a
mà 0a a 5, a 1
3
1
3
a a
Nên chọn C
Xét đáp án D có 2016 2017
2016 2017
1
,
a a a
a a
nên loại
Câu 32: Chọn B
Đến năm 2026 tức sau 10 năm
Theo công thức S A e. Nr 93422000.e10.1,07% 103972544 người nên chọn đáp án B Câu 33: Chọn B
Hình lập phương ABCD A B C D ' ' ' 'BC/ / ' 'A D BCA D' '
(19)11
' A DB
tam giác DA B' 600A D CD' ; '600 Vậy góc 'A D CD' 60 0
Câu 34: Chọn A
Khối cầu ngoại tiếp tứ diện AB A C' ' khối cầu ngoại tiếp lăng trụ BAC A B C ' ' ' Gọi ,D E trung điểm BC B C O, ' '; trung điểm DE
O
tâm khối cầu ngoại tiếp lăng trụ BAC A B C ' ' ' (do đáy ABC vuông cân )A
Ta có: '
2
AA a
OD 2 2 2
2
BC a
BC AB AC a a AD
Bán kính khối cầu ngoại tiếp lăng trụ ABC A B C ' ' ' R OA AD2OD2 a2 a
Vậy thể tích khối cầu cần tính
3
4
3
a
V R
(20)12
Vì ABCD hình chữ nhật nên
/ / / / , , ,
BC ADBC SAD d BC SD d BC SAD d B SAD
Ta có: AB SA SA ABCD AB SAD d B SAD , AB
AB AD
Xét hình chữ nhật ABCD ta có: AB2 AC2 BC2 3a2a2 2a2 AB a 2. Vậy: d BC SD , a
Câu 36: Chọn B
Xét phương trình hồnh độ giao điểm: 1 1 1 1
1 x m
x g x x x m x
x
Ycbt phương trình 1 có hai nghiệm phân biệt thỏa mãn: x1 x2
1 1
g m m
Do m nguyên nhỏ 10 nên số giá trị nguyên m 10 Câu 37: Chọn A
Trường hợp m hàm số có dạng 0, y3 x2 Hàm số khơng có điểm cực đại nên m thỏa 0 mãn
Trường hơp m Để hàm số khơng có cực đại
0
0 1; 2;3
3
m
m m
m
(21)13
Gọi I trung điểm cạnh ' '.B C Khi I tâm đường trịn ngoại tiếp A B C' ' ' Gọi M' trung điểm cạnh ' '.A C Khi MM'A B C' ' '
Do MA'MC'a nên MA C' ' vng M, M' tâm đường tròn ngoại tiếp MA C' ' nên IM' trục đường tròn ngoại tiếp MA C' ' Suy I tâm mặt cầu ngoại tiếp tứ diện M A B C ' ' '
Bán kính mặt cầu '
2
BC a
r IB
Diện tích mặt cầu S 4r2 5a2. Câu 39: Chọn C
Có y' 2 m1x32mx nên hệ số góc tiếp tuyến điểm có hồnh độ x 1
1 ' 2 k y m m m
Hệ số góc đường thẳng d : 2x y 3 k2
Để thỏa mãn yêu cầu tốn ta phải có 1 2 6 2 12
k k m m
(22)14
Có AC2 BC2AB2 AC2 7a24a2 AC a 3
Gọi N trung điểm AB suy A B' / /MNC nên d A B CM ' , d A B CMN ' , d B CMN
,
d A CMN d
Xét tứ diện AMNC có AM AN AC, , đơi vng góc nên
2 2 2 2 2
1 1 1 1 1 13
9 13
a d
d AM AN AC d a a a d a
Câu 41: Chọn D
Gọi ,H K trung điểm CD AB ACD
cân A nên AH CDAH BCDd A BCD ; AH Đặt AH x
2 1
HD AD AH x
BCD ACD HB HA x
(23)15
2 2
1 1 2
x HK
HK HA HB x
Mặt khác, ta lại có: ABD
cân D nên DK ABAH ABCDK CK KCD tam giác vuông K
Suy 1 6.
2
x
HK CDHK HD x x
Vậy khoảng cách từ A đến mặt phẳng BCD Câu 42: Chọn D
Cách 1: Ta có:
2
g(x) f (| x 1| 2 | x 1| m 1)
Đặt t x 1 g(t) f (| t | 22 | t | m 1)
Xét
1
g (t) f (t 2t m 1)
'
1 '
1
g (t) f '(t 2t m 1) t g (t)
f '(t 2t m 1)
g(x) có cực trị g(t) có cực trị
1
g (t)
có cực trị dương
2 ' 2 t
t 2t m 1
g (t) t 2t m
t 2t m
t 2t m
g (t) có cực trị dương khi:
m
0 m 3 m
m m
m
Mà m [0,6], 2m m {0, ,1, , 2, }1
2 2
(24)16
Cách 2: Dùng ghép trục Đặt t(x) x 22x | x 1| m
=>
2
x m x<1 t(x)
x 4x m x
2x x<1 t '(x)
2x x>1
, t '(x) không xác định x=1 x
t '(x)
x
Ta có bảng biến thiên sau:
Ta xét trường hợp sau, sử dụng phương pháp ghép trục: TH1: m 1 m 2
Ta có bảng biến thiên sau:
=> Hàm số có cực trị => thỏa mãn TH2: m 2
Ta có bảng biến thiên sau:
=> Hàm số có cực trị => thỏa mãn
(25)17
Ta có bảng biến thiên sau:
=> Hàm số có 11 cực trị => khơng thỏa mãn TH4: m 3
Ta có bảng biến thiên sau:
=> Hàm số có cực trị => không thỏa mãn TH5: m 4 1 m 2 m Ta có bảng biến thiên sau:
=> Hàm số có 11 cực trị => khơng thỏa mãn TH6: m 4
Ta có bảng biến thiên sau:
(26)18
=> Hàm số có cực trị => thỏa mãn
TH8: m 5 Tương tự => Không thỏa mãn
TH9: m 5 Tương tự => Không thỏa mãn m m Kết hợp trường hợp ta được:
m
m m
4 m m
Mà 2m m 6 m 0, ,1, , 2, )1
2 2
Vậy có giá trị m thỏa mãn Câu 43: Chọn C
Xét phương trình f x 2 f x 2 số nghiệm phương trình f x 2 số giao điểm hàm số y f x với đường thẳng y
Nhìn vào bảng biến thiên ta thấy phương trình f x 2 có ba nghiệm phân biệt là:
1 1, 0; , 2;
x x x
Ta có
1
1 1
lim , lim , lim
2 2
x f x xx f x xx f x
Suy hàm số
1 y
f x
có ba đường tiệm cận đứng Xét
1 1
lim ; lim ; lim
2 2
x f x xx f x x f x
Suy hàm số
1 y
f x
(27)19
Ta có:
2 2
2 x x x
x x x mf x m
f x
Số nghiệm phương trình
2
x x x
m
f x
số giao điểm hàm số
2
x x x
y
f x
với đường
thẳng y m
Đặt g x x 2 x22x Ta có
2;4
ming x x 2,
2;4
maxg x 4 x
2;4
min f x
2;4
4, max
x f x x Do
2;4
ming x
2;4
max f x đồng thời xảy x
Suy ra: 2;4 2;4 2;4
2 2
min
max
g x
x x x
f x f x
Do
2;4
min f x
2;4
maxg x 4 đồng thời xảy x
Suy ra: 2;4 2;4 2;4 max
2 4
max 2
min
g x
x x x
f x f x
Mà hàm số
2
x x x
y
f x
liên tục đoạn 2;
Vậy 2 2,
2 m mà m nguyên nên m nhận giá trị 1; 2;3; 4 nên chọn đáp án D Câu 45: Chọn C
Nhận thấy 1; 1;
2
khơng nghiệm phương trình:
4
12x 22x x 10x x 2x 3x m x
Nên
4 2
12 22 10 11 12
1 2
1 1
x x x x x x
m x x
x x x x x x
1 1
2
1
m x x
x x x
(28)20
Xét hàm số 2 1
1
f x x x
x x x
1
\ 1; ;
2
Ta có:
2 2 2
2 1
' 0, \ 1; ;
2
1
x
f x x
x x x x
Bảng biến thiên
x
1
'
y y 0
Từ bảng biến thiên ta thấy, phương trình m f x có nghiệm phân biệt \ 1; 1;
2
0
m
Mặt khác:
2020; 2020 0;1; ; 2020 m
m m
Vậy có 2021 giá trị m cần tìm
(29)21
Gọi ,I J trung điểm BC SA, nên BC AI BC SAI
BC SI
Hai tam giác cân ABC SBC, nên IA IS suy ISA cân I
Trong SBI vng I ta có 2 12 2.
4 y
SI SB BI
Trong SAI cân I ta có
2
2 12 .
4
y x
IJ SI SJ
Khi thể tích khối chóp S ABC
2
1 1
3 SAI
y x
V BC S BC AI IJ xy
Ta có 2 2 , , 1
6
xy x y xy x y V xy
3
1 2
12 12 27
xy xy xy
xy xy xy
Dấu “=” xảy
3
x y suy
(30)22
Gọi A biến cố để viên bi chọn không nhiều màu ln có bi màu xanh Gọi A biến cố để viên bi chọn có đủ màu khơng có bi màu xanh
Số phần tử không gian mẫu:
21 5985 n C
Trường hợp 1: bi chọn có đủ màu: có 3.5.6.7 630 cách chọn Số phần tử biến cố A n A: 630 3060 3690.
Số phần tử biến cố A n A: n n A 5985 3690 2295.
Xác suất biến cố
2295
:
5985 n A
A P A n
Câu 48: Chọn D
Ta có: a2b2 4a6b 9 a2 2 b 32 2 2 Trong hệ trục tọa độ Oxy gọi A a b B c d ; , ;
Khi A a b ; nằm đường trịn tâm I 2;3 bán kính R có phương trình: 2 2 2
2
x y
;
B c d nằm đường thẳng: 3x4y
Vì BAa c b d ; nên Pa c 2 b d2 BA2 Khi P đạt giá trị nhỏ BA nhỏ Khoảng cách từ I đến ,
2
3.2 4.3 17
:
5
3
I
d
(31)23
17
min
5
BA dI, R
2 49
min
5 25
P BA
Câu 49: Chọn D
Đặt 9 12 16
9
log log log 12
2 16
t t
t x
x y x y t y
x y
Khi
12 t t t x y Mặt khác ta có phương trình:
16
9 2.12 16
9 4
1
3 t
t t
t t t
t nhan loai
Do
4
t x y Câu 50: Chọn D
Ta có VS MNCD. VS MCD. VS MNC. +
1 1
2
S MCD
S MCD S ACD S ABCD S ACD
V SM SC SD
V V V
V SA SC SD
+
1 1
4
S MNC
S MNC S ABC S ABCD S ABC
V SM SN SC
V V V
(32)24
1
4 8
S MNCD S MCD S MNC S ABCD S ABCD S ABCD
V V V V V V
3
8
MNABCD S ABCD S MNCD S ABCD S ABCD S ABCD
V V V V V V
Do
3
8 .
5 5
8 S ABCD S MNCD
MNABCD
S ABCD V V