[r]
(1)Bài : Giải phương trình sau : 1/ 3x2+6x+8
=1 2/ 23x −2
=5
3/ 2x2
−3x+2=3x −1 4/ 4x2+3x+5
=(1 2)
x−1
5/ 22x −3=41− x 6/ (√5)4x−12=( 25)
3− x
7/ 27x+2
=(1 3)
2− x
8/ 93x=3x2+5 9/ 5x x√8x−1=500 10/ (x2+2)x
2
+3x+5
=(x2+2)x+3
11/ (x −2)x
+1
=(x −2)2 12/ 42x−5 4x+4=0
13/ 9x−3x=3 14/ 9x2
−4x+1−3x+2=0 15/ 9x−2 3x+1
+9=0 16/ 52x−1−2 5x−1=0,2
17/ 32x+5
=3x+2+2 18/ 5x−24=25
5x
19/ 3x−4 3− x+3=0 20/ 9x−2 4x=6x
21/ 22x−6x=18 32x 22/ 9x
+6x=22x+1
23/ 64 9x−84 12x+27 16x=0 24/ 16x+2 81x=5 36x
25/ 4x+1
−5 6x+1
+2 9x+1=0 26/ 6 91x−13 6
1 x
+6
1 x
=0
27/ 4x−7 10x
+2 25x=0 28/ (2+√3)x+(2−√3)x=4
29/ (√33−√8)x+(√3 3+√8)x=6 30/
7+√48¿x ¿
7−√48¿x ¿ ¿ ¿
√¿
31/ (4+√15)x+(4−√15)x=8 32/ (7+4√3)x−3(2−√3)x+2=0
33/
5+2√6¿x ¿
5−2√6¿x ¿ ¿ ¿
√¿
34/ 5x−1=10x.2− x.5x+1
35/ 3x+1−5x+2
=3x+4−5x+3 36/ 73x+9 52x=25x+9 73x
37/ 52x=32x
+2(5x+3x) 38/ 22x −1+32x+52x+1=2x+3x+1+5x+2
39/ 3x + x -4 = 0 40/
(13)
x
=x+4
41/ x2 –(3-2x)x + 2(1-2x) = 0 42/ 9-x –(x+2)3-x - 2(x+4) = 0
43/25x –2(3-x)5x + 2x-7 = 0 44/ 4x +9x + 16x = 81x
Baøi : Giải phương trình sau :
1/ log3(2x+5) – = 2/ log1
2
(3x2−5x)+3=0
3/ log5(2x+1)+log5(2− x)=0 4/ log2(x+5)−log2(x+2)=1 5/
log2(x −5)+log1
(2x+1)=log26 6/ lg5+lg(x+10)-1= lg(21x-20)-lg(2x-1)
7/ log8x + log64x = 12 8/ log5x=log5(x+6)−log5(x+2) 9/
(2)11/ log2(x+3)=1+log2(x −1) 12/ log3(log1
x)=0
13/
logx−19 log2¿=0 log1
2
¿ 14/ log2(9−2
x)=3− x 15/
log3(x −5)−log32−1
2log3(3x −20) 16/ log5(x+20) logx√5=1 17/ logx+1(2x
3
+2x2−3x+1)=3 18/ log4(log2x)+log2(log4x)=2 19/ log4(x+3)−log2(x −1)=2−log48 20/ log3x+log√3x+log1
3
x=6
21/ lg2x −3 lgx=lg(x2)−4 22/ log2x=log43x+2 23/ log3x¿2−5 log39x+3=0
2¿ 24/
log1
3
x −3√log1
3
x+2=0
25/ log2(x −5)+log1
(2x+1)=log26 26/ log
2x −logx8=−2 27/ logx2−log4x+7
6=0 28/2x – lg(52x +x -2) = lg 4x
29/ 4−1lgx+
2+lgx=1 30/ log3[1+log3(2
x
−7)]=1
31/ (x+2)log32(x+1)+4(x+1)log3(x+1)−16=0 32/ log4(18−2x) log218−2
x
8 =−1
33/ xlg 4+4lgx
=32 34/ xlg 9−4 3lgx+3=0
35/ 3x¿log3x=27
xlog33x+2
¿ 36/
log3x
5log3x =400
37/ 4lg 10x−6lgx=2 3lg(100x2