1. Trang chủ
  2. » Mẫu Slide

Sang kien kinh nghiem toan 7 cuc hay cho cac ban day

15 17 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 29,44 KB

Nội dung

Gióp gi¸o viªn n©ng cao n¨ng lùc tù nghiªn cøu, ®ång thêi vËn dông tæng hîp c¸c tri thøc ®· häc, më réng, ®µo s©u vµ hoµn thiÖn hiÓu biÕt... Nghiªn cøu vÒ t×nh h×nh d¹y häc vµ häc vÊn ®Ò[r]

(1)

Phần I: Lý nghiên cứu

1-Cơ sở lý luận:

Trong quỏ trỡnh phỏt triển ,xã hội đề yêu cầu cho nghiệp đào tạo ngời Chính mà dạy tốn khơng ngừng đợc bổ xung đổi để đáp ứng với đời địi hỏi xã hội Vì ngời giáo viên nói chung phải ln ln tìm tịi ,sáng tạo ,đổi phơng pháp dạy học để đáp ứng với chủ trơng đổi Đảng Nhà nớc đặt

Trong chơng trình mơn tốn lớp THCS kiến thức phơng trình vơ tỉ khơng nhiều song lại quan trọng tiền đề để học sinh tiếp tục học lên THPT

Khi giải toán phơng trình vơ tỉ địi hỏi học sinh nắm vững kiến thức thức, phơng trình, hệ phơng trình, phộp biến đổi đại số Học sinh biết vận dụng linh hoạt , sáng tạo kiến thức , kỹ từ đơn giản đến phức tạp

“Một số phơng pháp giải phơng trình vơ tỷ ”giúp học sinh phát triển t duy, phát huy tính tích cực chủ động, sáng tạo giải tốn.Đồng thời giáo dục t tởng, ý thức,thái độ, lòng say mê học tốn cho học sinh

2.C¬ së thùc tiễn:

Phơng trình vô tỉ loại toán mà học sinh THCS coi loại toán khó, nhiều học sinh giải phơng trình vô tỉ nh nào?có phơng pháp nào?

Cỏc bi tốn phơng trình vơ tỉ dạng tốn hay khó, có nhiều đề thi học sinh giỏi cấp, thi vào lớp 10 THPT Tuy nhiên, tài liệu viết vấn đề hạn chế cha hệ thống thành phơng pháp định gây nhiều khó khăn việc học tập học sinh, nh công tác tự bồi dng ca giỏo viờn

Mặt khác, việc tìm hiểu phơng pháp giải phơng trình vô tỉ giáo viên nghiên cứu

Vỡ vy vic nghiên cứu phơng pháp giải phơng trình vơ tỉ thiết thực, giúp giáo viên nắm vững nội dung xác định đợc phơng pháp giảng dạy phần đạt hiệu quả, góp phần nâng cao chất lợng dạy học, dặc biệt chất lợng học sinh giỏi giáo viên giỏi trờng THCS

II-Mục đích nghiên cứu:

(2)

+ Nghiên cứu vấn đề để nắm đợc thuận lợi, khó khăn dạy học phần ph-ơng trình vơ tỉ bồi dỡng học sinh giỏi, từ định hớng nâng cao chất l-ợngdạy học mơn tốn

+ Nghiên cứu vấn đề giúp giáo viên có t liệu tham khảo dạy thành cơng phơng trình vơ tỉ

III- NhiƯm vơ nghiªn cøu:

1 Nghiên cứu tình hình dạy học học vấn đề nhà trờng Hệ thơng hố số phơng pháp giải phơng trình vơ tỉ

3 Tìm hiểu mức độ kết đật đợc triển khai đề tài Phân tích rut học kinh nghiệm

IV- Phạm vi v i tng nghiờn cu:

1 Đối tợng nghiên cứu:

a Các tài liệu

b Giáo viên, học sinh giỏi trờng THCS Gia Sơn

2 Phạm vi nghiên cứu:

Cỏc phng phỏp giải phơng trình vơ tỉ thờng gặp THCS

V- Phơng pháp nghiên cứu:

1 Phơng pháp nghiên cứu tài liệu Phơng pháp điều tra, khảo sát Phơng pháp thử nghiệm

4 Phơng pháp ttổng kÕt kinh nghiƯm

VI- Gi¶ thut khoa häc:

Nâng cao chất lợng dạy học sau nghiên cứu áp dụng sáng kiến kinh nghiệm, giúp cho giáo viên dạy có hiệu cao hơn, học sinh ham thích học dạng toán

PHầN II: Nội dung

A- Một số phơng pháp giải phơng trình vô tỉ:

* Khỏi nim: Phng trình vơ tỉ phơng trình đại số chứa ẩn dấu thức (ở đề cập đến phơng trình mà ẩn nằm dới dấu bậc hai bậc ba) * Phơng trình vô tỉ phong phú đa dạng, hớng chung để giải phơng trình vơ tỉ làm cho phơng trình đợc chuyển dạng hữu tỉ

I-Ph¬ng pháp nâng lên luỹ thừa: Kiến thức vận dụng:

+ (A ± B)2 = A2 ± 2AB + B2

(3)

+

f(x)=g(x) f(x)0 g(x)0 f(x)=[g(x)]2

¿{ { +

A=m⇔A=m3 Ví dụ:

Ví dụ 1: Giải phơng trình sau: 2+2x 1=x (1) Giải

Điều kiện cã nghÜa: 2x −10 (2) ⇔x ≥1

2

(1) √2x −1=x −2 (3) Víi ®iỊu kiƯn x −20 (4) (3) 2x - = (x-2)2 (5)

2x −1=x24x+4

⇔x26x+5=0

Giải ta đợc x1=1 không thoả mãn (4)

x2 = thoả mÃn (2) (4) nghiệm phơng trình: x =

Ví dụ 2: Giải phơng trình: x 15x 1=3x 2 (1)

Phơng trình (1) cã nghÜa:

x −10 5x −10 3x −20

⇔x ≥0

¿{ {

(2)

(1) x −1=√3x −2+√5x −1

Hai vế dơng, bình phơng hai vế ta đợc

¿27x ≥0

27x¿2(3) ¿ ¿ ¿

4(15x213x+2)=

¿

Giải (3) ta đợc: x ≤2

7 không thoả mÃn (1) Vậy phơng trình vô nghiệm

(4)

§iỊu kiƯn: x ≥2 (2) ViÕt PT (1) díi d¹ng

x+1=√x −2+1 (3)

Hai vế (3) khơng âm, bình phơng hai vế ta đợc x+1=x −2+1+2√x −2

2=2x 2x 2=1x 2=1x=3 thoả mÃn điều kiện (2) Vậy phơng trình có nghiệm x=

Lu ý:

+ Nếu để (1) bình phơng ta phải đặt ĐK x+1 x −2 (Đk đúng)

+ Nếu biến đổi (1) thành √x −2=√x+11 bình phơng hai vế ta phải đặt ĐK √x+11⇔x ≥0

VÝ dô 4: Giải phơng trình:

x+1=23

7 x (1) Gi¶i:

(1)√3x+1+√372x=2

¿

3

x+1+√37− x¿3=23

¿

Gi¶i (1)

3

√(x+1)(7− x)=0

(x+1)(7− x)=0

⇔x1=1;x2=7

Là nghiệm phơng trình Chú ý:

- Khi bình phơng hai vế phơng trình cần ý điều kiện hai vế dơng.-Trớc lên luỹ thừa cần biến đổi phơng trình dạng thuận lợi để hạn chế trờng hợp có lời giải ngắn gọn

VÝ dơ5: Gi¶i pt: √x24x

+4+x=8 (1) Gi¶i:

x −2¿2 ¿ ¿ √¿

x −2∨¿ + x=8

NÕu x ≥2 th× x −2+x=8⇔x=5

Nếu x < 2 x+x=8 vô nghiệm

KÕt ln : x=5 lµ nghiƯm cđa pt 4- Bài tập tơng tự:

(5)

1/ x2-4x =8

x −1 (x=4+2 √2 ) 2/ √2x2

+8x+6 + √x21 =2x+2 3/ √x2

x2 + √x −

7

x2 =x (x=2)

4/ √x+1 - √x+2 = √x+5 - √x+10 (x=-1) Sư dơng phÐp lËp ph¬ng:

1/

x −1 +

x −2 =

√2x −3 (x=4; 2) 2/

x+1 +

x −1 =

√5x (x=0; ± √5

2 )

3/

x+1 +

√3x+1 =

x −1 (x=- 1) 4/

√1+√x +

√1x =1 (x= 28 27 )

II -Phơng trình đa phơng trình chứa ẩn dấu giá trị tuyệt đối

1/kiÕn thøc vËn dông : +)

x¿2 ¿

f ¿ √¿

f(x) f(x)0

− f(x) f(x)<0

+)phơng pháp giải phơng trình chứa dấu giá trị tuyệt đối (tự tìm hiu ) 2-Vớ d:

Ví dụ6 :Giải phơng trình : √x+24xx −2 + √x+76√x −2=1 (1) Gi¶i:

§iỊu kiƯn : x-2 hay x (2)

x −22¿2 ¿

x −23¿2 ¿ ¿1

¿ ¿ ¿

√¿

Cách 1: Chia trờng hợp để bỏ dấu giá trị tuyệt đối

Cấch 2: Sử dụng bất đẳng thức |a|+|b||a+b| , dấu “=” xảy a,b > Khi |√x −22|+|3−√x −2||√x −22+3x −2|=1 (3)

Dấu “=”xảy khi: (√x −22) (3x −2)0 (4) Giải (4) ta đợc: 6≤ x ≤11 Thoả mãn (2)

(6)

3/ Chó ý :

+ Phơng pháp thờng đợc áp dụng biểu thức dấu bậc hai viết đợc thành bình phơng biểu thức

+ Có phơng trình cần phải biến đổi có dạng 4/ Bài tập áp dụng: Giải phơng trình sau:

1) √x2

+2x+1+√x22x+1=2 (x ≥1) 2) √x+√x21

x −x21=

√2 (x=2)

3) √x+2+3√2x −5+√x −2√2x −5=2√2 (5

2≤ x ≤3) III- Phng phỏp t n ph:

1 Đặt ẩn phụ đa phơng trình ẩn mới: Ví dụ 7: Giải phơng trình x25x+13=4

x25x+9 (1)

Giải : Ta cã : x25x+9=

(x −5 2)+

11 > Đặt: x2

5x+9=y 0x25x+9=y2 Khi (1) y2 + = 4y

⇔y=2

⇔x25x+5=4

⇔x25x+5=0

x=5+√5

¿

x=5√5

¿ ¿ ¿ ¿

VÝ dô 8: Giải phơng trình: x+x+1 2+x+

1

4=2 (1)

Giải: Điều kiện: x 4 (2)

Đặt: √x+1

4=y ≥0

(7)

Khi (1) trở thành

y+1 2¿

2

¿ ¿

y21 4+√¿

4y2+4y −7=0

0 y=2√21

2

¿ ¿ ¿ ¿

y=2√21

¿ ¿ ¿

Trờng hợp y=221

2 < loại

x=22 , thoả mÃn điều kiện (2) Vậy nghiệm phơng trình : x=22

Ví dụ 9: Giải phơng trình:

x+1+3 x+3+3 x+3=0 (1) Giải:

Đặt:

x+2=y (1) 3

y31+√3 y3+1=− y

LËp ph¬ng hai vÕ ta cã : y3=y√3 y61

y=0

¿

y2=√3 y61

¿ ¿ ¿ ¿ ¿

(+) NÕu: y=03

√x+2=0⇔x=2 (+) NÕu y2

=3 y61y6=y61 , vô nghiệm Vậy nghiệm phơng trình : x = -2

2 Đặt ẩn phụ đa hệ phơng trình:

a Dạng: ax+b=r(ux+v)+dx+e (1) Víi a,u,r

(8)

Khi phơng trình (1) đa đợc dạng : u(x y)(ruy+rux+2 ur+1)=0

Ví dụ 10: Giải phơng trình: 2x+15=32x2

+32x 20 (1)

Giải: Điều kiện: 2x+150x ≥−15

2 Khi đó: (1) 4x+2¿

2

28

2x+15=2 (2)

Đặt: y+2=√2x+15 (3) §iỊu kiƯn: y+20⇔y ≥−1

2

Khi (2) trở thành (4x + 2)2 = 2y + 15 (4)

Tõ (3) ta cã : (4y + 2)2 = 2x + 15 (5)

Tõ (4) vµ (5) cã hƯ:

4x+2¿2=2y+15(4) ¿

4y+2¿2=2x+15(5) ¿

¿{

¿ ¿

Trừ vế với vế (4) cho (5) ta đợc (x- y)(8x + 8y + 9) =

+) Nếu: x-y = ⇔x=y thay vào (5) ta đợc : 16x2 + 14x-11 =0

x=1

¿

x=11

¿ ¿ ¿ ¿ ¿

víi x=11

8 , lo¹i +) nÕu 8x + 8y + =

8y=8x −9 , Thay vào (4) ta đợc:

(9)

x=9√221 16

¿

x=9+√221 16

¿ ¿ ¿ ¿ ¿

, lo¹i

VËy nghiƯm cđa phơng trình : x1=1 x2=9+

√221 16

b) D¹ng:

3

ax+b=r(ux+v)+dx+e (1) Đặt uy+v=3ax+b

(1) a c v dạng: u(y − v)(rP2+rPQ+rQ2+1)=0 Trong đó: P=uy+v Q=ux+v

Ví dụ 11: Giải phơng trình:

3x −5=8x336x2+53x −25 (1)

Gi¶i (1) 3

3x 5 =(2x-3)3-x+2 (2)

Đặt :2y-3=

√3x −5 2y −3¿3

3x −5=¿ (3)

khi (2) 2x −3¿3

2y+x −5=¿ (4)

Tõ (3),(4) cã hÖ :

2y −3¿3 ¿

2x −3¿3 ¿ ¿{

¿

3x −5=¿

Trừ vế với vế ta đợc :

(10)

Trong : P=2y −3 Q=2x −3

V×: P2

+Q2+P.Q+1>0 ∀x , y

Do :(5) ⇔x=y Thay vào (3) ta đợc:

(x-2)(8x ❑2 -20+11)=0

x ❑❑1 =2 ; x ❑2 = 5+√3

2 ; x ❑3 =

5√3 c Mét số dạng khác:

Ví dụ 12: Giải phơng trình:

x 2+x+1=3 (1) Giải

Điều kiện: x 1 (2) Đặt:

x −2=y⇒x −2=y3

¿

x+1=z≥0⇒x+1=z

2 z2 y2=3 Với điều kiện (2) (1) ®a vỊ hƯ:

¿

y+z=3 z2− y2=3

z ≥0

¿{ {

¿

Giải hệ ta đợc:

¿

y=1 z=2

¿{

¿

Từ suy ra: x = nghiệm phơng trình (1) Ví dụ 13: Giải phơng trình: 1x+

√2− x2=2 (1) Giải:

Điều kiện:

x 0 2<x<2

{

Đặt: √2− x2

=y>0⇒x2+y2=2

Ta cã hÖ: (1)

¿

x2+y2=2

x+ y=2

¿{

(11)

Đặt: x +y = S ; xy = P

(1)

S22P=2 S=2P

P=1, S=2

¿ ¿

P=1

2, S=1

¿ ¿{

¿ ¿ ¿

+Trờng hợp 1: Ta đợc x=y=1; Trờng hợp 2:

¿

x=1+√3 y=1√3

2

¿{

¿

hc

¿

x=1√3 y=1+√3

2

¿{

¿

Từ ta đợc x = 1; x = 1√3

2 lµ nghiƯm Chó ý:

* Giải phơng trình vơ tỉ phơng pháp đặt ẩn phụ giúp ta giải đợc nhiều tốn khó, nhiên để đặt làm ẩn phụ có ẩn phụ phải biết nhận xét tìm mối liên quan biểu thức phơng trình, liên quan ẩn

* Cần phải có kỹ giải phơng trình hệ phơng trình Bài tập áp dụng:

1) x2

+2x −9=√6+4x+2x2

2) √x+2√x −1+√x −2√x −1=4 (đặt √x −1=y ≥0; x=5 )

3) √x+12√x+√x+44√x=1 (t x=y ;1 x 4 )

Đặt hệ phơng trình: 1- 3x3

+8=2x26x+4 Đặt: x+2=a ,x22x

+4=b 2- 5√x3+1=2(x2+2)

(12)

3- x1 x+1

1 x=x Đặt: x 1

x=a ;√1

1

x=b ; x=

1+√5

4 -

√2− x+√x −1=1 §Ỉt

√2− x=a ;x −1;2;10 - 3x+1=4x2

+13x 5

(Đặt 2y −3=√3x+1, x=1;11 ;

11+√37 ¿ - x24x 3=

x 5

(Đặt x+5=y 2, x=1;5+29 - x3+2=3332

(Đặt 3x −2=y , x=1;−2¿

IV- Phơng pháp bất đẳng thức:

Chứng tỏ tập giá trị hai vế rời phơng trình vơ nghiệm: * Phơng trình: f(x) = g(x)

Nếu tập giá trị f(x), g(x) lần lợt là: S1, S2 mà S1 giao với S2 rỗng phơng

trình vô nghiệm

* Ví dụ 14: Giải phơng trình: x 37x 3=5x 2 (1) Giải

Điều kiện: x

Với điều kiện thì: x 3<7x 3

Khi vế trái (1) âm, cịn vế phải dơng phơng trình (1) vơ nghiệm 2- Sử dụng tớnh i nghch hai v:

* Phơng trình F(x) = G(x) (1)

Nếu: F(x) K, dấu đẳng thức sảy x = a G(x) K, dấu đẳng thức sảy x=b (k,a,b số)

.) a = b (1) cã nghiÖm là: x = a ) a b (1) vô nghiệm

* Ví dụ 15: Giải phơng trình: 3x2

(13)

VÕ tr¸i:

x+1¿2+4

¿

x+1¿2+9

¿

5¿

3¿ √¿

VÕ ph¶i: 4-2x –x2 = 5- (x+1)2 5

Do hai vế x =-1, với giá trị hai bất đẳng thức đẳng thức

VËy x = -1 nghiệm phơng trình

* Ví dụ 16: Giải phơng trình: 6 x+x+2=x26x+13 (1)

Gi¶i

Sử dụng bất đẳng thức: |a1b1+a2b2|a12+a

22.√b

12+b

22

(Víi dÊu “=” x¶y a1

b1 =a2

b2

¿

VÕ tr¸i: √6− x+√x+2√12

+12.√6− x+x −2=4 Dấu = xảy x=3

Vậy phơng trình vô nghiệm

c S dng tớnh n iu hàm số:

* Ta nghiệm cụ thể chứng minh đợc trờng hợp khác ẩn khơng nghiệm phơng trình

* Ví dụ 17: Giải phơng trình:

x 2+x+1=3 (1) Gi¶i

Ta thấy x = nghiệm phơng trình + Với x >

x 2>1,x+1<2 vế trái (1) lớn

+ Víi -1 x<3 th× √3 x −2>1,√x+1<2 vÕ trái (1) nhỏ Vậy x = nghiệm phơng trình

d Sử dụng điều kiện xảy dấu “=” bất đẳng thức khơng chặt * Ví dụ 18: Giải phơng trình: x

√4x −1+

√4x −1

x =2 (1) Giải

Điều kiện: x >

4 (2) Sử dụng bất đẳng thức: a

b+ b a≥2

Với a,b > dấu “=” xảy a = b Do đó: x

√4x −1+

(14)

DÊu “=” x¶y ⇔x=√4x −1

⇔x24x+1=0

⇔x=2±√3

Tho¶ m·n (2)

VËy nghiƯm phơng trình là: x = 3 e Bài tËp ¸p dơng:

1) √x −4+√6− x=x210x+27 (x = 5) 2) √3x2−12x+6

+√y24y+13=5 (x = y = 2) 3) √x2

+6=x −2√x21 (V« nghiƯm) 4) √x −1+√x+3+2.√(x −1)(x23x+5)=42x

5) 16 √x −3+

4 √y −1+

1225 √z −665

= 82 - √x −3y −1z −665 (x = 19; y = 5; z = 1890)

V- Nh÷ng chó ý:

* Khi giải phơng trình vơ tỉ cần tránh sai lầm sau: + Không ý đến điều kiện có nghĩa thức + Khơng đặt điều kiện có nghĩa thức

* Để giải phơng trình vơ tỉ thành thạo kiến thức sau cần nắm vững + Các phép biến đổi thức

+ Các phép biến đổi biêủ thức đại số

+ Các kiến thức phơng pháp giải phơng trình hệ phơng trình + Các kiến thức bất đẳng thức

PHÇN III : KÕt ln

I-Bµi häc kinh nghiƯm:

Phơng trình vơ tỷ dạng tốn khơng thể thiếu đợc chơng trình bồi dỡng học sinh giỏi THCS Nếu dừng lại yêu cầu sách giáo khoa cha đủ, địi hỏi giáo viên phải tích cực tự học, tự nghiên cứu, tìm tịi sáng tạo thờng xuyên bổ xung kiến thức tích luỹ kinh nghiệm vấn đề

*Để dạy học cho học sinh hiểu vận dụng tốt phơng pháp giải phơng trình vơ tỷ thân giáo viên phải hiểu nắm vững phơng trình vvơ tỷ: dạng phơng trình vơ tỷ, phân biệt khác phơng trình vơ tỷ với dạng phơng trình khác, đồng thời phải nắm vững phơng pháp giải phơng trình vơ tỷ

(15)

phơng pháp tự học, tự nghiên cứu để tiếp tục nghiên cứu vấn đề khác tốt suốt trình dạy học

II-KÕt luËn chung:

Để thực tốt công việc giảng dạy, đặc biệt công tác bồi dỡng học sinh giỏi ngời thày phải thờng xuyên học, học tập, nghiên cứu

Trong trình giảng dạy, học sinh học tập, học sinh bồi dỡng, đọc tài liệu tham khảo rút số kinh nghiệm nêu hy vọng đề tài ‘”Một số ph-ơng pháp giải phph-ơng trình vơ tỷ” làm kinh nghiệm để giúp học sinhtiếp thu vấn đề này, phần nâng cao lực t duy, sáng tạo rèn kỹ giải phơng trình vơ tỷ cho học sinh

Ngày đăng: 13/04/2021, 12:30

TỪ KHÓA LIÊN QUAN

w