[r]
(1)(2)KiĨm tra bµi cị
KiĨm tra bµi cị Bµi tËp 1:
Bµi tËp 1: VÏ tam gi¸c ABC cã: VÏ tam gi¸c ABC cã:
AB = cm, AC = cm, BC = cm
AB = cm, AC = cm, BC = cm
H·y so s¸nh c¸c gãc cđa tam gi¸c H·y so s¸nh c¸c gãc cđa tam gi¸c ABC
ABC
KỴ AH vuông với BC (H Kẻ AH vuông với BC (H BC) BC) So sánh AB với BH AC với HC
So sánh AB với BH AC víi HC
Bµi tËp 2:
Bài tập 2: Hãy vẽ tam giác với Hãy vẽ tam giác với cạnh có độ dài là:
(3)Lêi gi¶i
Lêi gi¶i
1
1 ABC ABC cã AB = cm, AC = cm, BC = cã AB = cm, AC = cm, BC =
cm : AB < AC < BC
cm : AB < AC < BC
góc C < góc B < góc A ( quan hệ góc góc C < góc B < góc A ( quan hệ góc cạnh đối diện tam giác)
và cạnh đối diện tam giác)
2
2 XÐt XÐt ABH cã gãc H = ABH cã gãc H = 1 AB > HB AB > HB ( c¹nh hun lớn cạnh góc vuông)
( cạnh huyền lớn cạnh góc vuông)
T ơng tự có : AC > HC
T ¬ng tù cã : AC > HC
b h c
(4)Bài toán
Chng minh rng mt tam giỏc , tổng độ dài hai cạnh lớn độ dài cạnh lại
A
(5)Chøng minh
Chøng minh
Trên tia đối tia AB lấy điểm D cho AD = AC
Trên tia đối tia AB lấy điểm D cho AD = AC
nèi CD, ta cã BD = BA +AD Vì tia CA nằm hai tia
nối CD, ta cã BD = BA +AD V× tia CA nằm hai tia
CB CD
CB vµ CD
cã : gãc BCD > gãc ACD
cã : gãc BCD > gãc ACD
mà
mà ADC cân : góc ADC = gãc ACD ADC c©n : gãc ADC = gãc ACD
VËy gãc BCD > gãc ADC hay gãc BCD > gãc BDC
VËy gãc BCD > gãc ADC hay gãc BCD > gãc BDC BD > BD > BC ( theo quan hệ góc cạnh mét tam gi¸c )
BC ( theo quan hƯ góc cạnh tam giác )
AB + AD > BCAB + AD > BC
(6)Định lý
Định lý
Trong tam giác , tổng độ dài
(7)2 Hệ bất đẳng thức tam giác
Trong tam giác , hiệu độ dài hai cạnh bất Trong tam giác , hiệu độ dài hai cạnh bất
kỳ nhỏ độ dài cạnh lại kỳ nhỏ độ dài cạnh lại Trong tam giác , độ dài cạnh Trong tam giác , độ dài cạnh
cũng lớn hiệu nhỏ tổng độ dài lớn hiệu nhỏ tng cỏc di
của hai cạnh lại hai cạnh lại Trong
Trong ABC víi c¹nh BC ta cã : ABC víi c¹nh BC ta cã :
(8)LuyÖn tËp
Lun tËp
Bài : Có thể có tam giác mà độ dài ba cạnh nh sau không:
a 5cm ; 10cm ; 12cm ? b 1m ; 2m ; 3,3m ? c 1,2m ; 1m ; 2,2m ? Gi¶i
a Có tam giác có ba cạnh 5cm , 10cm, 12cm cạnh nhỏ tổng hai cạnh
(9)Bµi sè 2
Bµi sè 2
Cho ba thành phố A , B , C ba đỉnh tam giác , biết :
AC = 30 km, AB = 90km
a Nếu đặt C máy phát sóng truyền có bán kính hoạt động 60 km thành phố B có nhận đ ợc tín hiệu khơng? sao?
(10)Lêi gi¶i
a
c b
90 km
30 km
(11)Bµi 3:
Cho ABC vµ M điểm nằm trong tam giác Gọi I giao điểm của đ ờng thẳng BM cạnh AC Chứng minh :
a So s¸nh MA víi MI + IA
(12)Đáp án bµi 3:
Chøng minh
Chøng minh
XÐt
XÐt AMI : MA < MI + IA.AMI : MA < MI + IA.
Céng MB vµo hai vÕ : MA + MB < MI + IA + MB
Céng MB vµo hai vÕ : MA + MB < MI + IA + MB
MA + MB < IB + IA ( 1)MA + MB < IB + IA ( 1) XÐt
XÐt BIC : IB < IC + CB BIC : IB < IC + CB
Céng IA vµo hai vÕ : IB + IA < IC + CB + IA
Céng IA vµo hai vÕ : IB + IA < IC + CB + IA
IB + IA < CA +CB (2)IB + IA < CA +CB (2) Tõ (1) vµ (2) ta cã :
Tõ (1) vµ (2) ta cã :