Câu 35. Cho sË ph˘c z th‰a mãn (||z z 1 2 2 4i i|| 1 2. Giá tr‡ S = min |z| + max |z| b¨ng A 3 p5 1. B p2 + p5 1. C 2 p5 + 1. D p5 + 2. Câu 36. )∫ l≠p ∞t hª thËng iªn n´ng l˜Òng m∞t trÌi 50KWP, gia ình b§n A vay ngân hàng sË ti∑n là 600 triªu Áng vÓi lãi sußt 0, 6%tháng. Sau úng mÎt tháng k∫ t¯ ngày l≠p ∞t, gia ình b§n A b≠t ¶u ˜a vào v™n hành hòa l˜Ói thì mÈi tháng công ty iªn l¸c tr£ gia ình b§n A 16 triªu Áng. Nên sau úng 1 tháng k∫ t¯ ngày vay, gia ình b§n A b≠t ¶u hoàn nÒ, hai l¶n hoàn nÒ cách nhau úng mÎt tháng, mÈi tháng hoàn nÒ sË ti∑n là 16 triªu Áng. H‰i sau bao nhiêu tháng, gia ình b§n A s≥ tr£ h∏t nÒ? A 45. B 43. C 42. D 44. Câu 37. F (x) là mÎt nguyên hàm cıa hàm f (x) = (x 1) px2 2x 3. Bi∏t F (2) = F (4) 1 = 5 p5 3 và F (3) + F (5) = a p3 + b; a, b 2 N. Giá tr‡ a + b b¨ng A 17. B 18. C 9. D 12. Câu 38. Cho π 4Z0 x dx 1 sin2x = π a ln b + ln p2; a, b 2 N⇤. Giá tr‡ a + 3b b¨ng A 4. B 12. C 10. D 8. Câu 39. Cho hàm sË y = f (x) có b£ng bi∏n thiên nh˜ sau x 0y y 1 1 0 1 +1 0 + 0 0 + +1 2 3 1 +1 Ph˜Ïng trình 2 f sin xp+2cos x + 3 = 0 có bao nhiêu nghiªm trên 43π; 74π? A 4. B 3. C 5. D 6. Câu 40. Trong không gian Oxyz, cho hai i∫m A(3; 2; 3); B(1; 0; 5). Tìm tÂa Î i∫m M 2 (Oxy) sao cho MA + MB §t giá tr‡ nh‰ nhßt. A 9 4 ; 5 4 ; 0. B 94; 5 4; 0. C 9 4; 5 4; 0. D 9 4; 54; 0. Câu 41. GÂi S t™p hÒp các giá tr‡ m ∫ Á th‡ hàm sË y = x4 2m2x2 + 1 có 3 i∫m c¸c tr‡ t§o thành mÎt tam giác vuông cân. TÍng bình ph˜Ïng các ph¶n t˚ cıa t™p S b¨ng A 6. B 4. C 8. D 2. Câu 42. Cho hình chóp S.ABCD áy là hình thoi c§nh a, ∠BAD = 60), S A vuông góc vÓi m∞t phØng (ABCD). Góc gi˙a ˜Ìng thØng S C và m∞t phØng (ABCD) b¨ng 45). GÂi I là trung i∫m S C. Kho£ng cách t¯ I ∏n m∞t phØng (S BD) là A a p15 5 · B 2a p15 5 · C a p15 10 · D a p15 15 · B A C D S I
( |z 2i| Câu 35 Cho sË ph˘c z th‰a mãn Giá tr‡ S = |z| + max |z| băng |z 4i| p p p p p A B + C + D + Câu 36 ∫ l≠p ∞t hª thËng iªn n´ng l˜Ịng m∞t trÌi 50KWP, gia ình bĐn A vay ngõn hng sậ tin l 600 triêu ng vểi lói suòt 0, 6%/thỏng Sau ỳng mẻt thỏng k∫ t¯ ngày l≠p ∞t, gia ình b§n A b≠t ¶u ˜a vào v™n hành hịa l˜Ĩi mÈi tháng cụng ty iên lác trÊ gia ỡnh bĐn A 16 triªu Áng Nên sau úng tháng k∫ t¯ ngày vay, gia ỡnh bĐn A bt ảu hon nề, hai lản hon nề cỏch ỳng mẻt thỏng, mẩi thỏng hồn nỊ sË ti∑n 16 triªu Áng H‰i sau tháng, gia ình b§n A s≥ tr£ h∏t nÒ? A 45 B 43 C 42 D 44 p p 5 Câu 37 F (x) mỴt ngun hàm cıa hàm f (x) = (x 1) x 2x Bi∏t F ( 2) = F (4) = p F ( 3) + F (5) = a + b; a, b N Giá tr a + b băng A 17 B 18 C D 12 π Câu 38 Cho Z4 π x dx = sin x a A ln b + ln p 2; a, b N⇤ Giỏ tr a + 3b băng B 12 C 10 D Câu 39 Cho hàm sË y = f (x) có b£ng bi∏n thiên nh˜ sau x y0 1 + 0 +1 + +1 +1 y ! " # sin x + cos x 3π 7π Ph˜Ïng trình f + = có nghiªm ; ? p 4 A B C D Câu 40 Trong không gian Oxyz, cho hai i∫m A(3; 2; 3); B(1; 0; 5) Tìm tÂa Î i∫m MA + MB §t giá ! tr‡ nh‰ nhßt ! ! 9 A B C D ; ;0 ; ;0 ; ;0 4 4 4 M (Oxy) cho ! ; ;0 4 Câu 41 GÂi S t™p hÒp giá tr‡ m ∫ Á th‡ hàm sË y = x4 2m2 x2 + cú im tr tĐo thnh mẻt tam giỏc vuụng cõn Tng bỡnh phẽng cỏc phản t ca S băng A B C D Câu 42 S Cho hình chóp S ABCD áy hình thoi c§nh a, ∠BAD = 60 , S A vng góc vĨi m∞t phØng (ABCD) Góc gia èng thỉng S C v mt phỉng (ABCD) băng 45 GÂi I trung i∫m S C Kho£ng cách t¯ Ip ∏n m∞t phØng (SpBD) p p a 15 2a 15 a 15 a 15 · · · · A B C D 5 10 15 I A B D C Trang 4/6 Mã ∑ 222 Câu 43 Cho hàm sË y = f (x) có b£ng bi∏n thiên nh˜ sau x y + 0 +1 + 2 y Hàm sË y =! f (1 A ;1 2x) + Áng bi∏n ! B 1; C (1; +1) ! 0; D Câu 44 T¯ mỴt tßm tơn hình ch˙ nh™t kích th˜Ĩc h a, ng˜Ìi ta làm thùng ¸ng n˜Ĩc hình trˆ có chiu cao băng h, theo hai cỏch sau (xem hỡnh minh dểi õy): ã Gũ tòm tụn ban ảu thnh mt xung quanh ca thựng ã Ct tòm tụn ban ảu thnh hai tòm băng nhau, ri gũ mẩi tòm ú thnh mt xung quanh ca mẻt thựng Kớ hiªu V1 th∫ tích cıa thùng gị ˜Ịc theo cách V2 tÍng th∫ tích cıa hai thùng gị ˜Ịc theo cách V1 Tính tø sË · V2 V1 V1 V1 V1 A B C D = 4· = · = = V2 V2 V2 V2 Câu 45 y Cho hàm sË b™c ba y = f (x) có Á th‡ nh˜ hình v≥ GÂi⇣ S t™p hỊp⌘ tßt c£ giá tr‡ nguyên cıa tham sË m ∫ hàm sË y = f (x 1)2 + m có i∫m tr Tng cỏc phản t ca S l A 10 B C D Câu 46 Cho hàm sË y = f (x) có §o hàm liên tˆc R tho£ mãn x f (x) = e x Z1 x f (x) dx băng x 1, 8x R Giỏ tr A (e 2) B (e 2) C (e 2) D (e 2) Trang 5/6 Mã ∑ 222 Câu 47 y Cho hàm sË y = f (x) = ax3 + bx2 + cx + d, có Á th‡ nh˜ hình v≥ SË ˜Ìng tiªm c™n x2 + x ˘ng cıa Á th‡ hàm sË y = f (x) f (x) A B C D 2 1 x Câu 48 Có hÂc sinh gÁm hÂc sinh tr˜Ìng A, hÂc sinh tr˜Ìng B hÂc sinh tr˜Ìng C s≠p xp trờn mẻt hng dc Xỏc suòt ềc cỏch cách s≠p x∏p mà hai hÂc sinh tr˜Ìng C mỴt em ngÁi gi˙a hai hÂc sinh tr˜Ìng A mỴt em ngÁi gi˙a hai hÂc sinh tr˜Ìng B 1 1 · · · · A B C D 30 45 90 180 Câu 49 A0 D0 , có áy hình bình hành AC = Cho hình l´ng trˆ ABCD A0 B0C 0p p 0 B0 = 90 Th∫ tích khËi t˘ [ BC = a, CD = a 2, AC = a 3, CA B0 diªn BCDA p a3 2a3 · A a3 B 6a C D D0 A B C0 D C log0,3 xm + 16 Câu 50 SË giá tr‡ m nguyên, m thc [ 20; 20] cho giá tr‡ nh‰ nhßt cıa hàm sË y = log0,3 x + " # ; băng 16 l 10 A 40 B C 20 D 10 - - - - - - - - - - HòT- - - - - - - - - - Trang 6/6 Mã ∑ 222 ó THI TH€ ĐI H≈C NãM 2020 - 2021 MƠN: TỐN, LŒP 12, LÜN TR◊ÕNG THPT CHUN QUANG TRUNG T TỐN ( ∑ thi có trang) ThÌi gian làm bài: 90 phút Mã ∑ thi 333 H tên hÂc sinh: LÓp: Câu Trong khơng gian Oxyz, ˜Ìng thØng Ox có ph˜Ïng trình d˜Ĩi ây? 8 > > > x=1 x=t x=t > > > > > > > > > < < < y=t y=0 y=1 A > B > C > > > > > > > > > > :z = t :z = :z = Câu Cho hàm sË y = f (x) có b£ng bi∏n thiên nh˜ sau x y + 0 > x=1 > > > < y=0 D > > > > :z = +1 + +1 y Hàm sË Áng bi∏n kho£ng sau ây? A ( 1; 4) B (0; +1) C (1; 3) §o hàm cıa hàm sË y = 2021 x 2021 x · A y0 = B y0 = x · 2021 x ln 2021 Câu C y0 = 2021 x D (3; +1) Câu Trong khơng gian Oxyz, gÂi A i∫m thc m∞t c¶u tâm I bán kính R KhØng ‡nh sau ây úng? A IA = R2 B IA = R C IA < R D IA > R Câu D y0 = 2021 x · ln 2021 y Cho hàm sË y = f (x) có Á th‡ nh˜ hình v≥ Mªnh ∑ d˜Ĩi ây úng? A Hm sậ Đt Đi tĐi x = B Hm sậ Đt Đi tĐi x = 1 C Hm sậ Đt tiu tĐi x = D Hm sậ Đt Đi tĐi x = x = 1 x Câu Cho sË ph˘c z = a + bi (a, b R) KhØng ‡nh sau ây úng? A Mô un cıa sË ph˘c z a2 + b2 B Phản thác ca sậ phc z l b C Ph¶n £o cıa sË ph˘c z b D Ph¶n £o cıa sË ph˘c z bi Câu Trong không gian Oxyz, i∫m A (1; 2; 3) thc ph˜Ïng trình m∞t phØng d˜Ĩi ây? A x 2y + 3z = B x + 2y + 3z = C x + 2y + 3z = D x 2y + z = Câu KhËi trˆ có bán kính áy, ˜Ìng cao l¶n l˜Ịt l a, 2a thỡ cú th tớch băng 2a3 a3 · · A πa3 B 2πa3 C D 3 Câu 9.ZCho hai hàm sËZ f (x), g (x) liên tˆc R Trong mªnh ∑ sau, mªnh ∑ sai? A k f (x) dx = k f (x) dx vểi mi hăng sậ k R Trang 1/6 Mã ∑ 333 B Z Z ⇥ ⇤ f (x) + g (x) dx = Z f (x) dx + Z g (x) dx f (x) dx = f (x) + C vÓi mÂi hàm f (x) có §o hàm R Z Z Z ⇥ ⇤ D f (x) g (x) dx = f (x) dx g (x) dx C Câu 10 Trong không gian Oxyz, tìm tÂa Ỵ hình chi∏u cıa M (1; 2; 3) lên m∞t phØng Oxz A (1; 2; 3) B ( 1; 2; 3) C (1; 0; 3) D (0; 2; 0) Câu 11 Cho hàm sË f (x) liên tˆc [a, b] GÂi F(x) mỴt ngun hàm cıa hàm sË f (x) KhØng ‡nh sau ây úng? Zb Zb A f (x)dx = F(a) F(b) B f (x)dx = F(b) + F(a) C a a Zb Zb f (x)dx = F(b) F(a) a D f (x)dx = F (b) F (a) a Câu 12 y ax + b vÓi a, b, c, d cx + d sË th¸c Giá tr‡ nh‰ nhßt cıa hàm sË [ 1; 0] A B C D ˜Ìng cong hình bên Á th‡ cıa hàm sË y = Cõu 13 Cú bao nhiờu loĐi khậi a diên ∑u? A B 1 C x D Câu 14 Cho ba sË d˜Ïng a, b, c (a , 1, b , 1) sË th¸c α khác Øng th˘c sai? loga c · A logb c = B loga c = loga b.logb c loga b C loga (b.c) = loga b + loga c D loga bα = loga b α x Câu 15 Cho F(x) nguyên hàm cıa hàm sË f (x) = x.e , bi∏t F(1) = Hàm F(x) A x.e x e B x.e x x + e C x.e x e x D x.e x + e x Câu 16 Hình nón có bán kính áy, ˜Ìng cao lản lềt l 3, Diên tớch xung quanh hỡnh nún băng 15 à A B C 15 D 12π x+2 Câu 17 KhØng ‡nh úng v∑ tính Ïn iªu cıa hàm sË y = ? x A Hàm sË Áng bi∏n kho£ng ( 1; 1) (1; +1) B Hàm sË ngh‡ch bi∏n kho£ng ( 1; 1) ( 1; +1) C Hàm sË Áng bi∏n kho£ng ( 1; 1) [ (1; +1) D Hàm sË ngh‡ch bi∏n kho£ng ( 1; 1) (1; +1) Câu 18 T™p xác ‡nh D cıa hàm sË y = log2021 (x A D = [ 2; 2] B D = ( 2; 2) \ {1} ⇣ 1)2 + log2020 ⌘ x2 C D = ( 2; 1) D D = (1; 2) Trang 2/6 Mã ∑ 333 Cõu 19 Tng tòt cÊ cỏc nghiêm ca phẽng trỡnh x +2x = băng A B C D Câu 20 Cho z C th‰a z + |z| = 12 Ph¶n £o cıa sË ph˘c z A B C 12 D Câu 21 Trong khơng gian Oxyz, tìm ph˜Ïng trình m∞t phØng c≠t tia Ox, Oy, Oz t§i A, B, C nh™n G (673; 674; 675) làm trÂng tâm cıa tam giác ABC y z y z x x + + = + + = A B 673 674 675 2019 2022 2025 y z y z x x + + = + + = C D 2019 2022 2025 673 674 675 Câu 22 Trong khơng gian Oxyz, bi∏t ph˜Ïng trình m∞t c¶u (S ) : x2 +y2 +z2 = 25 c≠t m∞t phØng (P) : x+y+z = theo giao tuy∏n mỴt ˜Ìng trịn có bán kính r Khi ó giá tr‡ cıa r A B C D 3 Câu 23 Trong không gian Oxyz, tìm tÂa Ỵ i∫m Ëi x˘ng vĨi M(0; 1; 2) qua m∞t phØng x + y + z = A (4; 2; 0) B (0; 1; 2) C ( 2; 1; 0) D (0; 1; 2) Câu 24 GÂi z1 , z2 nghiªm cıa ph˜Ïng trình z2 ph˘c z2 A B i 2z + = 0, bi∏t sË ph˘c z1 có ph¶n £o âm Ph¶n £o cıa sË Câu 25 SË giao i∫m cıa Á th‡ hàm sË y = x3 + x2 A B C D i 2x + Á th‡ hàm sË y = x2 2x + C D Câu 26 TÍng giá tr‡ lĨn nhßt nh‰ nhßt cıa hàm sË y = x3 3x trờn [1; 2] băng A B C D Câu 27 Nguyên hàm cıa hàm sË f (x) = 2x(x 1)(2x 1) ⇣ A x4 + x3 + x2 + C B x4 + x3 2x2 + C C x2 ⌘2 x + C D x4 x3 + x2 + C Câu 28 Cho hình chóp ∑u S ABCD có áy hình vng c§nh a, c§nh bên S A = 2a Th∫ tích cıa khËi chóp S ABCD r p p 14a3 14 3 · a· A a B 2a C D 2 Câu 29 Cho hình l´ng trˆ A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 SË o§n thØng có hai ønh ønh hình l´ng trˆ A 45 B 90 C 35 D 60 Câu 30 Cho hàm sË y = x4 2x2 + 2021 i∫m Đi ca hm sậ l A (0; 2021) B x = C x = Câu 31 T™p nghiêm ca bòt phẽng trỡnh log2 x + log2 (x + 1) A [1; +1) B ( 2; 1] C (0; 1] Câu 32 TÍng sË tiªm c™n ˘ng tiªm c™n ngang cıa Á th‡ hàm sË y = A B C D x = D ( 1; 2] [ [1; +1) x+1 x2 D Câu 33 Cho hình lp phẽng ABCD.A0 B0C D0 cú cĐnh băng a Th∫ tích khËi t˘ diªn ABDB0 a3 2a3 a3 a3 · · · · A B C D 3 Câu 34 ∫ l≠p ∞t hª thËng iên nng lềng mt trèi 50KWP, gia ỡnh bĐn A vay ngân hàng sË ti∑n 600 triªu Áng vĨi lói suòt 0, 6%/thỏng Sau ỳng mẻt thỏng k t ngy lp t, gia ỡnh bĐn A bt ảu a vào v™n hành hịa l˜Ĩi mÈi tháng cơng ty iên lác trÊ gia ỡnh bĐn A 16 triêu ng Nên sau úng tháng k∫ Trang 3/6 Mã ∑ 333 t ngy vay, gia ỡnh bĐn A bt ảu hon nề, hai lản hon nề cỏch ỳng mẻt tháng, mÈi tháng hồn nỊ sË ti∑n 16 triªu Áng H‰i sau tháng, gia ình b§n A s≥ tr£ h∏t nÒ? A 42 B 43 C 44 D 45 Câu 35 Cho hàm sË y = f (x) có b£ng bi∏n thiên nh˜ sau x y0 1 + +1 + 2 y Hàm sË y = f (1 A (1; +1) 2x) + Áng bi∏n ! B 1; C ! 0; D ! ;1 Câu 36 Cho hàm sË y = f (x) có b£ng bi∏n thiên nh˜ sau x y + 0 +1 +1 + +1 y ! " # 3π 7π sin x + cos x ; ? + = có nghiªm Ph˜Ïng trình f p 4 A B C D ! x3 p x e m = GÂi S t™p hỊp giá tr‡ m ngun vĨi m Câu 37 Cho ph˜Ïng trình log22 x log2 [ 10 ; 10] ∫ ph˜Ïng trình có úng nghiªm TÍng giỏ tr cỏc phản t ca S băng A B 12 C D 28 Câu 38 GÂi S t™p hÒp giá tr‡ m ∫ Á th‡ hàm sË y = x4 2m2 x2 + có im tr tĐo thnh mẻt tam giỏc vuụng cõn Tng bỡnh phẽng cỏc phản t ca S băng A B C D ( |z 2i| Câu 39 Cho sË ph˘c z th‰a mãn Giá tr‡ S = |z| + max |z| băng |z 4i| p p p p p A + B + C + D p p 5 Câu 40 F (x) mỴt nguyên hàm cıa hàm f (x) = (x 1) x2 2x Bi∏t F ( 2) = F (4) = p F ( 3) + F (5) = a + b; a, b N Giá tr a + b băng A B 12 C 17 D 18 Cõu 41 T mẻt tòm tụn hỡnh ch˙ nh™t kích th˜Ĩc h a, ng˜Ìi ta làm cỏc thựng nểc hỡnh tr cú chiu cao băng h, theo hai cách sau (xem hình minh hÂa d˜Ĩi õy): ã Gũ tòm tụn ban ảu thnh mt xung quanh ca thựng ã Ct tòm tụn ban ảu thnh hai tòm băng nhau, ri gũ mẩi tòm ú thnh m∞t xung quanh cıa mỴt thùng Trang 4/6 Mã ∑ 333 Kí hiªu V1 th∫ tích cıa thùng gị ˜Ịc theo cách V2 tÍng th∫ tích cıa hai thùng gị ˜Ịc theo cách V1 Tính tø sË · V2 V1 V1 V1 V1 A = B = 4· C = · D = V2 V2 V2 V2 Câu 42 S Cho hình chóp S ABCD áy hình thoi c§nh a, ∠BAD = 60 , S A vng góc vĨi m∞t phØng (ABCD) Góc gi˙a ˜Ìng thØng S C m∞t phỉng (ABCD) băng 45 Gi I l trung im S C Kho£ng (S BD) cách t¯ I p∏n m∞t phØng p p p 2a 15 a 15 a 15 a 15 A B C D · · · · 10 15 I A D B C π Câu 43 Cho Z4 A π x dx = sin x a ln b + ln B 10 p 2; a, b N⇤ Giỏ tr a + 3b băng C D 12 Câu 44 Trong không gian Oxyz, cho hai i∫m A(3; 2; 3); B(1; 0; 5) Tìm tÂa Ỵ i∫m MA + MB Đt giỏ tr nh nhòt ! ! ! 9 ; ;0 ; ;0 ; ;0 A B C D 4 4 4 M (Oxy) cho ! ; ;0 4 Câu 45 A0 D0 , có áy hình bình hành AC = Cho hình l´ng trˆ ABCD A0 B0C 0p p 0 B0 = 90 Th∫ tích khËi t˘ [ BC = a, CD = a 2, AC = a 3, CA B0 diªn BCDA p a3 2a3 · A B a3 C 6a D D0 A B C0 D C Câu 46 Trang 5/6 Mã ∑ 333 y Cho hàm sË y = f (x) = ax + bx + cx + d, có Á th‡ nh˜ hình v≥ SË ˜Ìng tiªm c™n x2 + x ˘ng cıa Á th‡ hàm sË y = f (x) f (x) A B C D 2 x log0,3 xm + 16 Câu 47 SË giá tr‡ m nguyên, m thuẻc [ 20; 20] cho giỏ tr nh nhòt cıa hàm sË y = log x + 0,3 # " ; băng 16 l 10 A 20 B 40 C D 10 Câu 48 Cho hàm sË y = f (x) có §o hàm liên tˆc R tho£ mãn x f (x) = e x Z1 x f (x) dx băng 1, 8x R Giá tr‡ (e Câu 49 A 2) B (e 2) C (e D 2) (e 2) y Cho hàm sË b™c ba y = f (x) có Á th‡ nh˜ hình v≥ GÂi⇣ S t™p hỊp⌘ tßt c£ giá tr‡ nguyên cıa tham sË m ∫ hàm sË y = f (x 1)2 + m cú im tr Tng cỏc phản t ca S A B 10 C D x Câu 50 Có hÂc sinh gÁm hÂc sinh tr˜Ìng A, hÂc sinh tr˜Ìng B hÂc sinh tr˜Ìng C s≠p x∏p mẻt hng dc Xỏc suòt ềc cỏch cỏch sp x∏p mà hai hÂc sinh tr˜Ìng C mỴt em ngÁi gi˙a hai hÂc sinh tr˜Ìng A mỴt em ngÁi gi˙a hai hÂc sinh tr˜Ìng B 1 1 · · · · A B C D 180 90 45 30 - - - - - - - - - - HòT- - - - - - - - - - Trang 6/6 Mã ∑ 333 ó THI TH€ ĐI H≈C NãM 2020 - 2021 MƠN: TỐN, LŒP 12, LÜN TR◊ÕNG THPT CHUYÊN QUANG TRUNG T TỐN ( ∑ thi có trang) ThÌi gian làm bài: 90 phút Mã ∑ thi 444 H tên hÂc sinh: LÓp: Câu y ax + b vÓi a, b, c, d cx + d l cỏc sậ thác Giỏ tr nh nhòt cıa hàm sË [ 1; 0] A B C D ˜Ìng cong hình bên Á th‡ cıa hàm sË y = Cõu Cú bao nhiờu loĐi khậi a diên u? A B C 1 x D Câu Trong không gian Oxyz, i∫m A (1; 2; 3) thc ph˜Ïng trình m∞t phØng d˜Ói ây? A x + 2y + 3z = B x + 2y + 3z = C x 2y + z = D x 2y + 3z = Câu KhËi trˆ có bán kính áy, ˜Ìng cao l¶n l˜Ịt a, 2a cú th tớch băng 2a3 a3 A a3 B · · C 2πa3 D 3 Câu Cho ba sË d˜Ïng a, b, c (a , 1, b , 1) sË th¸c α khác Øng th˘c sai? A loga (b.c) = loga b + loga c B loga c = loga b.logb c loga c C logb c = D loga bα = loga b · loga b α Câu Trong không gian Oxyz, tìm tÂa Ỵ hình chi∏u cıa M (1; 2; 3) lên m∞t phØng Oxz A ( 1; 2; 3) B (1; 2; 3) C (0; 2; 0) D (1; 0; 3) Câu Cho hàm sË f (x) liên tˆc [a, b] GÂi F(x) mỴt ngun hàm cıa hàm sË f (x) KhØng ‡nh sau ây úng? Zb Zb A f (x)dx = F(b) F(a) B f (x)dx = F (b) F (a) C a a Zb Zb f (x)dx = F(a) F(b) a D f (x)dx = F(b) + F(a) a Câu Cho sË ph˘c z = a + bi (a, b R) KhØng ‡nh sau ây úng? A Ph¶n £o cıa sË ph˘c z b B Ph¶n £o cıa sË ph˘c z bi C Mô un cıa sË ph˘c z a2 + b2 D Phản thác ca sậ phc z l b Câu Trong khơng gian Oxyz, ˜Ìng thØng Ox có ph˜Ïng trình d˜Ĩi ây? 8 > > > x=t x=1 x=1 > > > > > > > > > < < < y=1 y=t y=0 A > B > C > > > > > > > > > > :z = :z = :z = t > x=t > > > < y=0 D > > > > :z = Trang 1/6 Mã ∑ 444 Câu 10 y Cho hàm sË y = f (x) có Á th‡ nh˜ hình v≥ Mênh no dểi õy ỳng? A Hm sậ Đt Đi tĐi x = B Hm sậ Đt Đi tĐi x = v x = 1 C Hm sậ Đt tiu tĐi x = D Hm sậ Đt Đi tĐi x = 1 x Câu 11 Cho hàm sË y = f (x) có b£ng bi∏n thiên nh˜ sau x y0 + 0 +1 + +1 y Hàm sË Áng bi∏n kho£ng sau ây? A (1; 3) B (0; +1) C (3; +1) D ( 1; 4) Câu 12 Z Cho hai hàm sË f (x), Z g (x) liên tˆc Z R Trong mªnh ∑ sau, mªnh ∑ sai? ⇥ ⇤ f (x) + g (x) dx = f (x) dx + g (x) dx A Z Z B k f (x) dx = k f (x) dx vểi mi hăng sậ k R Z C f (x) dx = f (x) + C vĨi mÂi hàm f (x) có §o hàm R Z Z Z ⇥ ⇤ D f (x) g (x) dx = f (x) dx g (x) dx Câu 13 §o hàm cıa hàm sË y = 2021 x 2021 x D y0 = 2021 x · ln 2021 Câu 14 Trong không gian Oxyz, gÂi A im thuẻc mt cảu tõm I bỏn kớnh R Khỉng ‡nh sau ây úng? A IA = R B IA = R2 C IA < R D IA > R A y0 = 2021 x · ln 2021 B y0 = x · 2021 x C y0 = Câu 15 Trong khơng gian Oxyz, tìm ph˜Ïng trình m∞t phØng c≠t tia Ox, Oy, Oz t§i A, B, C nh™n G (673; 674; 675) làm trÂng tâm cıa tam giác ABC y z y z x x A B + + = + + = 673 674 675 2019 2022 2025 y z y z x x + + = + + = C D 2019 2022 2025 673 674 675 Câu 16 SË giao i∫m cıa Á th‡ hàm sË y = x3 + x2 2x + Á th‡ hàm sË y = x2 2x + A B C D Câu 17 Trong khơng gian Oxyz, tìm tÂa Ỵ i∫m Ëi x˘ng vÓi M(0; 1; 2) qua m∞t phØng x + y + z = A (4; 2; 0) B (0; 1; 2) C (0; 1; 2) D ( 2; 1; 0) Câu 18 Cho F(x) nguyên hàm cıa hàm sË f (x) = x.e x , bi∏t F(1) = Hàm F(x) A x.e x x + e B x.e x + e x C x.e x e D x.e x ex Câu 19 Cho hình l´ng trˆ A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 SË o§n thØng có hai ønh ønh hình l´ng trˆ A 90 B 35 C 60 D 45 Trang 2/6 Mã ∑ 444 Câu 20 Cho z C th‰a z + |z| = 12 Ph¶n £o cıa sË ph˘c z A 12 B C D Câu 21 Cho hàm sË y = x4 2x2 + 2021 i∫m Đi ca hm sậ l A x = B x = C x = D (0; 2021) Câu 22 Cho hình l™p ph˜Ïng ABCD.A0 B0C D0 cú cĐnh băng a Th tớch khậi t diên ABDB0 a3 a3 a3 2a3 · · A B C · · D 3 Câu 23 Nguyên hàm cıa hàm sË f (x) = 2x(x 1)(2x 1) ⇣ ⌘2 A x4 x3 + x2 + C B x2 x + C C x4 + x3 + x2 + C D x4 + x3 2x2 + C Cõu 24 Tp nghiêm ca bòt phẽng trỡnh log2 x + log2 (x + 1) A ( 1; 2] [ [1; +1) B [1; +1) C (0; 1] D ( 2; 1] Câu 25 TÍng giá tr‡ lĨn nhßt nh‰ nhßt cıa hàm sË y = x3 3x trờn [1; 2] băng A B C D Câu 26 Hình nón có bán kính áy, ˜Ìng cao l¶n l˜Ịt 3, Diên tớch xung quanh hỡnh nún băng 15 A B 15π C D 12π · Câu 27 Cho hình chóp ∑u S ABCD có áy hình vng c§nh a, c§nh bên S A = 2a Th∫ tích cıa khËi chóp S ABCD r p p 14a 14 A B 2a3 C D a3 · a3 · x+1 Câu 28 TÍng sË tiªm c™n ˘ng tiªm c™n ngang cıa Á th‡ hàm sË y = x A B C D Câu 29 Trong khơng gian Oxyz, bi∏t ph˜Ïng trình m∞t c¶u (S ) : x2 +y2 +z2 = 25 c≠t m∞t phØng (P) : x+y+z = theo giao tuy∏n mỴt ˜Ìng trịn có bán kính r Khi ó giá tr‡ cıa r A B C D 3 ⌘ ⇣ Câu 30 T™p xác ‡nh D cıa hàm sË y = log2021 (x 1)2 + log2020 x2 A D = ( 2; 2) \ {1} B D = ( 2; 1) Câu 31 GÂi z1 , z2 nghiªm cıa ph˜Ïng trình z2 ph˘c z2 A i B C D = (1; 2) D D = [ 2; 2] 2z + = 0, bi∏t sË ph˘c z1 có ph¶n Êo õm Phản Êo ca sậ Cõu 32 Tng tòt c£ nghiªm cıa ph˜Ïng trình A B C x2 +2x D i = băng C Cõu 33 Khỉng nh no ỳng v tính Ïn iªu cıa hàm sË y = D x+2 ? x A Hàm sË ngh‡ch bi∏n kho£ng ( 1; 1) (1; +1) B Hàm sË Áng bi∏n kho£ng ( 1; 1) [ (1; +1) C Hàm sË Áng bi∏n kho£ng ( 1; 1) (1; +1) D Hàm sË ngh‡ch bi∏n kho£ng ( 1; 1) ( 1; +1) p Câu 34 F (x) mỴt ngun hàm cıa hàm f (x) = (x 1) x2 p F ( 3) + F (5) = a + b; a, b N Giỏ tr a + b băng A 18 B 17 C 12 2x Bi∏t F ( 2) = F (4) p 5 1= D Trang 3/6 Mã ∑ 444 Câu 35 S Cho hình chóp S ABCD áy hình thoi c§nh a, ∠BAD = 60 , S A vng góc vĨi m∞t phØng (ABCD) Góc gi˙a ˜Ìng thØng S C v mt phỉng (ABCD) băng 45 Gi I l trung i∫m S C Kho£ng (S BD) cách t¯ Ip ∏n m∞t phØng p p p a 15 a 15 2a 15 a 15 · · · · A B C D 10 5 15 I A D B C Câu 36 GÂi S t™p hÒp giá tr‡ m ∫ Á th‡ hàm sË y = x4 2m2 x2 + cú im tr tĐo thành mỴt tam giác vng cân TÍng bình ph˜Ïng phản t ca S băng A B C D Câu 37 Cho hàm sË y = f (x) có b£ng bi∏n thiên nh˜ sau x y0 1 + 0 +1 + +1 +1 y # ! " 3π 7π sin x + cos x ; ? Ph˜Ïng trình f + = có nghiªm p 4 A B C D Cõu 38 T mẻt tòm tụn hình ch˙ nh™t kích th˜Ĩc h a, ng˜Ìi ta làm thùng ¸ng n˜Ĩc hình trˆ có chi∑u cao băng h, theo hai cỏch sau (xem hỡnh minh dểi õy): ã Gũ tòm tụn ban ảu thnh mt xung quanh ca thựng ã Ct tòm tụn ban ảu thnh hai tòm băng nhau, ri gũ mẩi tòm ú thnh mt xung quanh ca mẻt thựng Kớ hiêu V1 th∫ tích cıa thùng gị ˜Ịc theo cách V2 tÍng th∫ tích cıa hai thùng gị ˜Ịc theo cách V1 Tính tø sË · V2 V1 V1 V1 V1 A = 4· B = · C = D = V2 V2 V2 V2 Trang 4/6 Mã ∑ 444 ( |z 2i| Câu 39 Cho sË ph˘c z th‰a mãn Giá tr‡ S = |z| + max |z| băng |z 4i| p p p p p A + B + C + D π Câu 40 Cho Z4 π x dx = sin x a A ln b + ln p B 2; a, b N⇤ Giá tr a + 3b băng C 10 D 12 Cõu 41 Cho hàm sË y = f (x) có b£ng bi∏n thiên nh˜ sau x y0 1 + + +1 y Hàm sË y =! f (1 A ;1 2x) + Áng bi∏n ! B 0; C (1; +1) ! 1; D Câu 42 ∫ l≠p ∞t hª thậng iên nng lềng mt trèi 50KWP, gia ỡnh bĐn A vay ngân hàng sË ti∑n 600 triªu Áng vểi lói suòt 0, 6%/thỏng Sau ỳng mẻt thỏng k t ngy lp t, gia ỡnh bĐn A bt ảu ˜a vào v™n hành hịa l˜Ĩi mÈi tháng cơng ty iên lác trÊ gia ỡnh bĐn A 16 triêu Áng Nên sau úng tháng k∫ t¯ ngày vay, gia ỡnh bĐn A bt ảu hon nề, hai lản hồn nỊ cách úng mỴt tháng, mÈi tháng hồn nỊ sË ti∑n 16 triªu Áng H‰i sau tháng, gia ình b§n A s≥ tr£ h∏t nỊ? A 43 B 45 C 44 D 42 ! x3 p x Câu 43 Cho ph˜Ïng trình log22 x log2 e m = GÂi S t™p hÒp giá tr‡ m nguyên vÓi m [ 10 ; 10] ∫ ph˜Ïng trình có úng nghiªm TÍng giá tr cỏc phản t ca S băng A 28 B 12 C D Câu 44 Trong không gian Oxyz, cho hai i∫m A(3; 2; 3); B(1; 0; 5) Tìm tÂa Ỵ i∫m M (Oxy) cho MA + MB Đt giỏ ! tr nh nhòt ! ! ! 9 9 ; ;0 ; ;0 ; ;0 ; ;0 A B C D 4 4 4 4 Câu 45 Cho hàm sË y = f (x) có §o hàm liên tˆc R tho£ mãn x f (x) = e x Z1 x f (x) dx băng 1, 8x R Giỏ tr‡ (e Câu 46 A (e B 2) 2) C (e 2) D (e 2) y Cho hàm sË y = f (x) = ax + bx + cx + d, có Á th‡ nh˜ hình v≥ SË ˜Ìng tiªm c™n x2 + x ˘ng cıa Á th‡ hàm sË y = f (x) f (x) A B C D 2 1 x Trang 5/6 Mã ∑ 444 Câu 47 Có hÂc sinh gÁm hÂc sinh tr˜Ìng A, hÂc sinh tr˜Ìng B hÂc sinh tr˜Ìng C s≠p x∏p mỴt hàng dÂc Xác st ∫ ˜Ịc cách cách s≠p x∏p mà hai hÂc sinh tr˜Ìng C mỴt em ngÁi gi˙a hai hÂc sinh tr˜Ìng A mỴt em ngÁi gi˙a hai hÂc sinh tr˜Ìng B 1 1 · · · · A B C D 180 90 30 45 Câu 48 A0 0 D0 Cho hình l´ng trˆ ABCD A B Cp D , có áy hình bình hành AC = p B0 = 90 Th∫ tích khËi t˘ [ BC = a, CD = a 2, AC = a 3, CA B0 diªn BCDA p 2a3 a3 · A B a3 C 6a D C0 A D B C Câu 49 SË giá tr‡ m ngun, m thc [ 20; 20] cho giá tr‡ nh‰ nhßt cıa hàm sË y = " # ; băng 16 l 10 A 40 B 10 C 20 D Câu 50 log0,3 xm + 16 log0,3 x + y Cho hàm sË b™c ba y = f (x) có Á th‡ nh˜ hình v≥ GÂi⇣ S t™p hỊp⌘ tßt c£ giá tr‡ nguyên cıa tham sË m ∫ hàm sË y = f (x 1)2 + m có im tr Tng cỏc phản t ca S l A B 10 C D x - - - - - - - - - - HòT- - - - - - - - - - Trang 6/6 Mã ∑ 444 ... SỞ GD - ĐT HÀ TĨNH TRƯỜNG THPT NT MINH KHAI ĐỀ THI THỬ TỐT NGHIỆP THPT NĂM 2021, LẦN MƠN TỐN (Đề có trang) Thời gian làm : 90 Phút; (Đề có 50 câu) Mã đề 001 Họ tên: Số báo danh:... - D D SỞ GDĐT NINH BÌNH ĐỀ THI THỬ KÌ THI TỐT NGHIỆP THPT NĂM 2021 MƠN TỐN (Đề thi gồm có 50 câu, 06 trang) Thời gian làm bài: 90 phút (không kể thời gian phát đề) Họ tên thí sinh: ... Trang 6/6 - Mã đề 001 SỞ GD & ĐT BẮC NINH TRƯỜNG THPT NGUYỄN ĐĂNG ĐẠO ĐỀ THI THỬ TN THPT LẦN NĂM HỌC 2020 - 2021 MƠN: TỐN Thời gian: 90 phút (Khơng kể thời gian phát đề) ( Đề thi gồm 05 trang)