Tìm cosin của góc giữa hai mặt phẳng SBC và SCD khi thể tích của khối chóp S.ABCD là lớn nhất.. Gọi E là chân đường phân giác trong góc A của tam giác ABD.[r]
(1)UBND TỈNH BẮC NINH SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI CHỌN HỌC SINH GIỎI CẤP TỈNH NĂM HỌC 2010 – 2011 MÔN THI: TOÁN – LỚP 12 – THPT Thời gian làm bài: 180 phút (Không kể thời gian giao đề) Ngày thi 22 tháng năm 2011 ================ Câu 1:(5 điểm) 1/ Cho hàm số y x 3x có đồ thị là (T) Giả sử A, B, C là ba điểm thẳng hàng trên (T), tiếp tuyến (T) các điểm A, B, C cắt (T) các điểm A’, B’, C’ (tương ứng khác A, B, C) Chứng minh A’, B’, C’ thẳng hàng 2/ Cho hàm số y x 2n 1 2011x 2012 (1) , chứng minh với số nguyên dương n đồ thị hàm số (1) luôn cắt trục hoành đúng điểm Câu 2:(5 điểm) 1/ Giải phương trình: log x log x log x log x log x log x x A 2/ Giải phương trình: 5x 1 x2 5x x 1 x A Câu 3:(3 điểm) Kí hiệu Ckn là tổ hợp chập k n phần tử 0 k n; k, n A , tính tổng sau: 2010 S C02010 2C12010 3C22010 2010C2009 2010 2011C 2010 Câu 4:(5 điểm) 1/ Cho hình chóp tứ giác S.ABCD, có đáy ABCD là hình bình hành, AD 4a a , các cạnh bên hình chóp và a Tìm cosin góc hai mặt phẳng (SBC) và (SCD) thể tích khối chóp S.ABCD là lớn A A 2/ Cho tứ diện ABCD có BAC 600 , CAD 1200 Gọi E là chân đường phân giác góc A tam giác ABD Chứng minh tam giác ACE vuông Câu 5:(2 điểm) Cho hai số thực x, y thỏa mãn: x y Chứng minh rằng: cos x cos y cos xy …………………… HẾT…………………… (Đề thi gồm có 01 trang) Lop10.com (2)