Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 13 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
13
Dung lượng
270 KB
Nội dung
Trờng THCS Văn trị - Thạch Hà - Hà Tĩnh A. Những vấn đề chung I. Đặt vấn đề: Vấn đề đổi mới phơng pháp giáo dục đào tạo theo định hớng lấy học sinh làm trung tâm đã đợc những ngời làm công tác giáo dục ở nớc ta đặt ra từ lâu. Thực hiện đợc điều này cho phép ngành giáo dục đào tạo nên thế hệ những con ngời có khả năng t duy sáng tạo và có khả năng thích ứng cao với sự phát triển đang diễn ra từng ngày. Thực hiện đợc điều này cũng có nghĩa là chúng ta đã giải quyết đợc vấn đề quan trọng hàng đầu trong giai đoạn CNH - HĐH đất nớc, đó là yếu tố con ngời. Trong quá trình giảng dạy, bồi dỡng việc khai thácbàitoán rất quan trọng, nó không chỉ cho học sinh nắm bắt kĩ kiến thức của một dạng toán mà cơ bản hơn nó nâng cao tính khái quát hoá, đặc biệt hoá mộtbàitoán để từ đó phát triển t duy, nâng cao tính sáng tạo cho các em học sinh. Hơn nữa, việc liên kết các bàitoán khác nhau, tìm mối liên hệ chung giữa chúng sẽ giúp cho học sinh có hứng thú khoa học hơn khi học toán. Một trong những điều kiện có thể phát triển t duy tích cực - độc lập - sáng tạo của học sinh là phát hiện và giải quyết vấn đề mới từ vấn đề quen thuộc. Trớc yêu cầu đó, tôi xin trình bày đề tài Khaitháctừmộtbàitoán nhằm phát triển t duy tích cực - độc lập - sáng tạo của học sinh khá giỏi ở khối lớp 8 và khối lớp 9. II. Cơ sở lí luận và thực tiễn: 1. Cơ sở lí luận: - Đặc điểm của lứa tuổi THCS là muốn vơn lên làm ngời lớn, muốn tự mình khám phá, tìm hiểu trong quá trình nhận thức. Các em có khả năng điều chỉnh hoạt đọng học tập, sẵn sàng tham gia các hoạt động học tập khác nhau nhng cần phải có sự hờng dẫn, điều hành một cách khoa học và nghệ thuật của thầy cô giáo. Hình thành và phát triển t duy tích cực, độc lập sáng tạo cho học sinh là một quá trình lâu dài. - T duy tích cực, độc lập sáng tạo của học sinh đợc thể hiện một số mặt sau: + Biết tìm ra phơng pháp nghiên cứu giải quyết vấn đề, khắc phục các t tởng rập khuôn, máy móc. + Có kĩ năng phát hiện những kiến thức liên quan với nhau, nhìn nhận một vấn đề ở nhiều khía cạnh. + Phải có óc hoài nghi, luôn đặt ra các câu hỏi tại sao? Do đâu? Nh thế nào? Liệu có trờng hợp nào nữa không? Các trờng hợp khác thì kết luận trên có đúng nữa không? + Tính độc lập còn thể hiện ở chổ biết nhìn nhận vấn đề và giải quyết vấn đề. Nguyễn văn tởng Trang 1 Trờng THCS Văn trị - Thạch Hà - Hà Tĩnh + Có khả năng khaithácmột vấn đề mới từ những vấn đề đã biết. 2. Cơ sở thực tiễn: Qua nhiều năm giảng dạy, tôi thấy: - Học sinh yếu toán là do kiến thức còn hổng, lại lời học, lời suy nghĩ, lời t duy trong quá trình học tập. - Học sinh còn học vẹt, làm việc rập khuôn, máy móc để từ đó làm mất đi tính tích cực, độc lập, sáng tạo của bản thân. - Học không đi đôi với hành làm cho các em ít đợc cũng cố, khắc sâu kiến thức, rèn luyện kĩ năng để làm nền tảng tiếp thu kiến thức mới, do đó năng lực cá nhân không đợc phát huy hết. - Không ít học sinh thực sự chăm học nhng cha có phơng pháp học tập phù hợp, cha tích cực chủ động chiếm lĩnh kiến thức nên hiệu quả học tập cha cao. - Nhiều học sinh hài lòng với lời giải của mình, mà không tìm lời giải khác, không khaithác phát triển bài toán, sáng tạo bàitoán nên không phát huy hết tính tích cực, độc lập, sáng tạo của bản thân. - Một số giáo viên cha thực sự quan tâm đến việc khai thác, phát triển, sáng tạo bàitoán trong các các giờ luyện tập, tự chọn . - Việc chuyên sâu một vấn đề nào đó, liên hệ đợc các bàitoán với nhau, phát triển mộtbàitoán sẽ giúp cho học sinh khắc sâu đợc kiến thức, quan trọng hơn là nâng cao đợc t duy cho các em làm cho các em có hứng thú hơn khi học toán. Trớc thực trạng trên đòi hỏi phải có các giải pháp trong phơng pháp dạy và học sao cho phù hợp. III. Giải pháp thực hiện: Qua những bàitoán mà học sinh đã giải đợc, tôi định hớng cho học sinh t duy theo các ph- ơng pháp nh: Tơng tự, so sánh, đặc biệt hoá, khái quát hoá để phát triển thêm những vấn đề mới, bàitoán mới. Trong phần này tôi xin đợc phép phát triển từmộtbàitoán quen thuộc để xây dựng một số bàitoán khác có liên quan. Nhằm làm cho học sinh thấy đợc tầm quan trọng trong việc thay đổi các giả thiết, tơng tự hoá bài toán, liên hệ giữa bàitoán này với bàitoán khác có liên quan. Nguyễn văn tởng Trang 2 Trờng THCS Văn trị - Thạch Hà - Hà Tĩnh B. Nội dung. Bàitoán mở đầu: Cho tam giác ABC, về phía ngoài tam giác, dựng các tam giác đều ABF; ACD. Chứng minh rằng CF = BD. Bài giải: Xét hai tam giác: DAB và CAF, có: DA = CA (gt) DAB = CAF (= BAC + 60 0 ) AB = AF (gt) DAB = CAF (c.g.c) CF = BD (đpcm) B C A F D Bây giờ ta vẽ thêm tam giác đều BCE ở phía ngoài của tam giác ABC thì liệu AE; BD; CF có đồng quy không? Và ta có bàitoán thứ hai: Bàitoán 2: Cho tam giác ABC, về phía ngoài tam giác, dựng các tam giác đều ABF; ACD; BCE. Chứng minh rằng AE; BD; CF đồng quy. Bài giải: Gọi O là giao điểm của BD và CF. Ta cần chứng minh A; O; E thẳng hàng. Ta có DAB = CAF (bài toán 1) B 1 = F 1 AOBF nội tiếp O 1 = B 2 = 60 0 O 2 = A 1 = 60 0 AOB = 120 0 (1) Tơng tự: AOC = 120 0 BOC = 120 0 Mà BFC = 60 0 BOCE nội tiếp O 3 = C 1 = 60 0 (2) Từ (1) và (2) AOF = 180 0 A; O; E thẳng hàng Hay AE; BD; CF đồng quy. 1 2 1 1 1 1 2 3 B C A D E F O Nguyễn văn tởng Trang 3 Trờng THCS Văn trị - Thạch Hà - Hà Tĩnh Qua bài trên ta nhận thấy các góc AOB; BOC; COA có số đo là 120 0 . Từ đây ta xây dựng bàitoán dựng hình khá quen thuộc: Bàitoán 3: Dựng điểm O trong tam giác nhọn ABC sao cho AOB = AOC = BOC =120 0 . Bây giờ ta trở lại bàitoán mở đầu. Gọi O là giao điểm của CF và BD, trên cạnh BD ta lấy điểm P sao cho PD = OA. Xét hai tam giác: CPD và COA, có: PD = OA (ta vẽ) PDC = OAC (OADC nt) DC = AC (gt) CPD = COA (c.g.c) CP = OC (1) CPD = COA = 120 0 CPO = 60 0 (2) Từ (1) và (2) suy ra CPO đều OP = OC Vậy, ta có: OA + OB + OC = PD + OB + OP Hay OA + OB + OC = BD A C B D F O P Đây là một đẳng thức khá đẹp, nhng đẳng thức trên có ý nghĩa gì không? Ta xét bàitoán khác. Bàitoán 4: Xác định điểm O trong tam giác nhọn ABC sao cho tổng khoảng cách từ O tới ba đỉnh của tam giác là nhỏ nhất. Bài giải: Dựng tam giác đều OCQ ở phía ngoài tam giác OBC, dựng tam giác đều ACD ở phía ngoài tam giác ABC. Xét hai tam giác: CQD và COA, có: CQ = CO QCD = OCA (=60 0 - QCA) DC = AC (gt) CQD = COA (c.g.c) OA = QD Vậy, ta có: OA + OB + OC = BO + OQ + QD BO + OD BD = xảy ra khi + O, Q, D thẳng hàng Mà CQO = 60 0 CQD = 120 0 COA = 120 0 (1) B C A F D O Q Nguyễn văn tởng Trang 4 Trờng THCS Văn trị - Thạch Hà - Hà Tĩnh + B, O, Q thẳng hàng Mà COQ = 60 0 COB = 120 0 (2) Từ (1) và (2) suy ra O là điểm nhìn ba cạnh của tam giác dới một góc bằng 120 0 Nh vậy ta thấy điểm O vừa là giao điểm của ba đờng thẳng ở bàitoán 2, vừa nhìn các cạnh của tam giác dới một góc bằng 120 0 , vừa có tổng khoảng cách tới các đỉnh nhỏ nhất. Trở lại bàitoán mở đầu. Ta thấy giả thiết có thừa khi chỉ cần chứng minh BD = CF, thực tế chỉ cần giả thiết AF = AB; AD = AC; BAF = CAD là đủ, mặt khác cần xem thử các tam giác ABF và ACD thỏa mãn điều kiện gì để BD CF. Chúng ta tiếp tục nghiên cứu bàitoán 5. Bàitoán 5: Cho tam giác ABC, về phía ngoài tam giác, dựng các tam giác ABF; ACD vuông cân tại A. Chứng minh rằng CF = BD; CF BD. H ớng dẫn giải: + CF = BD (tơng tự nh bàitoán 1) + CF BD: Do Tứ giác AOBF nội tiếp BOF = BAF = 90 0 B C A D F O Tiếp tục bàitoán trên. Gọi M; N; I lần lợt là trung điểm của BF; CD; BC, ta có: IM là đờng TB của tam giác BCF nên: IM // = 2 1 CF (1) Tơng tự ta có: IN // = 2 1 BD (2) Mà: CF = BD (3) Từ (1); (2) và (3) suy ra: IM IN IM = IN Hay MIN vuông cân tại I B C A D F O N M I Nguyễn văn tởng Trang 5 Trờng THCS Văn trị - Thạch Hà - Hà Tĩnh Nhận xét rằng AMB và ANC vuông cân tại M và N. Từ đây ta có bàitoán tiếp. Bàitoán 6: Cho tam giác ABC, về phía ngoài tam giác, dựng các tam giác ABM vuông cân tại M; ACN vuông cân tại N. Gọi I là trung điểm của BC. MIN là tam giác gì? Nếu học sinh lần đầu gặp bàitoán này mà cha gặp dạng thì hơi khó giải đối với các em. B C A N M I Bàitoán trên có thể diển đạt cách khác làm cho học sinh dễ chứng minh hơn bằng cách thay các tam giác vuông cân ABM, CAN bằng các hình vuông ABDE và ACHF thì ta đợc bàitoán đơn giản hơn. Ta có bàitoán 7. Bàitoán 7: Cho tam giác ABC, dựng về phía ngoài tam giác các hình vuông ABDE và ACHF. a.Chứng minh rằng: BF = CE và BF CE b.Gọi I, J lần lợt là tâm của hai hình vuông đó. M là trung điểm của BC. Chứng minh rằng MIJ là tam giác vuông cân. B C A H F E D I J M Bàitoán 7 không chỉ đơn giản hơn cho học sinh ở chỗ có câu a là bàitoán phụ để chứng minh câu b. mà có thể phát triển sang bàitoán khác tơng tự và tổng quát hơn. Nếu gọi N là trung điểm của EF thì ta cũng có NJ là đờng trung bình của ECF, và ta cũng dễ dàng suy ra đợc tứ giác IMJN là hình vuông, từ đây ta có bàitoán 8 Nguyễn văn tởng Trang 6 Trờng THCS Văn trị - Thạch Hà - Hà Tĩnh Bàitoán 8: Cho tam giác ABC, dựng về phía ngoài tam giác các hình vuông ABDE và ACHF. Gọi I, J lần lợt là tâm của hai hình vuông đó. M, N là trung điểm của BC và EF. Chứng minh rằng tứ giác IMJN là hình vuông. B C A H F E D I J M N ở bàitoán trên, ta có thể chứng minh đợc đờng trung tuyến AN của tam giác AEF cũng là đ- ờng cao của tam giác ABC và đờng trung tuyến AM của tam giác ABC cũng là đờng cao của tam giác AEF. Ta có bàitoán 9. Bàitoán 9: Cho tam giác ABC, dựng về phía ngoài tam giác các hình vuông ABDE và ACHF. Chứng minh rằng đờng trung tuyến AN của tam giác AEF cũng là đ- ờng cao AP của tam giác ABC và đờng trung tuyến AM của tam giác ABC cũng là đờng cao của tam giác AEF. B C A H F E D M Q P N Bài giải: Nguyễn văn tởng Trang 7 Trờng THCS Văn trị - Thạch Hà - Hà Tĩnh Trớc hết ta chứng minh AN BC. Dựng hình bình hành AEQF, suy ra Q, N, A thẳng hàng. Xét hai tam giác: ABC và FQA, có: AB = FQ (= AE) BAC = QFA (cùng bù với EAF) ABC = FQA (c.g.c) FA = AC (gt) ACB = FAQ Mà FAQ + CAP = 90 0 CAP + ACP = 90 0 CPA = 90 0 . Hay AN BC. Hoàn toàn tơng tự, ta dựng hình bình hành ABGC thì ta cũng chứng minh đợc AM EF. ở bàitoán trên ta nhận thấy QA BC. Liệu QC có vuông góc với BH không? Từ đây ta có bàitoán 10. Bàitoán 10: Cho tam giác ABC, dựng về phía ngoài tam giác các hình vuông ABDE và ACHF, vẽ hình bình hành AEQF, Chứng minh rằng: BH = QC và BH QC Bài giải: Gọi O là giao điểm của BH và QC. Theo BT 9, ta có: ABC = FQA, nên: BC = QA Và ACB = FAQ BCH = QAC. Xét hai tam giác: BCH và QAC, có: BC = QA BCH = QAC CH = AC (gt) BCH = QAC (c.g.c) BH = QC (1) Và CBH = AQC Mà AQC + QCP = 90 0 CBH + QCP = 90 0 Hay BOC = 90 0 Hay BH QC (2) Từ (1) và (2) suy ra đpcm. A C B P M D E F H Q N O Nguyễn văn tởng Trang 8 Trờng THCS Văn trị - Thạch Hà - Hà Tĩnh Tơng tự nh trên ta cũng có CD QB. Ta nhận thấy QP, BH, CD là ba đờng cao của tam giác QBC. Và từ dây ta xây dựng đợc bàitoán mới đợc phát biểu ở dạng khác. Bàitoán 11: Cho tam giác ABC, dựng về phía ngoài tam giác các hình vuông ABDE và ACHF, vẽ hình bình hành AEQF, Chứng minh rằng QP, BH và CD đồng quy. (ta thấy QP, BH và CD là ba đ- ờng cao của tam giác QBC, nên chúng đồng quy) B C A P H F E D Q Tiếp tục bàitoán 9, ta có đờng trung tuyến AM của tam giác ABC cũng là đờng cao của tam giác AEF. Từ đây ta khai triển đợc bàitoán mới tổng quát hơn. Bàitoán 12: Cho tam giác ABC, về phía ngoài tam giác dựng các hình vuông ABEF; ACMN; BCPQ. Chứng minh các đờng cao của các tam giác AFN; CMP; BQE xuất phát từ A, B, C đồng quy. (Ta nhận thấy đó là ba đờng trung tuyến của tam giác ABC nên chúng đồng quy) B A C M P Q E F N V H J K I Nguyễn văn tởng Trang 9 Trờng THCS Văn trị - Thạch Hà - Hà Tĩnh Trở lại bàitoán mở đầu. Gọi M; N; I lần lợt là trung điểm của AF; AD; BC. Thì tam giác MNI có gì đặc biệt không? Bàitoán 13: Cho tam giác ABC, về phía ngoài tam giác, dựng các tam giác đều ABF; ACD. Gọi M; N; I lần lợt là trung điểm của AF; AD; BC. Chứng minh rằng tam giác MNI đều. Bài giải: Gọi T là trung điểm của AC. Xét hai tam giác: AMN và TIN, có: AM = TI (=1/2 AB) MAN = ITN (=240 0 - BAC) AN = NT (=1/2 AD) AMN = TIN (c.g.c) MN = IN (1) MNA = INT MNI = 60 0 (2) Từ (1) và (2) suy ra MNI đều. B C A F D I T N M Tiếp tục bàitoán trên, ta dựng hình bình hành AFPD, thì ta cũng có tam giác PBC đều. Bàitoán 14: Cho tam giác ABC, về phía ngoài tam giác, dựng các tam giác đều ABF; ACD, dựng hình bình hành AFPD. Tam giác PBC là tam giác gì? Bài giải: Xét hai tam giác: ABC và DPC, có: AB = DP (= AF) BAC = PDC (= PDA + 60 0 ) AC = DC (gt) ABC = DPC (c.g.c) BC = PC (1) Chứng minh tơng tự ta có: ABC = FBP (c.g.c) BC = BP (2) Từ (1) và (2) suy ra PBC đều. B C A F D P Trở lại bàitoán 6, ta thấy tam giác MIN là tam giác đều, hơn nữa I là trung điểm của BC nên khi ta vẽ thêm điểm D đối xứng với A qua I thì ta đợc hình bình hành ABDC và cũng dựng về phía ngoài hình bình hành này các tam giác vuông cân thì ta có bàitoán mới phức tạp hơn. Nguyễn văn tởng Trang 10 [...]... dạy môn Toán học đều đánh giá cao tầm quan trọng việc phát triển từmộtbàitoán mà học sinh đã giải đợc, khaithác các bàitoán khác, phức tạp hơn nhằm nâng cao t duy cho học sinh 2 Trong quá trình giảng dạy, bồi dỡng việc khai thácbàitoán rất quan trọng, nó không chỉ cho học sinh nắm bắt kĩ kiến thức của một dạng toán mà cơ bản hơn nó nâng cao tính khái quát hoá, đặc biệt hoá mộtbàitoán để từ... cao tính sáng tạo cho các em học sinh Hơn nữa, việc liên kết các bàitoán khác nhau, tìm mối liên hệ chung giữa chúng sẽ giúp cho học sinh có hứng thú khoa học hơn khi học toán Trên đây là các bàitoán có liên hệ từmộtbàitoán mở đầu, tôi xin mạnh dạn đa ra Tuy đã cố gắng song không tránh khỏi những sai sót, rất mong đợc sự góp ý của hội đồng khoa học để bớt đợc sai sót xảy ra và có thể khai thác... bàitoán trên, Nếu tứ giác ABCD không phải là hình bình hành mà là mộttứ giác thờng thì liệu tứ giác SGHR có tính chất gì không? Ta có bàitoán 17 Bàitoán 17: Cho hình tứ giác ABCD, về phía ngoài tứ giác, dựng các hình vuông ABMN, ADEF, DCGH, BCPQ, Gọi V, S, J, K lần lợt là tâm của các hình vuông trên Chứng minh rằng KS = VJ và KS VJ Bài giải: M Gọi I là trung điểm của AC, theo N Q bàitoán 7 ta...Trờng THCS Văn trị - Thạch Hà - Hà Tĩnh Bàitoán 15: Cho hình bình hành ABCD, về phía ngoài hình bình hành, dựng các tam giác ABM vuông cân tại M; ACN vuông cân tại N; BDP vuông cân tại P; CDQ vuông cân tại Q Chứng minh rằng tứ giác NMPQ là hình vuông N A M C B I Q D P Bàitoán trên có thể phát biểu theo dạng khác, ta có bài tập 16 Bàitoán 16: Cho hình bình hành ABDC, về phía ngoài hình bình... mộtbàitoán mở đầu, tôi xin mạnh dạn đa ra Tuy đã cố gắng song không tránh khỏi những sai sót, rất mong đợc sự góp ý của hội đồng khoa học để bớt đợc sai sót xảy ra và có thể khaithác đợc nhiều bàitoán hơn nữa Tôi xin trân trọng cảm ơn Nguyễn văn tởng Trang 13 . không tìm lời giải khác, không khai thác phát triển bài toán, sáng tạo bài toán nên không phát huy hết tính tích cực, độc lập, sáng tạo của bản thân. - Một. bài toán 9, ta có đờng trung tuyến AM của tam giác ABC cũng là đờng cao của tam giác AEF. Từ đây ta khai triển đợc bài toán mới tổng quát hơn. Bài toán 12: