1. Trang chủ
  2. » Trung học cơ sở - phổ thông

TOÁN 6789 – GIỮA HK2 THCS LƯƠNG THẾ VINH

20 16 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 879,23 KB

Nội dung

TRẮC NGHIỆM (2 điểm) Ghi lại chữ cái đứng trước đáp án đúng vào bài làm Câu 1. b) Tính điểm kiểm tra trung bình môn Toán của lớp 7A5. Cán bộ coi thi không giải thích gì thêm)... TRẮC N[r]

(1)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

TRƯỜNG THCS & THPT LƯƠNG THẾ VINH CƠ SỞ A

ĐỀ KIỂM TRA GIỮA HỌC KỲ II NĂM HỌC 2020 - 2021

MƠN: TỐN

Thời gian làm 90 phút

A TRẮC NGHIỆM (2 điểm)

Hãy chọn ghi lại chữ đứng trước câu trả lời vào làm Câu 1: Kết phép tính (−12)+2.( ) ( ) ( )− + −5 −4 :

A −14 B.14 C. −10 D 10

Câu 2: Nếu 45

3 15

x

=

− giá trị x là:

A 9 B.15 C. D −9

Câu 3: Một mảnh vườn hình chữ nhật có chiều rộng 15

2 m, diện tích

2

90m Chu vi mảnh vườn là:

A 37 B. 38 C. 39 D 30

Câu 4: Biết

30

xOy= , xOz=800,

110

yOz= Tia nằm hai tia lại là:

A Tia Ox B Tia Oy C TiaOz D Cả A B

B TỰ LUẬN (8 ĐIỂM)

Bài 1: (2 điểm)Thực phép tính a) 25

5 −

+ b)

7 14 12 14 −

+ − + +

c) 11: 18 13 11 13 26

− −

+ + d) 6 6

1.4+4.7+7.10+ +46.49

Bài 2: (1,5 điểm)Tìm x, biết:

a) 13

5 10 10

x+ = − b)

2

5

2

2 12 12

x

 +  − =  

  c)

2 11

4

x− −x

=

Bài 3: (1,5 điểm) Buổi sáng, Duy từ nhà đến trường với vận tốc km/h phút Buổi trưa, lúc

tan học mệt đói nên Duy từ trường nhà 12 phút Hỏi lúc Duy với vận tốc ? (biết quãng đường không đổi)

Bài 4: (2,5 điểm) Trên nửa mặt phằng bờ chứa tia OA, vẽ hai tia OB, OC cho

60 = 

AOB ,

110

= 

AOC

a) Tính số đo góc BOC

b) Tia OB có tia phân giác góc AOC khơng? Vi sao?

c) Vẽ OD tia đối tia OB; OE tia phân giác góc BOC Tính số đo góc DOE

Bài 5 (0,5 điểm)Cho 1

4 20

A= + + + + Chứng minh 27

20

A

(2)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

HƯỚNG DẪN A TRẮC NGHIỆM (3 điểm)

Hãy chọn ghi lại chữ đứng trước câu trả lời vào làm Câu 1: Kết phép tính (−12)+2.( ) ( ) ( )− + −5 −4 :

A −14 B.14 C. −10 D 10

Hướng dẫn

Chọn C

Ta có: (−12)+2.( ) ( ) ( )− + −5 −4 = −( 12) (+ −10)+12= −( 22)+12= −10

Câu 2: Nếu 45

3 15

x

=

− giá trị x là:

A 9 B.15 C. D −9

Hướng dẫn

Chọn A

Ta có: 45

3 15

x =−

( ) ( ) ( )

( )

3 45 45

15

x − − −

 = = =

Câu 3: Một mảnh vườn hình chữ nhật có chiều rộng 15

2 m, diện tích

2

90m Chu vi mảnh vườn là:

A 37 B. 38 C. 39 D 30

Hướng dẫn

Chọn C

Ta có: SHCN =dài rộng nên chiều dài khu vườn là: ( )

15

90 : 90 12 = 15= m

Khi đó: Chu vi mảnh vườn là: 15 12 39.2 39( )

2 m

 +  = =

 

 

Câu 4: Biết

30

xOy= , xOz=800,

110

yOz= Tia nằm hai tia lại là:

A Tia Ox B Tia Oy C TiaOz D Cả A B

Hướng dẫn

Chọn A

Ta có: 0

30 80 110

xOy+xOz= + = =yOz

Nên tia Ox nằm hai tia Oy Oz

B TỰ LUẬN (8 ĐIỂM)

Bài (2 điểm)Thực phép tính a) 25

5 −

+ b)

7 14 12 14

− + − + +

c) 11: 18 13 11 13 26

− +− +

d) 6 6

1.4+4.7+7.10+ +46.49 Hướng dẫn

a) 25 5

− +

( )

3 25

5 5.9 − = +

2

(3)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

6 25 15 15

= +

19 15 − =

b)

7 14 12 14

− + − + +

5

14 14 7 12

   

= +  + − +

   

14 14

= + +

( )

1

4 = + − +

1

4 = +

1 =

c) 11: 18 13 11 13 26

− −

+ +

4 14

13 11 13 11 13

− −

= + +

4 14

13 11 11 13

−  

=  + +

 

4 11 14

13 11 13 −

= +

4 14 13 13 −

= +

4 14 13 13 −

= +

10 13 =

d) 6 6

1.4+4.7+7.10+ +46.49

3 3

2

1.4 4.7 7.10 46.49

 

=  + + + + 

 

1 1 1 1

2

4 7 10 46 49

 

=  − + − + − + + − 

 

1

49

 

=  − 

 

48

49 =

96 49 =

Bài (1,5 điểm) Tìm x, biết:

a) 13

5 10 10

x+ = − b)

2

5

2

2 12 12

x

 +  − =  

  c)

2 11

4

x− −x

(4)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

a) 13

5 10 10

x+ = −

5

x+ =

5

x= −

5

x= −

b)

2

5

2

2 12 12

x

 +  − =

 

 

2

5

2

2 12 12

x

 +  = +  

 

2

5

2

x

 +  =

 

 

TH1:

2

x+ = x= −2

TH1:

2

x+ = −

x= −3

c) 11

4

x− = −x

2 11

8

x− −x

=

2x− = −4 11 x

x=5

Bài 3: (1,5 điểm) Buổi sáng, Duy từ nhà đến trường với vận tốc km/h phút Buổi trưa, lúc tan học mệt đói nên Duy từ trường nhà 12 phút Hỏi lúc Duy với vận tốc ? (biết quãng đường không đổi)

Hướng dẫn

Đổi phút

60 20

= = (h); 12 phút 12

60

= = (h)

Quãng đường Duy từ nhà đến trường là:

3

20

= = =

S v t (km)

Vì quãng đường không đổi nên quãng đường quãng đường

5 (km) Vậy

vận tốc lúc Duy là:

6

: :

5 5

= = = =

v S t (km/h)

Vậy lúc Duy với vận tốc km/h

Bài 4: (2,5 điểm) Trên nửa mặt phằng bờ chứa tia OA, vẽ hai tia OB, OC cho

60 = 

AOB ,

110

= 

AOC

a) Tính số đo góc BOC

b) Tia OB có tia phân giác góc AOC không? Vi sao?

c) Vẽ OD tia đối tia OB; OE tia phân giác góc BOC Tính số đo góc DOE

(5)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

a) Trên nửa mặt phằng bờ chứa tia OA, AOBAOC (60 110 ) nên tia OB nằm hai tia OA OC

Suy ra: AOB+BOC= AOC

110 60 50

= − =  −  = 

BOC AOC AOB

b) Vì AOBBOC nên tia OB khơng phải tia phân giác góc AOC

c) Vì OE tia phân giác góc BOC nên 50 25

2

 = BOC = =  BOE

OD tia đối tia OB nên BOD=180

Trên nửa mặt phẳng có bờ chứa tia OB, BOEBOD (25 180 ) nên tia OE nằm hai tia OB OD

Suy ra: BOE+DOE=BOD

180 25 155 DOE=BODBOE=  −  = 

Bài 5 (0,5 điểm)Cho 1

4 20

A= + + + + Chứng minh 27

20

A

Hướng dẫn

1 1 1 1

4 10 11 12 20

A= + + + +   + + + + 

   

Ta có :

1

5 10

1

1 1 12

6 10

5 10 10 10 20

1

10 10

    

   + + + 

= = 

   =



Tương tự, ta có :

1 1 10

10

11 12+ + +20 20 =20

Vậy, 1 1 1 12 10

4 10 11 12 20 20 20

A= + + + +   + + + +  + +

   

12 10

20 20 20

A + +

27 20

A

E

D C

B

(6)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

TRƯỜNG THCS & THPT LƯƠNG THẾ VINH CƠ SỞ A

ĐỀ KIỂM TRA GIỮA HỌC KỲ II NĂM HỌC 2020 - 2021

MƠN: TỐN

Thời gian làm 90 phút

A TRẮC NGHIỆM (2 điểm) Ghi lại chữ đứng trước đáp án vào làm Câu 1. Đơn thức −3x y xy2 sau thu gọn kết là:

A. −18x y3 B. −18x y3 C. −18x y4 D. −18x y2

Câu 2. Đa thức: 15x y3 4−5xy6+xy3+2 có bậc là:

A. B. C. D.

Câu 3. Cho ABC vng A có: AB=6 cm,AC=8 cm độ dài cạnh BC :

A.10 cm B.14 cm C. cm D.12 cm

Câu 4. Cho tam giác cân có độ dài hai cạnh 3,9 7,9 tổng độ dài ba cạnh tam giác là:

A 15,7 B. 11,8 C. 19,7 D. 15,6

B TỰ LUẬN (8 ĐIỂM)

Bài 1.( 2,0 điểm) Điểm kiểm tra học kì I mơn toán lớp 7A5 ghi lại bảng đây:

Điểm số 10

40

N=

Tần số 12

a) Dấu hiệu gì? Tìm mốt dấu hiệu

b) Tính điểm kiểm tra trung bình mơn Tốn lớp 7A5

Bài 2.( 2,0 điểm) Cho hai đa thức: 31 3 2

A= x yxy + x y +

3 2

2 31

4

B= xy + x yx yx − a) Tính A B+ A B

b) Tính giá trị cúa đa thức A B+ x=6

y= − c) Tìm ,x y để A B+ = −4

Bài 3.( 3,0 điểm) Cho tam giác ABC cân A Kẻ AHBC (HBC) a) Chứng minh AHB= AHC

b) Gọi M, N lần lượt trung điểm hai cạnh AB, AC Trên tia đối tia NM lấy điểm D sao cho

NM =ND Chứng minh AM =CD AB/ /CD

c) Chứng minh

2

MN = BC

d) Gọi I là giao điểm MC với DH K là trung điểm đoạn thẳng CD Chứng minh ba điểm B,

I, K thẳng hàng

Bài (0,5 điểm) Cho biểu thức M a b c d a b c a b d b c d a c d

= + + +

+ + + + + + + + với

*

, , ,

a b c d

Chứng minh M102021

-HẾT -

(Học sinh khơng sử dụng máy tính bỏ túi Cán coi thi khơng giải thích thêm)

(7)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

HƯỚNG DẪN

A TRẮC NGHIỆM (2 điểm) Ghi lại chữ đứng trước đáp án vào làm Câu 1. Đơn thức −3x y xy2 sau thu gọn kết là:

A. −18x y3 B. −18x y3 C. −18x y4 D. −18x y2

Hướng dẫn

Ta có: −3x y2 6xy3 = −18x y3

Câu 2. Đa thức: 15x y3 4−5xy6+xy3+2 có bậc là:

A. B. C. D.

Hướng dẫn

Đa thức có bậc

Câu 3. Cho ABC vng A có: AB=6 cm,AC=8 cm độ dài cạnh BC :

A.10 cm B.14 cm C. cm D.12 cm

Hướng dẫn

Theo pitago ta có: BC2 =AB2+AC2 BC2 =36 64 100+ = BC=10cm

Câu 4. Cho tam giác cân có độ dài hai cạnh 3,9 7,9 tổng độ dài ba cạnh tam giác là:

A 15,7 B. 11,8 C. 19,7 D. 15,6

Hướng dẫn

TH1: Tam giác cân có cạnh bên 7,9 cạnh đáy ta có độ dài cạnh tam giác là: 7,9 7,9 3,9 19, 7+ + =

TH2: Tam giác cân có cạnh bên 3,9 cạnh đáy 7,9 ta có độ dài cạnh tam giác là:

7,9 3,9 3,9 15, 7+ + = Nhưng TH bị loại 3,9

AC =AB= BD=3,95 không thỏa mãn định lý

PITAGO tam giác ABD vuông D

2 2 2

3, 3, 95

AB =BD +AD  = +AD

B TỰ LUẬN (8 ĐIỂM)

Bài 1.( 2,0 điểm) Điểm kiểm tra học kì I mơn tốn lớp 7A5 ghi lại bảng đây:

Điểm số 10

40

N=

Tần số 12

a) Dấu hiệu gì? Tìm mốt dấu hiệu

c) Tính điểm kiểm tra trung bình mơn Tốn lớp 7A5

Hướng dẫn

a) Dấu hiệu là: “Điểm kiểm tra học kì I mơn tốn lớp 7A5” Mốt dấu hiệu là:

b) Tính điểm kiểm tra trung bình mơn Toán

Điểm số 10

40

N =

Tần số 12

Các tích 25 48 84 64 45 20 Tổng: 286

Điểm kiểm tra trung bình mơn Tốn lớp 7A5 là: 286 7,15

40

X = = /

Bài 2.( 2,0 điểm) Cho hai đa thức: 31 3 2

A= x yxy + x y +

3 2

2 31

4

(8)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

b) Tính giá trị cúa đa thức A B+ x=6

y= − c) Tìm ,x y để A B+ = −4

Hướng dẫn

a) Tính A B+ A B− Ta có

( ) ( ) ( )

2 3 2 2

2 3 3 2 2

2 2

1

31 2 31

4

1

3

3

1 31

4

2

A B x y xy x y xy x y x y x

A B x y x y xy xy x y x y x

A B x y x

+ = − + + + + − − −

 

+ = + − + + + −

 

+ = −

+ −

( ) ( ) ( )

2 3 2 2

2 3 3 2 2

2 3 2

1

31 2

7

2 31

4

1

31 31 2

4

62

5

1

A B x y xy x y xy x y x y x

A B x y x y xy xy x y x y x

A B x y xy x y x

   

− = − + +  − + − − − 

   

 

− = + + − − + − + + +

− +

 

− = − +

b) Tính giá trị cúa đa thức A B+ x=6

y= −

Thay x=6

3

y= − vào A B+ ta có

2

2

5

6

3

−   −

  − = −

 

c) Tìm ,x y để A B+ = −4 Để A B+ = −4 x y2 2−x2− = −3

Suy x y2 2−x2 = −1

Hay x y2 1

Vì ,x yx2 0nên suy

2

2

1

1

0

1

x

x x

y y

y

Vậy x y; 1;0 , 1;0 A B+ = −4

Bài 3.( 3,0 điểm) Cho tam giác ABC cân A Kẻ AHBC (HBC) a) Chứng minh AHB= AHC

b) Gọi M, N lần lượt trung điểm hai cạnh AB, AC Trên tia đối tia NM lấy điểm D sao cho

NM =ND Chứng minh AM =CD AB/ /CD

c) Chứng minh

2

MN = BC

d) Gọi I là giao điểm MC với DH K là trung điểm đoạn thẳng CD Chứng minh ba điểm B,

I, K thẳng hàng

(9)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

a) Chứng minh AHB= AHC Xét AHBAHC

90

AHB=AHC=  (gt)

AB=AC (gt)

ABH =ACH (vì tam giác ABC cân A) Suy AHB= AHC (cạnh huyền – góc nhọn) b) Chứng minh AM=CD AB/ /CD

Xét ANMCND

AN=CN (gt)

NM =ND (gt)

ANM =CND (đối đỉnh)

 ANM = CND (c.g.c)

AM CD

 = (Hai cạnh tương ứng) AMN =CDN (Hai góc tương ứng)

AMN CDN so le AM / /CD nên AB/ /CD Vậy ta có AM=CD AB/ /CD

c) Chứng minh

2

MN = BC Xét MBCCDM

MC chung

MB=CD (cùng AM)

BMC=DCM (hai góc so le hai đường thẳng song song AB CD)

MBC CDM

  =  (c.g.c)

MD BC

 = (hai cạnh tương ứng)

2

MN = MD (vì D đối xứng với M qua N)

1

MN BC

 =

d) Gọi O là giao điểm MC BD Xét MOBCOD

MB=CD (cmt)

MBO=CDO (so le trong)

BMO=DCO (so le trong)

MOB COD

  =  (g.c.g)

OB OD

 = (Hai cạnh tương ứng) nên suy ran O là trung điểm BD

Ta có AHB= AHC nên HB=HC hay H là trung điểm BC CO

DH là hai đường trung tuyến tam giác BCD

I

 trọng tâm BCD

Mặt khác BK là đường trung tuyến (vì K là trung điểm CD)

(10)

Có cô

ng

mài

s

t

ngày

nên

ki

m.

 Ba điểm B, I, K thẳng hàng

Bài (0,5 điểm) Cho biểu thức M a b c d a b c a b d b c d a c d

= + + +

+ + + + + + + + với

*

, , ,

a b c d

Chứng minh 10

2021

M

Hướng dẫn

Ta chứng minh a a d

a b c a b c d

+ 

+ + + + + với

*

, , ,

a b c dN

Thật 2

0

a a d

a ab ac ad a ab ac ad bd cd bd cd a b c a b c d

+

  + + +  + + + + +   +

+ + + + +

luôn với *

, , ,

a b c dN

Tương tự b b c

a b d a b c d

+ 

+ + + + + ,

c c a

b c d a b c d

+ 

+ + + + + ,

d d b

a c d a b c d

+ 

+ + + + +

Do

a b c d a d b c c a d b

a b c a b d b c d a c d a b c d a b c d a b c d a b c d

+ + + +

+ + +  + + +

+ + + + + + + + + + + + + + + + + + + +

2( )

2

a b c d

M M

a b c d

+ + +

   

+ + + mà dễ dàng chứng minh M 1 suy

10 10 10 10

2 1024 2021

(11)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

TRƯỜNG THCS & THPT LƯƠNG THẾ VINH CƠ SỞ A

ĐỀ KIỂM TRA GIỮA HỌC KỲ II NĂM HỌC 2020 - 2021

MƠN: TỐN

Thời gian làm 90 phút

Bài (2 điểm) Giải phương trình sau: a) 3(x− +5) 2(x+7)= +x 11 b)

4 ( 2)

x − + x x+ = c)

3 18

x + x− =

d) 2 10

2

x x

x x x x

− + − − =

+ − − −

Bài (2 điểm)Giải tốn cách lập phương trình

Trong đợt dịch Covid tháng – 2021, siêu thị thu mua rau giúp nông dân tỉnh Hải Dương để bán cho người tiêu dùng Lúc đầu siêu thị dự định bán hết khối lượng rau vịng 18 ngày Nhưng thực tế, số lượng người đến mua rau nhiều dự định, ngày siêu thị bán vượt mức 120kg bán hết khối lượng rau sớm dự định ngày Tính khối lượng rau mà siêu thị thu mua

Bài (2,0 điểm): Cho phương trình ẩn x ( với m tham số)

2

4

m x+ m− =m +x ( )1

a)Giải phương trình với m=2

b)Tìm giá trị m để phương trình ( )1 có nghiệm

c)Tìm giá trị ngun mđể phương trình ( )1 có nghiệm số nguyên

Bài (3,5 điểm) Cho tam giác ABC có ba góc nhọn, đường cao BD CE cắt H.

a) Chứng minh ABD∽ACE

b) Chứng minh CH CE =CD CA

c) Kẻ EKAC K; DIEC I Chứng minhAH IK//

d) Chứng minh

4

EIK ABC

S  S

Bài (0,5 điểm) Cho hai số thực khác a b, thóa mãn: 21 21

1 1

a + +b + = +ab,

Tính giá trị biểu thức: 20211 20211

1

M

a b

= +

+ +

(12)

Có cô

ng

mài

s

t

ngày

nên

ki

m.

HƯỚNG DẪN Bài (2 điểm) Giải phương trình sau:

a) 3(x− +5) 2(x+7)= +x 11 b) x2− +4 (x x+2)=0 c) x2+3x−18=0

d) 2 10

2

x x

x x x x

− + − − =

+ − − −

Hướng dẫn

a) 3(x− +5) 2(x+7)= +x 11

3 15 14 11

4 12

3

x x x

x x

 − + + − − =  − =

 =

VậyS= 3

b) x2− +4 (x x+2)=0

( )( )

( )( )

( )( )

2 ( 2)

2

2

2

1

4

2

x x x x

x x x

x x

x x

x x

 − + + + =

 + − + =

 + − =

= −  + =

 

 

− = =

 

Vậy 2;1

2

S= −   

c) x2 +3x−18=0

( ) ( )

( )( )

2

3 18

3

3

3

6

x x x

x x x

x x

x x

x x

 − + − =

 − + − =

 − + =

− = =

 

 

+ = = −

 

VậyS= − 6;3

d) ĐKXĐ: x −2;x3

( )( )

( )( )

( )( ) (( )()( ) () )( ) (( )()( ))

( )

2

2 2

2

2 10

2

2

2 10

2

2 3 10

2 9 10 10 2 12

4 21 25

3

2

2 3 3

x x

x x x x

x x

x

x x x x

x x x x x x

x x

x x x

x x

x x x x x x x

x

x

− + − − =

+ − − −

− −

 − − =

+

− − − +

 − − =

 − + − + + −

− +

+ −

+ −

+ − + − +

− + =

 − + =

 − +

+ − −

+ =

(13)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

2

2

x x

x x

+ = =

 

 

+ = − = −

 

Đối chiếu điều kiện xác định: x= −7 VậyS= − 7

Bài (2 điểm)Giải toán cách lập phương trình

Trong đợt dịch Covid tháng – 2021, siêu thị thu mua rau giúp nông dân tỉnh Hải Dương để bán cho người tiêu dùng Lúc đầu siêu thị dự định bán hết khối lượng rau vịng 18 ngày Nhưng thực tế, số lượng người đến mua rau nhiều dự định, ngày siêu thị bán vượt mức 120kg bán hết khối lượng rau sớm dự định ngày Tính khối lượng rau mà siêu thị thu mua

Hướng dẫn

Gọi tổng số khối lượng rau siêu thị thu mua x (kg x, 120) Thời gian dự định bán hết khối lượng rau là: 18 ngày;

Mỗi ngày siêu thị dự định bán:

18

x

kg

Thực tế, siêu thị bán hết khối lượng rau sớm dự định ngày nên thời gian bán hết khối lượng rau là: 18 15− = ngày

Thực tế, ngày siêu thị bán được:

15

x

kg

Vì ngày siêu thị bán vượt mức 120kg so với dự định nên ta có phương trình:

6 10800

120 10800

15 18 90 90

x x x x

x

− =  =  = (thỏa mãn điều kiện)

Vậy khối lượng rau mà siêu thị thu mua 10800kg

Bài (2,0 điểm): Cho phương trình ẩn x ( với m tham số)

m x2 +4m− =3 m2+x ( )1

a)Giải phương trình với m=2

b)Tìm giá trị m để phương trình ( )1 có nghiệm

c)Tìm giá trị nguyên mđể phương trình ( )1 có nghiệm số nguyên

Hướng dẫn

a) Với m=2 phương trình ( )1 trở thành:

2 4.2 22 1

3

x+ − = + x x+ = + x x= −  =x

b) Ta có: ( ) ( )

1 x m − =1 m −4m+3

Do phương trình( )1 có nghiệm

1

m −    m c)Với m nguyên, m 1 nghiêm phương trình là:

( ) ( )

( ) ( ) ( )

2

1

4 3

1

1 1

m m

m m m

x

m m m m m

− −

− + −

= = = = −

− − + + +

Để x nguyên  4; 2; 1;1; 2; 4  5; 3; 2; 0;1;3

1 m m

m+    +  − − −   − − −

(14)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

m − − − 5; 3; 2;0;3

Bài (3,5 điểm) Cho tam giác ABC có ba góc nhọn, đường cao BD CE cắt H.

a) Chứng minh ABD∽ACE

b) Chứng minh CH CE =CD CA

c)Kẻ EKAC K; DIEC I Chứng minhAH/ /IK

d)Chứng minh

4

EIK ABC

S  S

Hướng dẫn

a) Chứng minh ABDACE

Có BD đường cao tam giác ABC

0

90

BD AC BDA BDC

 ⊥  = =

Có CE đường cao tam giác ABC

0

90

CE AB CEB CEA

 ⊥  = =

Xét tam giác ABD&ACE

0

90

BDA=CEA=

BACchung

( )

ABD ACE g g

  

b) Chứng minh CH CE =CD CA Xét tam giác CHD tam giác CHE có

0 ( )

90

ECA chung

CHD CAE g g CDH CEA

CH CD

CH CE CD CA CA CE

  

= = 

 =  =

c)Kẻ EKAC K; DIEC I Chứng minhAH/ /IK

c) Xét CIDCKE có: CID=CKE =900

ICD chung

CID CKE

   (g-g)

CI CD CK CE

 = (1)

CH CE =CD CA (cm b)

CD CH CE CA

 = (2)

I K

D E

H

B C

(15)

Có cơ ng mài s t ngày nên ki m.

Từ (1), (2) CI CH CI CK

CK CA CH CA

 =  =

Xét CAH có: CI CK

CH = CA (cmt)

IK AH

 ( ĐL Ta-lét đảo)

d) Có IK AH (cm c) KIE=AHE (đồng vị)

ABC =AHE (cùng phụ với EAH)

ABC KIE

 =

Xét EIKABC có:

KIE= ABC (cmt)

IEK =BAC (cùng phụ với AEK )

EIK ABC

   (g-g)

2 2

2 EIK

ABC

S EK EK

S AC AC

   =  =

 

Chứng minh: AEK∽ECK (g-g)

2

AK EK

EK AK CK EK CK

 =  =

( )2 2

2 2

4 4

EIK

ABC

AK CK

S AK CK AK CK AC

S AC AC AC AC

+

 = =  = =

Dấu “=” xảy AK=CK

Bài (0,5 điểm) Cho hai số thực khác a b, thóa mãn: 21 21

1 1

a + +b + = +ab,

Tính giá trị biểu thức: 20211 20211

1 M a b = + + + Hướng dẫn

Xét: 21 21 21 21

1 1 1

1 1

a + +b + = +aba + − +ab+b + − +ab =

( )

( )( ) ( )(( )) ( )( ) ( )( )

2 2 2

2 2

1

0

1 1 1

1

1 1

ab a ab b ab a ab b

a ab b ab a ab b ab

+ − + + − + − −

 + =  + =

+ + + + + + + +

( )

( )( ) ( ()( ) ) 2

1 1

1 1

a b a b a b a b b a

ab b a

a ab b ab

− − −    + =   − = + + + + + + +   ( ) ( )( ) ( )( )

2 2 2

2 2

1 1 1

ba ab

a b a b ba ab

ab b a ab b a

b a b a

    −   −    =  =     + + + + + − + +     + + − − ( ) ( ) ( )( ) ( ) ( )( )

2 2

1

0

1 1 1

ab a b a b

a b ab

ab b ab b a

b a a  −  − −   −  =  =   +  + + + + + − − 

TH1: a b a b(Loại) a b

TH2: ab a

b thay vào biểu thức: 2021 2021

1 1 M a b = + + + 2021 2021

2021 2021 2021 2021 2021

1 1

1

1 1

1

1

1

b b

M

b b b b

(16)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

TRƯỜNG THCS & THPT LƯƠNG THẾ VINH CƠ SỞ A

ĐỀ KIỂM TRA GIỮA HỌC KỲ II NĂM HỌC 2020 - 2021

MÔN: TOÁN

Thời gian làm 90 phút

Bài (2 điểm) Giải hệ phương trình sau:

a)

4 33

x y x y

− = − 

 + =

 ; b)

6

3 14

1

1 61

2

1

y x

y x

 − + = −  −

 + + =

 − 

Bài (2 điểm) Hai bạn An Tâm phân công chuẩn bị tài liệu cho buổi thuyết trình trước lớp ý

nghĩa “Giờ trái đất” Biết hai bạn làm sau 24 phút xong Nhưng làm chung Tâm có việc bận phải về, cịn An làm nốt 20 phút xong Hỏi bạn làm sau xong công việc?

Bài (2 điểm) Cho đường thẳng ( )d :y= − +2x 3;( )d' :y=(m−1)x+2m−1và parabol

( )

:

P y=x

a) Tìm tọa độ giao điểm ( )d ( )P

b) Tìm m biết đường thẳng ( )d' song song với đường thẳng ( )d Khi đó, giả sử ( )d' cắt

Ox A, cắt Oy B Tính diện tích tam giác OAB

c) Tìm m để ( )d' cắt ( )P điểm phân biệt D E, cho trung điểm I DE nằm Oy

Bài (3,5 điểm) Cho đường tròn (O R; ) điểm A nằm ngồi đường trịn Kẻ tiếp tuyến AB với ( )O

(B tiếp điểm); đường thẳng d qua A cắt ( )O C, D (C nằm A D) Gọi I trung điểm CD

a) Chứng minh điểm A, B, I O nằm đường tròn b) Chứng minh: AC AD = AB2

c) Qua B kẻ đường thẳng vng góc với OA, đường thẳng cắt (O R; ) E Chứng minh

AE tiếp tuyến (O R; )

2

BEA= BIE

d) Khi đường thẳng d thay đổi cho BDE có ba góc nhọn, gọi H trực tâm BDE Tính OA theo R để H chạy đường trịn ngoại tiếp ABE

Bài (0,5 điểm) Giải phương trình: 2x4−3x2+ +1 2x4−x2 =4x−3

(17)

Có cơ ng mài s t ngày nên ki m. HƯỚNG DẪN Bài (2 điểm) Giải hệ phương trình sau:

a)

4 33

x y x y

− = − 

 + =

 ; b)

6

3 14

1

1 61

2

1 y x y x  − + = −  −   + + =  −  Hướng dẫn

a) Ta có:

4 33

x y x y − = −   + = 

4 2

4 33

x y x y − = −    + =  35 x y y − = −    =  x y y − = −    = 

2

5 x y − = −    =  x y =    = 

Vậy hệ phương trình cho có nghiệm (2; )

b)

3 14

1

1 61

2

1 y x y x  − + = −  −   + + =  − 

+) Điều kiện:

2

x y −    +   x y       − 

+) Ta có:

3 14

1

1 61

2

1 y x y x  − + = −  −   + + =  − 

3 14

1

12 61

1 y x y x  − + = −  −    + + =  − 

3 14

15 75

y x y  − + = −  −    + = 

3 14

1

2

y x y  − + = −  −    + =  3.5 14

2

x y  − = −  −    + =  1

2

x y  =  −    + = 

2 25

x y − =    + =  x y =    =  (tmđk)

Vậy hệ phương trình cho có nghiệm (7; )

Bài (2 điểm) Hai bạn An Tâm phân công chuẩn bị tài liệu cho buổi thuyết trình trước lớp ý

nghĩa “Giờ trái đất” Biết hai bạn làm sau 24 phút xong Nhưng làm chung Tâm có việc bận phải về, cịn An làm nốt 20 phút xong Hỏi bạn làm sau xong công việc?

Hướng dẫn

2 24 phút = 2,4 giờ; 20 phút =

Gọi thời gian bạn An làm hồn thành cơng việc x (giờ, x2, 4) Thời gian bạn Tâm làm hồn thành cơng việc là y (giờ, y2, 4) bạn An làm

x cơng việc

1 bạn Tâm làm

y công việc

1 bạn làm 1

(18)

Có cô

ng

mài

s

t

ngày

nên

ki

m.

2 20 phút bạn An làm

3x công việc

Theo ta có hệ phương trình:

1

2,

1

1

x y

x y x

  

+ =

  

  

 

 + + =

 

  

Đặt a;1 b

x= y = (*)

Ta có:

1 1

2, 2, 4( ) 1

12 12 12 12 4

7

1

10 3 40 12 12

1

1

1

6

a b a

x y a b a b

a b a b

a b a

b

x y x

   

+ =

    + =  + =  + =  =

      

  + + =  + =  + = 

   

 + + =   =

  

  

Thay vào (*) ta :

1

4(tmdk)

1 6(tmdk)

6

x x

y y

 =

  =

 

  =

  =



Vậy làm bạn An hồn thành cơng việc, làm bạn Tâm hồn thành cơng việc

Bài (2 điểm) Cho đường thẳng ( )d :y= − +2x 3;( )d' :y=(m−1)x+2m−1và parabol

( )

:

P y=x

a) Tìm tọa độ giao điểm ( )d ( )P

b) Tìm m biết đường thẳng ( )d' song song với đường thẳng ( )d Khi đó, giả sử ( )d' cắt

Ox A, cắt Oy B Tính diện tích tam giác OAB

c) Tìm m để ( )d' cắt ( )P điểm phân biệt D E, cho trung điểm I DE nằm Oy

Hướng dẫn

a) Xét phương trình hồnh độ giao điểm ( )d ( )P :

2

1 1

2 3

3

9

x y x

x x x x

x x

y

 = 

 =

=

 

− + =  + − =  

= −  = −

 =  

Vậy ( )d giao ( )P hai điểm M( ) (1;1 ,N −3;9)

b) ( )d' //( )d 1

2

m m

m

m m

− = − = −

 

   = −

−  

 

Vậy với m= −1 ( )d' //( )d Với m= −1( )d' :y= − −2x

( )d' Ox A 3;

A− 

(19)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

1 1

.3

2 2

OAB A B

S OA OB x x

 = = = =

c) ( ) ( )

( )

' :

:

d y m x m

P y x

= − + −

 

= 

Xét phương trình hồnh độ giao điểm ( )d' ( )P :x2−(m−1) (x− 2m− =1) Để ( )d' cắt ( )P hai điểm phân biệt D E,   0

( )

2

(m 1) 2m

 − + − 

2

m m m

 − + + − 

6

m m

 + −  3

3

m m   − +  

 − − 

Vì trung điểm DE nằm Oy

2

D E

x +x

 =

Theo hệ thức vi-et ta có 1( )

2

D E

x x m

m tmdk

+ = − =  =

Vậy với m=1 ( )d' cắt ( )P điểm phân biệt D E, trung điểm I DE nằm Oy

Bài (3,5 điểm) Cho đường tròn (O R; ) điểm A nằm ngồi đường trịn Kẻ tiếp tuyến AB với ( )O

(B tiếp điểm); đường thẳng d qua A cắt ( )O C, D (C nằm A D) Gọi I trung điểm CD

a) Chứng minh điểm A, B, I O nằm đường tròn b) Chứng minh: AC AD = AB2

c) Qua B kẻ đường thẳng vng góc với OA, đường thẳng cắt (O R; ) E Chứng minh

AE tiếp tuyến (O R; )

2

BEA= BIE

d) Khi đường thẳng d thay đổi cho BDE có ba góc nhọn, gọi H trực tâm BDE Tính OA theo R để H chạy đường trịn ngoại tiếp ABE

Hướng dẫn

a) Xét đường ( )O có I trung điểm dây cung CD nên OICD

Ta có: OBA=OIA=900 Khi tứ giác ABIO có hai đỉnh kề B I nhìn cạnh OA

dưới góc vuông nên tứ giác ABIO nội tiếp hay bốn điểm A, B, I, O thuộc đường tròn

J H

K I

C

A

O

D E

(20)

Có cơ

ng

mài

s

t

ngày

nên

ki

m.

b) Ta có :

2

ABC= ADB= sđBC

Xét ABCADB có: ABC= ADB BAD chung

Suy : ABC ADB (g.g) nên AB AC AB2 AC AD

AD = AB  =

c) Ta có:BOE cân O có OJBE nên OJ phân giác BOE

Xét BOAEOA có:

OB=OE=R BOA=EOA

OA chung

Nên BOA= EOA(c.g.c)

Suy ra: ABO= AEO=900 nên AEEO

Từ suy AE tiếp tuyến (O R; ) nên AB=AE

Vậy ta có điểm A, B, I, O, E thuộc đường tròn

Xét đường trịn qua điểm A,B,I,O,E có

2

BIE=BIA+AIE= sđAB +

2sđAE

AB= AEAB= AE nên BIE=sđAB

Ta có:

2

BEA= sđAB từ suy

2

BEA= BIE

d) Khi H chạy đường trịn ngoại tiếp ABE tứ giác ABHE nội tiếp

Khi đó:

2

KHE= BAEKHE =BDE nên 2BDE=BAE

Xét (O R; ) , ta có:

2

BDE= sđBE=BEA BAE+2BEA=1800

Suy ra: 3BEA=1800BEA=600 OAE=300

Xét OAE vuông E nên sin sin 300

2

OE R

OAE OA R

OA OA

= = = =  =

Bài (0,5 điểm) Giải phương trình: 2x4−3x2+ +1 2x4−x2 =4x−3

Hướng dẫn

Điều kiện phương trình có nghiệm là: x1 Ta có : +) 2x4−3x2+ 1 x2−1( 1) Thật vậy: (1) 2x4−3x2+ 1 x4−2x2+1

4

2

0

( 1)

x x

x x x

 − 

 −   

+) 2x4−x2 x2(2)

Thật vậy: (2) 2x4−x2 x2

4

2

0

( 1)

x x

x x x

 − 

 −   

Từ (1) ( 2) VT 2x2−1

Mặt khác : 2x2− 1 4x−3(3) Thật vậy: (3)2x2−4x+ 2

2

2(x 1)

 −  ( đúng)

Vậy VT4x−3 Dấu “=” xảy ra =x

-HẾT -

Ngày đăng: 03/04/2021, 18:44

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w