1. Trang chủ
  2. » Cao đẳng - Đại học

Bài giảng Kinh tế lượng 1 - Bài 4: Suy diễn từ mô hình hồi quy - Trường Đại học Công nghiệp Thực phẩm Tp. Hồ Chí Minh

7 8 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 365,6 KB

Nội dung

Với kết quả ước lượng trên ta thấy hệ số ước lượng của biến P là – 2,927431 < 0 và hệ số ước lượng của biến PC là 1,838563 > 0 nên kết quả ước lượng phù hợp với lý thuyết kinh tế[r]

(1)

Bài 4: Suy diễn từ mơ hình hồi quy

BÀI SUY DIỄN TỪ MÔ HÌNH HỒI QUY

Hướng dẫn học

Đây học thứ tư môn học, tên gọi “Suy diễn từ mơ hình hồi quy”, suy diễn từ mơ hình hồi quy nghĩa nào? Ta xét ví dụ: chi tiêu (CT) hộ gia đình phụ thuộc vào thu nhập (TN) hộ số người (SN) hộ với mơ hình hồi quy tổng thể sau:

CT = β1 + β2TN + β3SN + u

Trong đó: Biến phụ thuộc CT chi tiêu hộ gia đình, biến độc lập TN thu nhập hộ gia đình, biến độc lập SN số người hộ

Với mẫu:

Wn = {(CT1, TN1, SN1), (CT2, TN2, SN2),…, (CTn, TNn, SNn)}

Ta tìm mơ hình hồi quy mẫu:

CT 12TN 3SNe

Là ước lượng mơ hình hồi quy tổng thể (xem lại học) Tuy nhiên hệ số hồi quy   ˆ ˆ1, 2, ˆ3 mơ hình hồi quy mẫu ước lượng điểm β1, β2,

β3 mơ hình hồi quy tổng thể, tức ta dùng   ˆ ˆ1, 2, ˆ3 để suy diễn cho β1, β2, β3 theo nghĩa lấy  ˆ ˆ1, 2, ˆ3 thay cho β1, β2, β3 Tuy nhiên thực tế bên cạnh việc dùng ước lượng điểm ta muốn đánh giá sai số cần có ước lượng khoảng hay ước lượng khoảng tin cậy Xuất phát từ hệ số   ˆ1, ˆ2, ˆ3 mơ hình hồi quy mẫu ta

xây dựng khoảng chứa tham số β1, β2, β3 mơ hình hồi quy tổng thể với

độ tin cậy cho trước Đối với toán kiểm định giả thuyết, ta chưa có tổng thể nên ta chưa biết β1, β2, β3 nhiên ta giả định tham số nhận giá trị

cho trước hay không? Để trả lời câu hỏi ta cần đến kiến thức nội dung thứ Nội dung thứ kiểm định phù hợp hàm hồi quy Ta xét mơ hình hồi quy biến

CT = β1 + β2TN + β3SN + u

Nếu hai biến độc lập mô hình TN SN khơng giải thích cho biến động biến phụ thuộc CT, ta nói mơ hình hồi quy khơng phù hợp Ngược lại có biến độc lập TN hay SN có giải thích cho biến động biến phụ thuộc CT, ta nói mơ hình hồi quy phù hợp

(2)

Bài 4: Suy diễn từ mơ hình hồi quy

Để học tốt sinh viên cần thực hiện:

 Học lịch trình mơn học theo tuần, đọc kĩ khái niệm

 Theo dõi ví dụ tính tốn lại kết

 Đọc tài liệu: Nguyễn Quang Dong, Nguyễn Thị Minh, 2012, Giáo trình kinh tế lượng, NXB Đại học Kinh tế quốc dân

 Sinh viên tự học, làm việc theo nhóm, trao đổi với giảng viên

 Tham khảo thông tin từ trang Web môn học

Nội dung:

 Quy luật phân phối xác suất số thống kê mẫu;

 Xây dựng khoảng tin cậy cho hệ số hồi quy;

 Kiểm định giả thuyết hệ số hồi quy;

 Kiểm định phù hợp hàm hồi quy

Mục tiêu

Sau học xong này, sinh viên cần đảm bảo yêu cầu sau:  Hiểu rõ ý nghĩa công thức ước lượng

 Vận dụng cơng thức ước lượng làm tập với tình cụ thể  Biết kết luận biết trả lời câu hỏi từ kết ước lượng

 Hiểu rõ ý nghĩa cặp giả thuyết

 Tính giá trị quan sát tiêu chuẩn kiểm định xác định miền bác bỏ giả thuyết H0 tương ứng với cặp giả thuyết

 Biết so sánh giá trị quan sát tiêu chuẩn kiểm định với giá trị tới hạn để xác định giá trị có thuộc miền bác bỏ giả thuyết H0 hay không

(3)

Bài 4: Suy diễn từ mơ hình hồi quy

Tình dẫn nhập

Tình 1: Giả sử ta có số liệu 100 hộ gia đình

STT CT TN SN STT CT TN SN STT CT TN SN

1 97 107 41 172 149 81 273 285

2 100 118 42 156 162 82 276 290

3 100 119 43 165 164 83 281 312

4 114 148 44 155 166 84 277 325

5 126 155 45 173 183 85 294 340

6 177 193 46 189 203 86 294 360

7 171 217 47 232 228 87 333 385

8 175 250 48 210 239 88 337 392

9 205 294 49 207 254 89 161 113

10 205 294 50 210 258 90 213 154

11 218 309 51 235 267 91 243 203

12 241 333 52 274 298 92 229 227

13 233 347 53 282 325 93 288 271

14 242 362 54 275 334 94 264 272

15 266 375 55 289 344 95 308 358

16 280 385 56 296 349 96 334 362

17 108 107 57 298 351 97 337 380

18 142 117 58 304 361 98 336 392

19 130 143 59 281 364 99 345 394

20 157 148 60 293 370 100 360 398

21 132 154 61 302 372  

22 140 160 62 303 374  

23 158 163 63 318 378  

24 148 173 64 297 396  

25 182 183 65 161 112  

26 178 184 66 201 159  

27 188 186 67 185 179  

28 171 211 68 190 193  

29 185 215 69 211 195  

30 213 229 70 211 202  

31 182 236 71 226 220  

32 207 252 72 208 224  

33 212 274 73 245 225  

34 246 276 74 230 227  

35 228 306 75 249 239  

(4)

Bài 4: Suy diễn từ mô hình hồi quy

38 278 396 78 236 263  

39 135 134 79 233 265  

40 169 144 80 248 284  

Ước lượng mơ hình:

CT = β1 + β2TN + β3SN + u (1)

bằng phương pháp bình phương nhỏ ta có kết ước lượng sau:

Dependent Variable: CT Included observations: 100

Variable Coefficient Std Error t–Statistic Prob

C 3.961605 5.071451 0.781158 0.4366

TN 0.612508 0.014314 42.78971 0.0000

SN 18.43248 1.003414 18.36976 0.0000

R – squared 0.962840 F–statistic 1256.673

Prob(F–statistic) 0.0000

Với kết ước lượng ta có hàm hồi quy mẫu mơ hình hồi quy mẫu tương ứng: CT =  3,961605 + 0,612508TN + 18,43248SN

CT =  3,961605 + 0,612508TN + 18,43248SN + e

Theo lý thuyết kinh tế thu nhập hộ gia đình tăng lên đơn vị (số người hộ khơng đổi) chi tiêu hộ gia đình tăng lên, đồng thời mức tăng thêm chi tiêu không tăng mức tăng thêm thu nhập (bởi phần để tiết kiệm) Với kết ước lượng ta thấy hệ số ước lượng biến TN 0,6125 thuộc khoảng (0; 1) nên kết ước lượng phù hợp với lý thuyết kinh tế, nhiên kết ước lượng mơ hình dựa số liệu 100 hộ gia đình khảo sát, xét toàn cho tất hộ tồn quốc liệu thu nhập tăng lên có dẫn đến chi tiêu tăng hay khơng? Mà có tăng dự đốn chi tiêu tăng khoảng nào? Để tìm câu trả lời cho câu hỏi ta cần đến kiến thức

Tình 2:

Khảosát 52 đại lý có bán loại kem đánh răng, nhóm khảo sát hỏi chủ đại lý số lượng hộp kem đánh nhãn hiệu PS bán tháng (ký hiệu biến Q  đơn vị hộp), giá hộp kem đánh nhãn hiệu PS (ký hiệu biến P – đơn vị nghìn đồng/hộp) giá hộp kem đánh nhãn hiệu COLGATE (ký hiệu biến PC – đơn vị nghìn đồng/hộp) Xét mơ hình hồi quy tổng thể:

Q = β1 + β2P + β3PC+ u (2)

Với số liệu 52 đại lý:

STT Q P PC STT Q P PC

1 248 35 29 41 271 38 41

2 252 35 28 42 265 39 42

(5)

Bài 4: Suy diễn từ mơ hình hồi quy

4 255 35 30 44 276 38 43

5 254 34 28 45 270 39 45

6 257 34 29 46 267 40 45

7 264 32 29 47 268 41 46

8 262 33 30 48 266 42 46

9 264 32 30 49 270 41 47

10 267 32 30 50 264 42 46

11 267 31 31 51 259 44 47

12 269 32 32 52 260 43 46

13 275 31 32

14 269 31 34

15 274 32 34

16 282 30 35

17 280 31 36

18 279 30 36

19 285 30 36

20 281 29 36

21 283 29 37

22 287 30 38

23 286 29 39

(6)

Bài 4: Suy diễn từ mơ hình hồi quy

25 287 30 38

26 284 31 40

27 286 32 40

28 284 32 40

29 279 33 41

30 278 34 40

31 277 33 40

32 277 35 41

33 276 35 41

34 277 34 41

35 274 36 41

36 273 35 40

37 274 36 42

38 279 35 43

39 273 37 42

40 270 37 41

Ước lượng mơ hình (2) phương pháp bình phương nhỏ ta có kết ước lượng sau: Dependent Variable: Q Included observations: 52

Variable Coefficient Std Error t–Statistic Prob

C 302.9827 2.943162 102.9446 0.0000

P 2.927431 0.106426 

27.50679 0.0000

PC 1.838563 0.073989 24.84908 0.0000

R–

squared 0.945813 F–statistic 427.6406

Prob(F–statistic) 0.000000

(7)

Bài 4: Suy diễn từ mơ hình hồi quy

PC P

Q 302,98272,927431 1,838563 Q = 302,9827 – 2,927431P + 1,838563PC + e

Theo lý thuyết kinh tế giá hộp kem đánh nhãn hiệu PS tăng lên đơn vị (1 nghìn đồng/ hộp) (giá hộp kem nhãn hiệu COLGATE khơng đổi) lượng bán hộp kem đánh nhãn hiệu PS giảm Mặt khác ta nhận thấy loại kem đánh coi hàng hóa thay nên giá hộp kem nhãn hiệu COLGATE tăng lên đơn vị (1 nghìn đồng/ hộp) (giá hộp kem nhãn hiệu PS khơng đổi) lượng bán hộp kem đánh nhãn hiệu PS tăng Với kết ước lượng ta thấy hệ số ước lượng biến P – 2,927431 < hệ số ước lượng biến PC 1,838563 > nên kết ước lượng phù hợp với lý thuyết kinh tế, nhiên kết ước lượng mơ hình dựa số liệu 52 đại lý khảo sát, xét toàn cho tất đại lý toàn quốc liệu giá hộp kem đánh PS tăng lên có dẫn đến lượng bán hộp kem đánh loại giảm xuống hay khơng? Mà có giảm dự đốn lượng bán giảm khoảng nào? Để tìm câu trả lời cho câu hỏi ta cần đến kiến thức

Hai tình ta xét với hai tình cụ thể, xét trường hợp tổng quát ta xét mơ hình với Y biến phụ thuộc, biến Y phụ thuộc tuyến tính vào biến X2, …, Xk theo mơ hình

Y = β1 + β2X2 + … + βkXk + u

Gọi mơ hình hồi quy tổng thể (xét trường hợp tổng quát) với mẫu: Wn = {(Yi, X2i,…, Xki), i = 1, 2,…, n}

Ta có mơ hình hồi quy mẫu:

e X X

Y 12 2k k

Là ước lượng mơ hình hồi quy tổng thể Ba nội dung cụ thể (1) Xây dựng khoảng tin cậy cho hệ số βj, (2) Kiểm định giả thuyết hệ số hồi quy βj, (3) Kiểm định

Ngày đăng: 01/04/2021, 13:26

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w