1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Bài tập Tổng ba góc của một tam giác (nâng cao)

3 113 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 137,1 KB

Nội dung

Lưu ý: Tại một đỉnh của tam giác có hai góc ngoài, hai góc này bằng nhau vì đối đỉnh nên ta chỉ xem là một góc.. Tài liệu bồi dưỡng học sinh giỏi toán 7 Lop7.net..[r]

(1)TrÇn Thanh H¶i – N¨m häc 2009 - 2010 TỔNG BA GÓC CỦA MỘT TAM GIÁC (NÂNG CAO) A Lý thuyết: *Tổng ba góc tam giác 1800 * Trong tam giác vuông hai góc nhọn phụ * Mỗi góc ngoài tam giác tổng hai góc không kề với nó Từ đó suy ra: Góc ngoài tam giác lớn góc không kề với nó B Bài tập: A A Bài 1: Cho tam giác ABC , điểm I nằm tam giác So sánh BIC và BAC BÀI GIẢI: Cách 1: A C A  BIC A A A Ta có: B = 1800(1)(định lí tổng ba góc tam giác) ABC  A ACB  BAC 1 A Điểm I nằm tam giác ABC nên tia BI nằm hai tia BA và BC và tia CI nằm hai tia CB và CA nên: E A A A A I IBC  ABC và ICB  ACB (2) A  BAC A Từ (1) và (2) suy : BIC = B C A Cách 2: Gọi K là giao điểm của AI và BC A  BAK A Ta có: BIK (góc ngoài tam giác ABI) (1) A A và CIK  CAK (góc ngoài tam giác ACI) (2) I A A A A Suy ra: BIK  CIK  BAK  CAK Điểm I nằm tam giác ABC nên tia AI nằm hai tia B C K A A AB và AC và tia IK nằm hai tia IB và IC nên BIC  BAC (đpcm) A Cách 3: Gọi E là giao điểm tia BI và AC E A  BEC A Ta có: BIC (góc ngoài tam giác IEC) (1) I A A và BEC (góc ngoài tam giác ABE) (2)  BAC A  BAC A B C Từ (1 ) và (2 ) suy : BIC (đpcm) Nhận xét: Cách suy từ bài trang 108 SGK, cách dùng tính chất góc ngoài tam giác để việc chứng minh nhẹ nhàng Bài 2: Cho tam giác ABC có số đo ba góc A; B; C tỉ lệ với các số 1; 2; Tính số đo các góc tam giác ? Tam giác ABC là tam giác gì ? Tại sao? Bài giải: Gọi số đo các góc A; B ; C là x; y; z Theo đề ta có: x y z   và x + y + z = 1800 Áp dụng tính chất dãy tỉ số ta được: x  y  z 1800 x y z   300 Vậy x = 30; y = 60 và z = 90   = 1  A A Vậy: BAC  30 ; ABC  600 ; A ACB  900 Tam giác ABC vuông C ADB có số đo số đo Bài 3: Cho tam giác ABC , D là điểm trên cạnh BC và A góc tam giác ADC Chứng minh AD  BC BÀI GIẢI: A Ta có : ADB là góc ngoài tam giác ADC nên : A A và A A ; kết hợp với giả thiết A ADB góc ADB  C ADB  DAC Tài liệu bồi dưỡng học sinh giỏi toán Lop7.net A B D C (2) TrÇn Thanh H¶i – N¨m häc 2009 - 2010 ADB = A ADB + A tam giác ADC nên A ADC Do A ADC = 1800 (kề bù) ADB = A Suy ra: A ADC = 900 Vậy AD  BC (đpcm) A _ A  400 Tính A Bài 4: Ở hình bên: Ax // By ; CAAx  500 ; CBy ACB x 50 Bài giải: C ? Gọi E là giao điểm tia AC và tia By A A Ta có: xAE AEB  500 (hai góc so le Ax // By) =40 B E A A E A  400  500  900 ACB là góc ngoài tam giác BCE nên : A ACB  B Nhận xét: Bài toán này với kiến thức chương I ta tính góc ACB Bài tập thực hành: A = 800 ; Tính các góc B và C các trường hợp sau: Bài 5: Cho tam giác ABC có BAC a) A ABC  A ACB  200 b) BA :11  CA : Đáp số: a) A ABC  600 ; A ACB  400 b) A ABC  550 ; A ACB  450 Bài 6: Cho tam giác ABC có phân giác AD và BE Chứng minh rằng: A a) Nếu A thì AA  BA ADC  BEC A b) Nếu A thì AA  BA  1200 ADB  BEC Bài 7: Cho tam giác ABC có góc B > góc C Đường phân giác góc ngoài đỉnh A cắt đường thẳng BC E y A ABC  A ACB AEB  a) Chứng minh rằng: A A b) Tính số đo góc B và góc C biết BAC  600 và A AEB  150 Bài Cho tam giác ABC có A ABC  A ACB a) Chứng minh A ACB  60 b) Tìm điều kiện cho số đo góc C để tam giác ABC là tam giác nhọn ? A A A  180  A  600  A  600 A  1800  AA  C Gợi ý: a) AA  BA  CA  1800 và A ABC  A ACB  3C 3 Lưu ý: có thể giả sử CA  60 từ đó suy điều vô lí b) ABC nhọn  AA  900 ; BA  900 ; CA  900 kết hợp với định lí tổng ba góc tam giác và A ABC  A ACB với câu a ta 300  A ACB  450 là điều kiện cần tìm TỰ KIỂM TRA NĂNG LỰC Thời gian: 30 phút Bài 1: Cho tam giác ABC vuông A có 11BA  7CA a) Tính số đo các góc B và C tam giác ABC A A b) Kẻ AH  BC ( H  BC) Tính số đo các góc BAH và CAH A _ Bài 2: Ở hình bên: Ax // By 50 Chứng minh AC  BC Bài 3: Tính tổng số đo các góc ngoài tam giác Lưu ý: Tại đỉnh tam giác có hai góc ngoài, hai góc này vì đối đỉnh nên ta xem là góc B =40 Tài liệu bồi dưỡng học sinh giỏi toán Lop7.net x C y (3) TrÇn Thanh H¶i – N¨m häc 2009 - 2010 Tài liệu bồi dưỡng học sinh giỏi toán Lop7.net (4)

Ngày đăng: 29/03/2021, 15:35

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN