Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 45 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
45
Dung lượng
15,64 MB
Nội dung
DAI HOC QUOC GIA HA NOI TRl/dNG DAI HOC KHOA HOC TlT NHIEN £)ETAI TOI UU QUA TRINH TRUYEN NANG LUONG TIN HIEU VA NANG CAO DO NHAY CUA CAC THIET BI THU DAI TAN SO CAO CO CHON LOC MASO:QT-05-11 CHU TRI DE TAI: VU THANH THAI (KHOA VAT LY) HA NOI - 2005 DAI HOC QUOC GIA HA NOI TRUCJNG DAI HOC KHOA HOC TIT NHIEN €)ETAI TOI UtJ QUA TRINH TRUYEN NANG LUONG TIN HIEU VA NANG CAO DO NHAY CUA CAC THIET BI THU DAI TAN SO CAO CO CHON LOC MA SO: QT-05-11 CHU TRI DE TAI: CAC CAN BO THAM GIA: THS GVC VU THANH THAI GPS-TS VU ANH PHI THS.GV D A N G THANH THUY DAI HOC Q U O C GI.A HA NOl TRUNG TArv/ THONG TIN ^HU \,/!PM PT / 5-00 HA NOI - 2005 BAO CAO TOM TAT a Ten de tai: Toi icu qud trinh truyen ndng luang tin hieu vd ndng cao nhay ciia cdc thiet bi thu ddi tdn so cao co chgn Igc (Ma so: QT-05-11) b Chu tri de tai: ThS Vu Thanh Thai c Cac can bo tham gia: POSTS VQ Anh Phi Ths Dang Thi Thanh Thuy d Muc tieu va noi dung nghien cuu: - Xay dung bai toan toi uu truyen nang luong khong gian song cao tan - Tdng hgfp cac mach phoi hgfp va toi uu hoa dac tfnh truyen dat cong suat cua he thdng thu va xu li tin hieu - Tfnh toan va dua giai phap nang cao nhay ciia thiet bi thu tan so cao co chon loc e Cac ket qua dat dugc : • Kit qud nghien cAu khoa hgc: * Dua tren ly thuyet v6 khong gian tuyen tfnh gia Ocht (Mincopski) da xay dung dugc mo hinh vat ly thuc cua khong gian tuyen tfnh - khong gian nang lugng trang thai tfn hieu "^ Tren ca sa phan tfch cac toan tir khong gian nang lugng trang thai tfn hieu da thiet lap dugc bieu thuc ciia he so truyen dat cong suat cua mang cue du6i dang cac cap ham ma tran vo huang ciia cac dang toan phuang chi cua mot bien Dieu cho phep dua bai toan xay dung he thong truyen tfn hieu voi dac tfnh truyen cong suat cue dai ve bai toan gia tri rieng ciia dang toan phuang khong gian nang lugng ciia trang thai tin hieu * Xay dimg bai toan truyen song cao tan khong gian : da tfnh toan cong van d6 toi uu nang lugng cho song cao tan qua cac dac trung cua song tai va song phan xa * Tong hgp cac mach phoi hgp; tinh toan toi uu hoa dac tfnh truyen dat cong suat ciia song sieu cao tan Bang ly thuyet da chi r^ng chi can sir dung cac mach phoi hgp phan tii co thd phoi hgp dugc vcd cac phan tu M4C hoac M2C bat ky va co the thay doi dac tuyen phoi hgp ciia he thong b^ng each thay ddi cac tham so vat ly ciia mach phoi hgp ma khong thay ddi thiet ke ciia no * Tfnh toan mot so mach cu the truyen song sieu cao tan va dua cac thong so toi uu cho mach phoi hgp de dat cong sua't truyen cue dai Khao sat dac trung truyen nang lugng ciia mach sieu cao tan • Ket qud dao tao: *- Co 02 khoa lu|n tot nghiep dai hgc da dugc bao ve theo hu6ng nghien cun ciia de tai *- Khoa luan nam hgc 2005-2006 se co sinh vien nghien cuu tiep tuc theo huang de tai f Tinh hinh kinh phi cua de tai: Tdng kinh phf thuc chi Trong - Tir ngan sach nha nu6c - Kinh phf ciia DHQG - Vay tfn dung - Von tu CO KHOA QUAN LY (Ky va ghi ro ho ten) : lO.OOO.OOOd : Od : lO.OOO.OOOd : Od : Od CHU TRI DE TAI (Ky va ghi ro ho ten) TS Nguyen The Binh ThS Vu Thanh Thai TRI DE TAI OHIEUTHUOKU ^j^.Twk^f ^ik BRIEF REPORT OF PROJECT a Project title: Optimize of transmission energy of signal and to raise the sensitivity of the receivers high-frequency selectively (Code: QT-05-11) b Project co-ordinator: MSc Vu Thanh Thai c Co-operator Pro Dr Vu Anh Phi MSc Dang Thi Thanh Thuy d Objectives and scientific contents: - To solve a optimal problem of transmission energy in the space high-frequency waves - To synthetize the coordinate's circuits and optimize a partycuarity transmission power of receivers and signal processing - To calculate and to put foward method to raise the sensitivity of the receivers high-frequency selectively e Results : • Science results: * Based on the theoretical of the linear space- Euclit's false ( Mincopski's space ) , we constructed real physics model of linear space This is the energy space of signal state * We established the expressions of transmission power coefficient of a four-pole network (M4C) to expressin the form a pair supecalar matrix function of quadratics of the only variable For this reason , we came to conclusions that the solution of the combined problem on the linear system for signal transmission will become the solution of problem on specific values in quadratic form in the linear space - energy space of signal state * We solved a problem of the transmission high frequency waves in the space ; To solved a problem optimize of energy of the high frequency waves in the form values of incident and reflected waves * The authors calculated some of concrete circuit -super high frequency and disgnated parameters for to obtain a maximium power ô ãằ v: • Training results: There are 02 graduation theses having been defended from the project's goal In the next year , will be 02 graduation continues PHAN CHINH BAO CAO MUC LUC Bao cao tom tit Brief report of project Phan chfnh bao cao Muc luc Lai mordau Noi dung chfnh 3.1 Xay dung bai toan truyen nang lugng toi uu khong gian song cao tan 3.2 Tdng hgp cac mach phoi hgp va toi uu hoa dac tfnh truyen dat cong suat ciia he thong thu va xir If tfn hieu S 3.3 Tfnh toan va dua giai phap nang cao nhay ciia thiet bi thu tan so cao co chgn Igc i§ Ket luan J.5 Tai heu tham khao J|3 2, LCil MO DAU Trong kl thuat viln thong , mot nhirng chi tieu ki thuat ca ban xay dung he thong thu va xir If tfn hieu la viec dam bao he sd truyen tai cong suat tac dung cam iing vao anten thu tod phu tai dat gia tri 16n nhat Nang cao he sd truyen cong suat se lam tang chat lugng va cir ly thong tin ( cong suat phat cung nhu cau true he thdng anten khong thay ddi) Giai quyet nhiem vu dat din tdi viec giai bai toan phdi hgp giira cac khdi chiic nang ciia may thu , dac biet la tuyen sieu cao tan Ngay nay, vdi nhiJng tien bg nhay vgt ciia ky thuat mdri va c6ng nghe che tao cac linh kien dien tu, hang loat linh kien mdi dugc dua vao sii* dung Viec su dung cac linh kien mdi nhu cac ph& ttr td hop cao, cic linh kien lam viec d giai song sieu cao tan cang can phai doi hoi ngJu^ cuu cac thuat toan tdi uu de phdi hgp chiing De tai la tiep ndi ciia de tai " Tdi iru hoa qua trinh truyoi nafl^ lugng tfn hieu dien mach dien tuyen tfnh va khdng gia" "• ^ sd : TN 03-05 cung chinh nhdm tac gia thirc hien Ket qua ciia de tai ma sd TN 03-05 da dat Auoc Ja: Xay dung mot mo hinh vat ly thirc cua khong g^an'WF^^^ chfnh la khong gian nang lirgng trang thai tin hi^u G^ ^ * | J sang giai bai toan ve tri ridng, vec ta rieng khong gian gia Oclit (khOng gian mincopski) Vdi mo hinh tren chiing toi da xay dung va giai bai toan match dien voi cac thong sd la U, I cua dong dien Dua bai toan cong suat cue dai ve viec quay vecta khong gian Tfnh toan cho mot sd mach phdi hgp phin tu De tai QT-05-11 se giai quyet tiep nhOtig van de sau : Xay dung bai toan truyen nang lugng tdi uu khong gian song cao tan Tdng hgp cac mach phdi hgp , nang cao cong suat thu ciia he thdng thu va xir li tfn hieu Tfnh toan va dua giai phap nang cao nhay cho cac thiet bi thu tin sd cao cd chon loc NOI DUNG CHINH 3.1 Xay dung bai toan truyen nang lugng tdi uu khong gian song cao tan 3.1.1, Cdc todn tu: truyen dat khong gian song cao tdn Trong dai sdng sieu cao tan , giai bai toan truyen tfn hieu cQng nhu bai toan ly thuyet mach , ngu6i ta diing cac tham sd sdng: sdng tai va song phan xa thay cho cac tham sd dien ap va dong dien Trong truang hgp , dac tfnh ciia cac M2C va M4C cung dugc dac trung bdi cac tham sd sdng : Mang cue dugc dac trung bdi he sd phan xa M4C dac trung bdi ma tran tan xa S va ma tran truyen dat T Tdng quat, quan he giua dien ap U^, dong dien I^ vai sdng tai va sdng phan xa tren cac cue ciia MnC dugc xac dinh : Uk = ak + bk Ik - ^k ' \ Trong dd a^, b^ la sdng tdi va song phan xa chuan hoa tren cue thu k ciia MnC Xet vdi mang cue nhu hinh ve fc U V p Hinh VaiM2Cahmh(l)tac6: U =a+b I-a-b Trong dd: b=ap p = — - : la he sd phan xa ciia M2C z+p * z: Tdng trd ciia M2C p: Trd khang song ciia doan day ndi vdi M2C Neu ta ggi khong gian sdng ciia trang thai tfn hieu ciia M4C bao gdm cac vecta: C^ = ae^ + be^ (1) Trong dd €3,6^ la vecta ca sd khong gian sdng trang thai tfn hieu, thi dt dang thay ring, khong gian sdng (1) va khong gian kinh dien v^ = ue, +ie2 la dang cau, va ma tran chuyen T tir ca sd (€,,62) sang ca sd (€3,6^) CO cau true: ^1 I V^ (2) Trong khong gian sdng trang thai tfn hieu, cong suat tac dung ciia M2C, hay binh phuang dai vecta trang thai tfn hieu dugc xac dinh bdi bieu thiic: |V| =P a^-b^ (3) Hay P = C,+JC, (4) Trong J - ma tran gramma ciia vecta ca sd true giao chuan hoa khong gian song trang thai tfn hieu Ma tran J co ket cau: (5) Trong trudng hgp xet ta cd: (ea.eb) = (eb,ej=0 Do dd ma tran J co ket cau: J- (6) Trong mat phing Oclit, phuang trinh (3) la phuang trinh ciia dudng hypecbol vai cac dudng tiem can la cac dudng phan giac ciia cac gdc toa (hinh 2) Hinh Tir hinh ve, dt thay ring: gia tri khong doi cua cong suat tac dung ciia M2C cd the nhan dugc v6i cac gia tri khac ciia cac toa a, b Han the nua, cac toa a, b lien he v6i bdi bieu thiic (3) TCr sir phu thuoc giua cac toa a, b co the tha'y ring, viec chuyen tir toa sang toa khac cd the dugc thuc hien bing viec quay dudng hypecbol mot gdc nao dd, ma viec quay dd hoan toan khong lam thay ddi dai vecta 3.1.2 Gidi bdi todn cong sudt cue dai: Neu mang cue da cho dugc ndi vdi M4C tuyen tfnh vdi ma tran sdng T Thiet lap mdi lien he giira song tai va sdng phan xa tren dau vao va dau ciia M4C (hinh 3) a, 32 •< b>i T c P ba F> - —^ c, Hinh Tacd hay 'a,' T kJ T CI ~ T.C:, T M2 \ ' T22J ^2_ (7;) Trong dd Cj =(aib,)^,C2 =(b2a2)^ la vecta ma tran cot ciia cac sdng tdi va sdng phan xa tren dau vao va dau ciia M4C va T = T Ml T T la ma tran truyen sdng ciia M4C thi ta se nhan dugc M2C mdi vdi he sd phan xa P, Dac tfnh ciia M2C mdi dugc dac tnmg bdi cac bien mdi aj, bj Cac bien aj, bi lai dugc xem nhu la toa ciia vecta C, cung khong gian nang lugng trang thai tfn hieu Va trudng hgp nay, ma tran truyen sdng T cia M4C dugc xem nhu toarftir tuyen tfnh khong gian sdng chilu, thi6't l|p mdi quan ht giiia cac vecta trang thai tfn hieu tren diu vao va dau ciia M4C Trong khong gian sdng trang thai tfn hieu, cong suat tac dung len diu vao va diu ciia M4C dugc xac dinh bdi hieu cua cong suat sdng tdfi va cong suit sdng phan xa P.=a/-b,^ (8) P,=a,'~b,' (9) Cac bieu thiic (8), (9) cd the viet dudi dang bieu thiic ciia cac dang toan phuang: Pi =C/JC, (10) P2=C2^JC2 (11) Hay vdi chii y (7), nd se dugc dua ve dang: P, =C2^(T^JT)C2 (12) P2=C/(TJT'^)-'C, (13) Ddi vdi cac M4C tuyen tfnh tich cue, khong tdn hao, co tdn hao, cong suit tac dung tren diu vao P, tuang iing se nhd han, bing, lan han cong suat tac dung tren diu Pj ciia nd Nghia la, toan tir T co the la toan tii gian, Unitar, toan tii co Tren quan diem toan hgc, ma tran truyen sdng T CLia M4C khong tdn hao thuc hien phep bien ddi toa ciia vecta khong gian sdng nang lugng trang thai tfn hieu, nhung khong lam thay ddi dai ciia vecta Cdn ky thuat thu va truyen tfn hieu, cac M4C khong tdn hao dugc diing de phdi hgp cac phan tii (cac khdi chiic nang) ciia he, dam bao he sd truyen tai cong suit tir ngudn tfn hieu tdi phu tai dat gia tri Idn va de chgn Igc tfn hieu theo phd tin cua nd Phil hgp v6i cac bi^u thiic (10) -H (13), he sd truyen cong suat ciia mang cue cung dugc viet dudi dang bieu thiic ciia cac dang toan phuang ciia cimg mot bien ma tran C, hoac C2: P2 C2^JC2 C;(TJT-)-'C, Pi C2^(T-'JT)C2 Ci^JC, Bieu thiic (14) cho phep dua viec giai bai toan xay dung he thdng tuyen tfnh truyin tfn hieu vdi dac tfnh truyen dat tdi uu ve viec giai bai toan tri rieng ciia cac dang toan phuang khong gian sdng nang lugng trang thai tfn hieu va phan loai cac M4C theo dac tfnh nang lugng ciia nd T a p chi KHOA H O C VA CONG NGHE Vietnamese Journal of Science and Technology Tap XXXVI, s o l , nam 1998 MUCLUC CONTENTS , Nguyln Hiru Hb, Shiping Zhang, Philippe Marmey, Nguyen Vun Uyen, Claude Fauquet Tao c3y lua chuyen gen bang phu'OTig phap ban gen iren phoi o giai doan 10 sau cay tren moi trucmg lao moi seo Trang Regeneration of transgenic rice plants following biolislic delivery of foreign DNA into 10 day embryos on callus induction medium Nguyln Hull Ho, Koffi N* Da Kenan, Le Tun Du*c, Nguyen Van Uyen - Buac dau nghien cihi chuyen gen a cay ca phe Coffea arabusta bang phuoTig phap dien di Preliminary study on transformation of Coffea arabusta via electrophoresis Dinh Thi Kim Nhung - Toi uxi hoa phan moi trirong dinh duong cho A cetobacter xylinum bang phuoTig phap quy hoach thuc nghiem 10 To chose best nutrition medium for ihc A cetobacter xylinum stranges by planning practice method Nguyln Quang Hao - Dpng thai phat trien le bao va hinh axit huu co bang Gliiconobacter oxy dans L-1 moi tru-ong co xacaroza la nguon cacbon nhat 13 Dynamics of cell growing and of the forming organic acids by Gluconobacter oxydans L-1 in the medium with saccharose Dinh Gia Thanh, Nguyen Van Khoi, Do Quang Khang - Epoxy hoa cao su ihien nhien CO nhom OH a cuoi mach b5ng axil peraxetic Epoxydation of hydrox^l terminated natural rubber by peracetic acid 18 Nguyln Van Khang, Houng Hu - Xac dinh cac tham so ciia mo hinh dao dgng udn cho mpt dang cau dam tren du'ong to 22 Determining parameters of the transverse vibration model for some beam bridges on the auto ways Do Huy Giac, Vu Tlianh Tliai - Khong gian nang lu'O'ng trang thai lin hieu ciia mach dicn tuyen tinh va cac dac tinh ca ban cua no The energy space of signal slate in current linear source and ils basis characteristics 31 Phung Van Duan - Phan tich an toan bue xa bao v^ moi tru-cmg 36 Radiation protection analysis for environment protection in Vietnam Hoang Xu&n Nhu^n - Tiem nang nSng luang gio cua Bien Dong 45 The capacity of wind enegry at the South China Sea 10 Bui Trung, Doan Nhu* Y - Nghien ciru cong ngh$ sir dung nguyen li6u dja phu-ong tinh 54 Quang Ngai de san xuat thir gacb ceramic dtrng xay dirng Study of technology using local materials in Quang Ngai province for production of ceramic bricks 11 Nguyln HoJig Hai - Anh huang cua phot va sy hinh ciing tinh ba nguyen tai kha nang chju an mon cua gang Influence of the phosphor and formation of liphase eutectic on the corrosion resistance of cast-iron 58 The le viet vd giri bdi Tap chi Khoa hpc va Cong nghp dSng cac b^i tong quan, cac bai neu ket qua cac cong trinh nghien ciru va cac thong bao ngan, ve moi linh virc khoa hpc cong ngh? Bai gu-i dSng phai dupe viet b^ng tieng Viet va du-ac in hoSc danh may ro rang Bai phai CO phan tom tat b^ng tieng Anh va co ihera dau de bang tieng Anh Phan tom tat can cung cap lu-png thong tin can thiet de qua nguai dpc co the hieu dupe npi dung chinh cua bai viet Cac hinh can du-p^c ve ro rang (neu c6 the thi ve hinh tren giay can Nhat) Neu bai co anh thi khong co qua anh Cacanh phai dupe in tren giay anh H i i ^ va anh phai dirp'C chu thich day du Tai lieu trich dan phai co du cac thong tin sau: - neu la sach: ten tac gia (hoSc chii bien), ten sach, nha xuat ban, nim xuat ban; - neu ia tap chi: ten tac gia, ten lap chi, nai xuat ban, tap, so, nam, trang Dich tai iipu trich dan neu thupc he chu* tuang hinh sang tieng Viet, neu thupc cac he chu* khac thi viet nguyen van Bai giri dang phii co ghi ro hp ten, nai lam viec, so di?n thoai.cua ngu-ai gui bai Tac gia khong phai tri lien dang bai Tap chi khong tra nhuan but, tac gia cua moi bai dang dirp'C bieu cuon tap chi Thir, bai gui cho Tap chi va mpi giao dich khac vai Tap chi xin theo mpt hai dja chi sau: - Toa soan Tap chi Khoa hpc va Cong ngh? - 70 Tran Hu'ng Dao, Ha Npi - Thu^ang trirc Tap chi Khoa hpc va Cong ngh? - Mac Dinh Chi, quan 1, Tp Ho Chi Minh Tap chi khong dang nhung bai khong theo diing nhirng the thuc noi Iren Toa soan khong tra lai bai khong dang cho ngu-ai giii Chi so: 12874 In tai Xuang in Nha xuat ban Xay du-ng Bp Xay dung 303 Dpi Can, quan Ba Dinh, Ha Npi In xong va npp lu*u chieu thang nam 1998 Gia: 6000 d TAP CHI KHOA HQC VA CONG NGH^ X X X V I l 1998 Tr 31-35 KHONG GIAN NANG LirgNG TRANG THAI TIN HI^U CUA MACH DIEN TUYEN TINH VA CAC DAC TINH CO BAN CUA NO £30 HUY GIAC ( VU THANH THAI (2) Nhu- chiing ta da biet, khong gian hinh hpc acclit hai chieu la mo hinh don gian nhat ciia khong gian tuyen tinh Tuy nhien, doi tu'p'ng nghien ciru cua ly thuyet khong gian tuyen linh c6 the bao gom cac hien tu-pTig vat ly bat ky thoa man cac lien de ciia khong gian tuyen tinh Trong bai chung toi se chi r^ng, khong gian nang lu-png trang thai tin hi?u cua mach dien tuyen tinh voi tham so tap trung la mpt mo hinh vat ly thuc cua khong gian tuyen tinh Dong thai chiing loi thiet lap moi lien he giira cac toan tir tuyen tinh tac dpng khong gian trang thai tin hieu va cac ma tran truyen dat ciia mach dien tuyen tinh Tu* du-a viec giai bai toan phoi hpp he thong tuyen tinh truyen tin hieu ve viec giai bai toan gia iri rieng ciia cac dang loan phuang lrong khong gian tuyen tinh - khong gian nang lu-pTig trang hai tin hieu I KHONG GIAN NANG LITQ-NG TRANG THAI TIN HI$U VA DAC T I N H METRIC CUA N6 Xet mang circ (M4C) tuyen tinh bat ky (hinh 1) tren quan diem ly thuyet mach, dac tinh ciia M4C da cho hoan toan du'oc dac tnmg bai cac dien ap Uk, dong dien ik tren cac circ ciia M4C cac dieu kien ban dau xac djnh Trong tru*ang hop chung, dSc tinh ciia mgng 2n circ du-pc dac trirng boi to hprp 2n bien trang thai Co the xem cac bien trang thai nhu cac tpa dp ciia cac vecta ciia cac diem khong gian trang thai tin hieu 2n chieu L2nDe dang thay rang, tap L2n cac toan tu nhan phan tu voi mpt so, cung nhir cong cac phan tir, thoa man cac tien de ciia khong gian tuyen tinh [1| Do do, tac dpng ciia cac toan tir len cac vecta khong gian L2n hoan toan tuong tir nhir tac dpng ciia cac loan tu doi vai cac vecta theo nghia hinh hpc thong thu-ong Vai quan diem nghien ciiu dac tinh nang luang ciia mach dien tuyen linh, duoi day se xet dac tinh metric ciia khong gian nang lupng trang thai tin hi^u Metric la mpt cac dac tinh quan trpng ciia khong gian tuyen tinh Co the xem metric ciia khong gian la phuang phap xac dinh "khoang each" giua hai diem khong gian, hoac phuang phap x^c dinh dp dai vecla Qcalit hai chieu, khoang c^ch giua hai diem A(xi, yi), B(x2, y2) dupe xac djnh bai biSu thiVc: IV| = r(A,B) = \I(X2 -xif +(y2-yi)2 (1) Trong truang hpp chung, co the xem metric ciia khong gian la mpt ham ciia mpl cap phan tu ciia khong gian, dac tinh ciia ham la bat bien d6\ vdi mpt chuyen dong tuong doi cua kh6ng gian da cho Dinh nglua dupe sir dung xiiy dung mon hinh hpc gia Qcalit Tren quan diem giai bai toan ly thuyet mach, se su dung ly thuyet hinh hpc gia a c a l i t Mink6pxki (2] Trong hinh hpc Minkopxki khoang each giua hai diem A(xi, yi), B(x2, y2) duac xac dinh nhu la can bac hai ciia di?n tich hinh chir nhat vai cac canh la (x: - xi), (yz -yi)| V l = r(A,B) =• I (X2 - xi) 4- (y2 - Vi) (2) Hai vecta V v a V' co dp dai nhu nhau, cac Ipa dp luang ung ciia chung (x, y) (x' y') duac lien 31 h$ vd^i bdi bieu thii-c: ^e° (3) d6 a \k goc hypecbolnic giira hai vecla Vva >7' Phuong trinh: P = x^ -h y2 = const (4) la phuomg trinh ducmg trdn khong gian acalit, cdn phuong trinh: P = xy = const (5) la phuong trinh giA duong tron ban kinh r =\/l' khong gian Minkopxki Phuang trinh gii duong tron m$t p h ^ g xy la c5p hypecbol nh|n die true tpa dp lam duong ti^m can (hinh 2) 3f az I Uf •te Q ' • Hinhl Hinh Neu phuong trinh (5), thuc hien thay die tpa dp (x, y) bang cac gia trj di?n ap, dong di^n cua mang cvc (M2C) tuyen tinh thuan tro R, thi truong hpp bieu thuc: P = u.i (6) x^c djnh cong suat tieu hao tren dien trdr R Cong suat tuang ung vai binh phuang dp dai vecta v6i die tpa dp u, i C^c tpa dp u, i co thu nguyen khac nhau, song neu ta siir dung cac tpa dp c^uan hoa, chung se c6 thu nguyen nhu va la can b^c hai ciia cong suat W [7], V|y khong gian trang thai tin hieu ciia M2C tuyen tinh la khong gian nang lupTig, vecto khong gian nSng lupTig c6 tfair nguyen la W^^ Phuong trinh (3) chinh la phuong trinh ciia bien ap ly tudmg vdi he so bien kp n = e« (7) V^y, CO the xem khong gian nang lupmg trang thai tin hipu cua mach di?n tuyen tinh la mo hinh v^t ly ciia khong gian Minkopxki, bien ap ly tuong - phep bien doi khong thay doi dp dai vecto khong gian nang lugng Trong khong gian nang lupng, tich vo huang dupe xac djnh bdi bieu thuc: (u, i) = i* u = i* zi đ dau ã biEu thj moi lien hpp phuc Trong bieu thuc (8), long tro z dong vai tro he so goc ciia khong gian Tren quan diem nang lup'ng, tich vo huang (8) xac dinh cong suat toan phan dua toi dau vao M2C Z, nay, cong suat tac dung P ciia M2C c6 dang: P=^l(i,u) +(^u)'I hay 32 V'GV (9) O day, dau + bieu thi moi lien he Hec-mit [3], G - ma tr$n gramma ciia cac vecto co s& true giao chuan h6a khong gian '0 (10) G = II CAC TOAN Tl> T U Y £ N T I N H TRONG K H O N G GIAN NANG LITCTNG TRANG THAI TfN HlfU Nghidn cuu quy luat thay doi tpa dp cua ma t r ^ gramma bien doi tuyen tinh cac bien v^ tim dang don gjan nhat (dang chinh t^c), cho, vdi no ve dang chinh t^c la nhiem vu chu yeu ciia l"^ thuyet dang Neu M2C da cho dup^c noi vdi M4C tuyen tinh vdi ma tran truyen dat A khong suy bien (hinh 3) thi ta se nhan dupe M2C mdi vdri tong tra Zi D3c tinh ciia M2C md'i dupe dac trung bdi c^c bien mdi ui, ii Cac bien ui, ii lai duprc xem nhu tpa dp cua vecto Vi ciing khong gian nang lupTig trang thai tin hi?u Do dd, ma tr^n truyen dat A cua M4C tuyen tinh co the xem nhu mpt toan tu tuyen tinh khong gian nang lugrng trang thai tin hi^u hai chieu, thiet l^p moi lien he giira vecto nang luprng tren dSu v^o Vi va vecto nang lugmg dau V2 ciia M4C Vi = AV2 (11) Tir cSc ket qua da nhan dup-c, de dang xac djnh dupe bieu thu'e ciia cong suat tac dung tren dau vao Pi va tren dau P2 ciia M4C ''^y Pi=jv^GVi (12) P2=JV2+GV2 (13) Pl=^V2+(A+GA)V2 P2=|Vj^(AGA-')-Wi (14) * (15) Nghia la, cong suat tac dung tren dau vao Pi va dau P2 ciia M4C cd the dupe viet dud'i dang ciia hai cap ham ma tran vd hu6ng ciia ciing mpt bien Vi hoac V2 He so truyen dat cong suat cua M4C truong hpp dupe xac dinh bd^i bieu thuc: K _ P2 _ V2^ G V2 _ Vl (A G A"^)"^ Vl ^ Pi V^(A"*"GA)V2 vroVi Phan tich bieu thuc (16) cho phep xac dinh d^c tinh truyen dat dimg (dac tinh truyen dat cong suat eye dai) ciia M4C thuc hien quay cac tpa dp ciia cac vecto trang thai tin hi?u Vi tren dau vao va V2 tren dau [6] Tren quan diem ly thuyet mach, quay cac vecto Vi, V2 cd the thuc hien nho cac M4C khong ton hao A^, Aa m^c v&'i dau vao va dau ciia M4C da cho Gia tri ciia bieu thu'e (16) trimg voi gia tri rieng ciia ma tran dac trung K^ = G A ' ^ G A (17) Kjj = A G A " ^ G (18) Neu cac M4C A^, Aa dup-c noi vd-i dau vao va dau ciia M4C A (hinh 4), dd ma tran truyen dat A ciia M4C d u p e tao tir M4C A^, A, A^ mdc lien thong bang tich ciia cac ma t r ^ truyen dat 33 Ciia cac M4C phan A = Aa A A*i truoTig hpp ma tran dac trung cd dang: Ki? = G A*^ G A Ka =AGA"^ G m Do'i vd-i cac M4C khong ton hao ma Iran iruyen dat A cua nd thoa man dicu kien: |GA^ =A"^G [A'^G =GA"^ (21) Do dd, thuc hien bien doi cac bieu thuc (20) ta se nhan duac: \KP =A^^Ky5A^ (22) Ka=A"KaA~^ Bieu thuc (22) chung id rang, cac ma tran K)J va K^, K« va K^ la dong dang va dd cac gia tri riengSiia nd la nhu Nghia la, dac tinh truyen dat dung ciia M4C la klidng doi bien doi nd nho cac M4C khong ton hao -J—»— ^/ r V, Z; tw i2 A Ui AcK ^fO\ V?z // ^10 A Mf Hinh 1^20 i-2^ \^2 \'2 Ap \(^20 ^20 Hinh Vay, bai toan xac dinh he so truyen dai cong suat cue dai ciia M4C va dieu kien thuc hien chung cd the duac dua ve bai loan gia tri rieng dd'i vd^i cac cap dang loan phuonng lrong khong gian irang thai tin hieu vdi metric G, va cac phan lu ctia ma tran iruyen dai ciia cac M4C phdi hpp khong ton hao A^, AR se dupx xac dinh nhu la tpa dp ciia cac vecto- lrong khdng gian irang ihai lin hieu HI KET LUAN Tir cac ket qua nhan duoc cd the rut mot so' kei luan sau: Khdng gian nang lupng Irang thai lin hieu cua mach dien tuyen linh vdi thdng so tap trung cd the xem la md hinh vat ly ciia khdng gian luycn linh Trong khong gian nang lupng Irang thai lin hieu ciia M2C tuyen tinh, binh phuang dp dai vecta luong ung xac dinh cdng suai lac dung ciia M2C Dieu cd y nghia thuc le, nd cho phep ihicl lap moi quan he giua vice quay vecta lrong khdng gian nang lup-ng vdi viec bien doi M2C nhd cac M4C khdng ion hao Viec bien doi nhu ihe khong lam thay ddi dac tfnh nang luang ciia M2C Cd the dua bai loan long hop loi uu he ihd'ng luyen linh truyen lin hieu ve bai loan xac dinh gia trj rieng ciia cac dang toan phuang lrong khdng gian luyen tinh Trong truang hop nay, cac phan tu ciia ma Iran ciia cac mach phdi hop cd the xem nhu Ipa dp ciia cac vecla trang thai lin hieu lrong khdng gian nang lupng Dieu cho phep dan gian hda bai loan long hpp cac mach phoi hop TAI LIEU THAM KHAO Kuosh A G - Kurs Vusei algcbr Nauka, 1971 Jaglom - Princip oinositenosli Gasia Nauka, 1996 34 Gantmakher F R - Teorii malrbc Nauka, 1967 Glazman N M - Konechnomernoi analiz Nauka, 1969 Lankaster P - Teoriia matrix Nauka, 1978 G Khau, R Adler - Teoriia Sumiasikh serei Nauka, 1963 Feldstein A L., Javich L R - Sintez chetuekhpohiosikov i vosisponosikov na SVCH Sbiaz, 1965 SUMMARY T H E ENERGY SPACE OF SIGNAL STATE IN CLT^RENT LINEAR SOURCE AND ITS BASIS CHARACTERISTICS In this ac;icle, the authors have shown that the energy space of signal state in the Hnear current source with concentrated parameter is a true physical model of linear space The relationship between linear operator effected in space of signal state and transformed matric of the linear current source has also been establised Based on theses results, the authors came to the conclution that the solution of the combined problem on the linear system for signal transformation will become the slution of the problem on spesific values in quadratic form in linear space - energy space of signal state Dia chi: Shan bai 26 thdng ndm 1997 vipx Ky thuat qudn sir, Q.) Tnr&ng dai hQC Khoa hQc tu nhien (X)HQC 35 ISSN 0866 708X TRUNG TAM KHOA HOC TIT NHIEN VA CONG NGHE QUOC GlA NATIONAL CENTRE FOR NATURAL SCIENCE AND TECHNOLOGY OF VIETNAM TAP CHI WTNAMESE?30URNAL OF SCIENCE AND tECHNOLOGY TAP XXXVIl - 9 - Trong d6 U^ /^ a^ bj, \k cic gid tri chuii hda cua diftn dp d6ng diftn sdng i6i vd sdng pnan xa tuong iing trftn cue thii k cua maiig nhifiu cue Trong truemg hop riftng, dtfi vdi mang cue (hinh 1), ta c6: U = a-hb I = a-b a (3) b = ap U I z-p - He s6 phan xa phiic ciia M2C, z-hp z~ t6ng ira phuc ciia M2C, p - trd khang sdng ciia doan day nd'i icri M2C [2] Ne'u ta goi khdng gian nang luong sdng trang thai tin hieu ciia mang cue tuye'n linh bao gom cac vec to: Hinhl ^b =ae+be, (4) e^ , e^ ia cac \€c to co sd khdiig gian sdng trang thai tin hieu, thi dl dang tha:y rang, khCng gian sdng trang thdi tin hieu va khdng giari kinh diln ciia mach dien tuye'n linh la ddng C5LU [4] va ma trdn chuyin x tu ca sd (e, , e^) cua khdng gian kinh diln sang co sc (e , ^ft ) cua khCng gian sdng cd ke't cdu: T = ^ (5) Cong suat tac dung cua mang cue hay Metric eua khdng gian nang luong song trang thai tin hieu Trong khdng gian nang lucmg sdng trang thdi tin hieu, cdng sudt tdc dung cua mang cue, hay binh phucfng dd dai cua vec to trang thdi tin hieu duoc xac dinh boi bilu thiic: V = p = a'-b' /? = Q + JQ hay (6) (7) lrong dd / - ma irdn gramma cua cac vec to ca sd true giao chuin hda khdng gian nang lugng sdng trang thai lin hieu [4] Ma U-dn J cd k^t cdu: J = Trong tnrdng hap xet ta cd: 63 W d&t ve Do dd, ndy ma irdn J c6 ke't edu: y= 0 -1 (S) Trong mat phdng 0-ca-lit, phuang trinh (6) la phuang trinh ciia dudng h\T>ecbol \'ai cdc dudng tiem cdn ia cac phdn gidc eua cdc gdc loa dd (xem hinh 2) Tir hinh ve thdy rang, gia tri khdng ddi cua cdng sudt tac dung eua M2C ed ihl nhdn duofc vdi cac gia tri khde ciia cac loa dd a, b Hon the' nua, cac toa dd a, b lidn he vdi bdi bilu thuc (6) Tir su phu thudc giua cae loa dd a, b, ed the ihdy r ^ g viec chuyin tir toa dd sang loa dd khac cd thi ihuc hien bdng \itc quay dudng hypecbol mdt gdc nao dd, ma su quay dd hoan loan khdng lam thay d6i dp dai \'ec ta HJ!2J]2 He so' truyen cdng suat eua mang cue Ne'u mang cue da cho, dugc nd'i vdi M4C tuye'n linh vdi ma trdn truyin sdng T thiet ldp md'i lien he giira sdng ldi va sdng phan xa tren ddu vao va diu cua M4C (xem hinh 3) - T T 'b.~ a- T T (9) C, = T C hay lrong dd Cj = [aj bjf , C2 = [bja^f la cdc vec la ma Xi^ edl ciia sdng ldi va sdng phan xa iren ddu \'ao va ddu cua M4C T= -'n ^\2 T T la ma t n truyin sdng eua M4C Thi ta se nhdn dugc M2C mdi \'di he sd' phan xa P, Dac linh cua M2C mdi dugc dac a-, ^ trung bdi cac bie'n mdi a^, b^ Cdc bien aj, T p ^ b, Pl Con ma trdn truyin song 64 • ^ ftj lai dugc xem nhu toa dp ciia \'ec ta C, cung khdng gian nang lugng sdng irang thai lin hieu Hinb3 rcua M4C dugc xem nhu loan tu tuyen linli khdng gian chieu bifih ddi vdc ta trang thai tin hieu tren ddu vao C, vec ta trang thdi tin hieu tren ddu Cdng suflfl tac dting tren ddu vdo va ddu cua M4C dugc xac dinh bdng hieu ciia cdng sudt sdng tdi va sdng phan xa P,=a^-b;- hay P^=a:-bl P, = C:JC = QiTjry'Q (10) (12) d day, ddu + bilu ihi md'i lien he Hec mit Dd'i vdi cae M4C lich cue, cd ion hao khdng ion hao cdng suat lac dung tren dau \*ao Pj cd Ihl be han, Idn han, bdng cdng suat tac dung tren ddu P^ cua nd Nghia la loan lu Tc6 the la loan tu dan, co, u-nhi-iar Tren quan diem loan hpc ma Iran truyen dai 7"cua M4C khdng l6n hao thuc hien phep bien doi loa dd ciia vec ta lrong khong gian trang thai tin hieu, nhung khdng lam thay doi dai cua vee ta Cdn ky ihuSt thu va xir ly tin hieu, cac M4C khdng idn hao dugc diing de phdi hgp giiJa cac phan tir cua he, dam bao he sd truyen tai cdng suat tac dung tu nguon tdi phu lai dai gia iri Idn nhat va chpn loc tin h g u He so' iruyen dat ciia cdng suat cua M4C lrong khdng gian nang lugng sdng dugc xac dinh bdi bilu thiic: ^ ^R^ C:JC, ^crjTjrrc, p p, arjTC c;jc, ^^^^ Bieu ihiie (13) cho phep dua bai loan xac dinh dieu kien phdi hgp M4C ve bai loan gia iri rieng CLia cac dang loan phuang lrong khdng gian luyen ii'nh - khdng gian nang lugng sdng irang thai lin hieu [1] II KET LUAN Khdng gian nang luang sdng trang thai tin hieu \ a khdng gian kinh diln ciia mach dien luven tinh la ding cau, dd phan tich mach dien luyen u'nh cd ihl xet lrong khdng gian sdng ho'ac khdng gian kinh dien CJ giai tdn sd thap thudng xci lrong khdng gian kinh diln, cdn d giai tdn sd' cao thuan Igi han la xel U-ong khdng gian sdng Viec su dung cac M4C khdng ion hao m k tren ddu vao va dau cua M4C da cho khdng lam thay doi dac linh nang lugng ciia nd, ngugc lai nd cho phep phoi hgp M4C vdi dudng iruyen TAI LIEU THAM KHAO Dd Huy Giac, VQ Thanh Thai - Khdng gian nang lugng trang thai tin hieu ciia mach dien luven linh va cac dac tinh co ban ciia nd Tap chi Khoa hpc va Cdng nghe lap XXXVl (1) '7 1998 Dd Huy Giac - Ly ihuyel mach vd luyen dicn Tap I Hpc vien Ky ihudl quan su , 1990 •^ Feldstein A.L., Javich L.R - Smiez cheiuekhpolnosikov i vosmipoliuxnikov na SVCH Sviaz, 1971 GanimakhepPh R- - Teoriia malnx Nauka 1967 65 SUMMARY THE WAVE ENERGY SPACE OF SIGNAL STATE IN LINEAR CIRCUIT AND TTS BASIC CHARACTERISTICS In [1] we examined the energy space of signal stale in the linear circuit The coordinates of vectors in space are the values of voltage and current on poles of a mulli - pole network However, in the band-width of super high frequency, test objects in the wave space are the values of incident and reflected waves Similarly as in ihe classical space [1], in the wave space, we shall examine concretely ils basic characteristics in this article Based on the results of solulion the combined problem for signal transfermation will become the solution of the problem onsipesific in linear space - energy space of signal stale Dja chi: Dd Huy Giac Hpc \idn Ky thu$t quin sir Vu Thanh Thai Truang Dai hoc Khoa hgc tirnbi^n 66 NhStn bai 12 thang nam 1999 Tap chi «- KHOA HOC VA CONG NGHE *""" Vietnamese Journal of Science and Technology Tap XXXVIL so 6, nam 1999 MUC LUC CONTENTS I ran a 60 nam nuay sinh PGS TS Nmiven Thanh Son Dang Van Due, Le Qudc Himg, N^iiyen^.San Hai Nguyen Tien Phir(m