1. Trang chủ
  2. » Giáo Dục - Đào Tạo

giai tich 1 giai tich tich phan suy rong

60 97 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 60
Dung lượng 628,06 KB

Nội dung

I Tích phân suy rộng loại Bài tốn Tìm diện tích S miền vơ hạn giới hạn đường cong: y  f ( x)  0, trục hoành, đường thẳng x = a  b a a s   f ( x)dx  lim  f ( x)dx b b CuuDuongThanCong.com   https://fb.com/tailieudientucntt Tích phân suy rộng loại y  f ( x) khả tích đoạn  Tích phân  a, b, với b  a b f ( x ) dx  f ( x)dx  blim   a a gọi tích phân suy rộng loại Các tích phân sau tích phân suy rộng loại a a  b f ( x ) dx  f ( x)dx  blim    a    a  f ( x)dx   f ( x)dx   f ( x)dx CuuDuongThanCong.com https://fb.com/tailieudientucntt  b a a f ( x ) dx  f ( x)dx  blim   Nếu giới hạn tồn hữu hạn tích phân gọi hội tụ Ngược lại, giới hạn không tồn vơ cùng, tích phân gọi phân kỳ Hai vấn đề tích phân suy rộng 1) Tính tích phân suy rộng (thường phức tạp) 2) Khảo sát hội tụ CuuDuongThanCong.com https://fb.com/tailieudientucntt Tính tích phân suy rộng (công thức Newton – Leibnitz) Giả sử F(x) nguyên hàm f(x)  a,    b a a  lim  F (b)  F (a)  f ( x ) dx  f ( x)dx  blim  b  Tích phân tồn tồn lim F (b) : F () b    f ( x)dx  F ( x) a  F ()  F (a) a CuuDuongThanCong.com https://fb.com/tailieudientucntt Ví dụ Tính diện tích miền phẳng giới hạn y  , trục hoành đường thẳng x = x b  b  1  dx dx    S    lim   lim   lim      b b x  x x x  b   1 Diện tích miền S 1, hữu hạn CuuDuongThanCong.com https://fb.com/tailieudientucntt Ví dụ Tính diện tích miền phẳng giới hạn , trục hoành đường thẳng x = y x    b b dx dx  blim ln | x |  lim ln b    lim S      b b x x 1 S miền có diện tích vơ hạn,  CuuDuongThanCong.com https://fb.com/tailieudientucntt Tính diện tích miền phẳng giới hạn Ví dụ y  , trục hồnh x 1     dx dx b S 2   blim arctan x     x  x 1 Diện tích miền S  CuuDuongThanCong.com https://fb.com/tailieudientucntt Ví dụ Tính tích phân I  e 2 x dx I  e 2 x dx   e Ví dụ 2 x   e e2       2  2e  Tính tích phân I   e I   e dx  x ln x   e dx x ln x  d (ln x)  1        ln x ln x e  ln() ln e  CuuDuongThanCong.com https://fb.com/tailieudientucntt Ví dụ Tính tích phân I   dx x  5x  1 1    x  x  ( x  2)( x  3) x 3 x 2      I   dx  ln | x  |  ln | x  | x2  x 3  ()  () Dạng vô định.? Không phép dùng: lim ( f  g )  lim f  lim g x  x  x  chưa đảm bảo hai giới hạn vế phải chắn tồn  x 3  x 3 I  ln  lim  ln x  x  x  CuuDuongThanCong.com  43   ln   ln1  ln  ln  https://fb.com/tailieudientucntt Ví dụ I Tính   I  x 1  1 10 x x I   x  x5  x10 1 Đổi biến: t   dt   dx x x dx  dx Đổi cận: dt t  t 1  ln  t  1/    x 1 t 1 x    t  dt  t  1/   t  1/   3/  3/ CuuDuongThanCong.com https://fb.com/tailieudientucntt Kết (được sử dụng để khảo sát hội tụ)  phân kỳ,   1   dx   a  x  a  hội tụ,   b  phân kỳ,   1   dx   a b  x   hội tụ,   b Chú ý: Kết luận ngược lại so với tích phân loại một! CuuDuongThanCong.com https://fb.com/tailieudientucntt Ví dụ I  Khảo sát hội tụ 1 Ta có f ( x)  ( x  1)( x  1) Chọn g ( x)   x  1 1/ 2 Tích phân  f ( x)dx x 1 dx x2  1  x  1 1/ f ( x)  lim  x  g ( x ) hữu hạn, khác  g ( x)dx hội tụ hay phân kỳ Vì  g ( x)dx hội tụ (    1), nên tích phân I hội tụ CuuDuongThanCong.com https://fb.com/tailieudientucntt Ví dụ f ( x)  ln  x3 dx ex 1 Khảo sát hội tụ I    ln  x  x 0  e 1 x x3/ hội tụ     2/5 x ( x  0) Ví dụ Khảo sát hội tụ I  f ( x)  2x   x  (3  x) CuuDuongThanCong.com   x 3 18 ( x  3)1/ x dx 9 x hội tụ    https://fb.com/tailieudientucntt x3  x I  dx tan x  x Ví dụ Khảo sát hội tụ x3 x tan x  x  x    ( x )  x    ( x3 ) 3 5x  x tan x  x x 0  x1/  5/ x / ( x  0) phân kỳ    Ví dụ Khảo sát hội tụ I  f ( x)  x 2  x4 x 2 CuuDuongThanCong.com x  4 ( x  4) dx x 2 phân kỳ   https://fb.com/tailieudientucntt I Khảo sát hội tụ Ví dụ   sin xdx I   x sin x lim  x 0 x   sin xdx x sin xdx  I1  I 2 x I1 khơng tích phân suy rộng mà tích phân xác định nên HT Ta có sin x   g ( x) x x  Vì  g ( x)dx HT , nên I1 HT, suy I HT CuuDuongThanCong.com https://fb.com/tailieudientucntt I Tính tích phân sau  1)  dx ( x  1)( x  2)  2)  dx ( x  1)( x  2)( x  3) ln  ln  ln (5 x  3) 3)  dx ( x  2)(3 x  x  1) 11 ln  ln 5 ( x  1) 4)  dx x ( x  1)  ln    5)  2 dx  x  1 ( x  1) CuuDuongThanCong.com 17  ln  16 128 https://fb.com/tailieudientucntt  6)  dx x x2 x3 7)  dx x ( x  x  1)   8)  x x 1 dx  dx 9)  4x  4x  arctan 7  ln  18  arctan   dx 10)  x  x e e CuuDuongThanCong.com https://fb.com/tailieudientucntt  11)  e  e x x dx  12)  dx x (ln x  1)  2ln   13)  dx cosh ( x )  14)  xe 2 x dx  dx 15)  x ( x  3) CuuDuongThanCong.com 1 ln https://fb.com/tailieudientucntt  dx 16)  x 1 e  ln x 17)  x dx 1  18)  dx ex 1  dx 19)   4ln  x2 x2  1  e 1  ln    e 1   dx 20)  sinh x CuuDuongThanCong.com https://fb.com/tailieudientucntt  dx 3e dx 22)  e x ln x 21)  e 3 x   ln xdx 23)  x  dx 24)  (1  x ) x  xdx 25)  x 1 CuuDuongThanCong.com  ln      arctan   3 3 https://fb.com/tailieudientucntt  26)  dx   27)  e x 1  x 2 x  cos3 xdx  dx 28)   ( x  x  1)  dx (4 x  1) x  29)   30)  x  12   x2  dx CuuDuongThanCong.com 3 13 4 3  13 https://fb.com/tailieudientucntt  31)  dx  x  3  dx 32)  3/ ( x  3)   x3 33)  x e dx  ln xdx 34)  x  35)  1  x  1 dx CuuDuongThanCong.com 10 5 64 https://fb.com/tailieudientucntt  36)    x  x3 dx 37)  1 (4  x)  x 2 (1  x ) 4 x 2 dx 39)  x x 1 dx x x 1 40)   15 x dx 38)  x dx CuuDuongThanCong.com 625 187  5    https://fb.com/tailieudientucntt I Tìm tất giá trị  để chuỗi hội tụ  e3/ x   1)  ln 1   dx,       arctan 3x 2)  dx  (2  x)  3)  dx  x  2x  x 4)  x  dx e x  5)  dx  x  2x CuuDuongThanCong.com không tồn  1    1 https://fb.com/tailieudientucntt  ln  x 6)  e x 1  7)    dx dx  x  ln(1  x ) x5 ( x3  1)  8)  x  x5  1  9)    dx dx  x3  sin x x x e  1 x 10)  dx cosh x  cos x CuuDuongThanCong.com 3 1   5    2  https://fb.com/tailieudientucntt

Ngày đăng: 15/03/2021, 08:04

TỪ KHÓA LIÊN QUAN

w