1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phát triển các phương pháp tối ưu hóa thông minh cho một số bài toán cơ học

136 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 136
Dung lượng 2,19 MB

Nội dung

MINISTRY OF EDUCATION AND TRAINING HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION LAM PHAT THUAN DEVELOPMENT OF META-HEURISTIC OPTIMIZATION METHODS FOR MECHANICS PROBLEMS PHD THESIS MAJOR: ENGINEERING MECHANICS Ho Chi Minh City, 01/2021 THE WORK IS COMPLETED AT HCM CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION LAM PHAT THUAN DEVELOPMENT OF META-HEURISTIC OPTIMIZATION METHODS FOR MECHANICS PROBLEMS MAJOR: ENGINEERING MECHANICS - 13252010105 Supervisor 1: Assoc Prof NGUYEN HOAI SON Supervisor 2: Assoc Prof LE ANH THANG PhD thesis is protected in front of EXAMINATION COMMITTEE FOR PROTECTION OF DOCTORAL THESIS HCM CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION Date……month……year…… ii ORIGINALITY STATEMENT I, Lam Phat Thuan, hereby assure that this dissertation is my own work The data and results stated in this dissertation are honest and have not been published by any works Ho Chi Minh City, January 2021 Lam Phat Thuan ACKNOWLEDGEMENTS This dissertation has been carried out in the Faculty of Civil Engineering, HCM City University of Technology and Education, Viet Nam The process of conducting this thesis brings excitement but has quite a few challenges and difficulties And I can say without hesitation that it has been finished thanks to the encouragement, support and help of my professors and colleagues First of all, I would like to express my deepest gratitude to Assoc Prof Dr Nguyen Hoai Son and Assoc Prof Le Anh Thang, especially Assoc Prof Dr Nguyen Hoai Son from GACES Group, Ho Chi Minh City University of Technology and Education, Vietnam for having accepted me as their PhD student and for the enthusiastic guidance and mobilization during my research Secondly, I would like also to acknowledge Msc Ho Huu Vinh for his troubleshooting and the cooperation in my study Furthermore, I am grateful to Civil Engineering Faculty for their great support to help me have good environment to my research Thirdly, I take this chance to thank all my nice colleagues at the Faculty of Civil Engineering, Ho Chi Minh City University of Technology and Education, for their professional advice and friendly support Finally, this dissertation is dedicated to my parents who have always given me valuable encouragement and assistance Lam Phat Thuan ii ABSTRACT Almost all design problems in engineering can be considered as optimization problems and thus require optimization techniques to solve During the past few decades, many optimization techniques have been proposed and applied to solve a wide range of various optimization problems Among them, meta-heuristic algorithms have gained huge popularity in recent years in solving design optimization problems of many types of structure with different materials These meta-heuristic algorithms include genetic algorithms (GA), particle swarm optimization (PSO), bat algorithm (BA), cuckoo search (CS), differential evolution (DE), firefly algorithm (DA), harmony search (HS), flower pollination algorithm (FPA), ant colony optimization (ACO), bee algorithms (BA), Jaya algorithm and many others Among the methods mentioned above, the Differential Evolution is one of the most widely used methods Since it was first introduced in 1997 by Storn and Price [1], many studies have been carried out to improve and apply DE in solving structural optimization problems The DE has demonstrated excellently performance in solving many different engineering problems Besides the Differential Evolution algorithm, the Jaya algorithm recently proposed by Rao [2] in 2016 is also an effective and efficient methods that has been widely applied to solve many optimization problems and showed its good performance It gains dominate results when being tested with benchmark test functions in comparison with other meta-heuristic methods However, like many other population-based optimization algorithms, one of the disadvantages of DE and Jaya is that the computational time obtaining optimal solutions is much slower than the gradient-based optimization methods This is because DE and Jaya takes a lot of time evaluating the fitness of individuals in the population To overcome this disadvantage, Artificial Neuron Networks (ANN) are studied to combine with the meta-heuristic algorithms, such as Differential Evolution, to form a new approach which has the ability to solve the design optimization effectively Moreover, one of the most important issues in engineering design is that the optimal designs are often effected by uncertainties which can be occurred from various sources, such as iii manufacturing processes, material properties and operating environments These uncertainties may cause structures to improper performance as in the original design, and hence may result in risks to structures [3] Therefore, reliability-based design optimization (RBDO) can be considered as an important and comprehensive strategy for finding an optimal design In this dissertation, an improved version of Differential Evolution has been first time utilized to solve for optimal fiber angle and thickness of the reinforced composite Secondly, the Artificial Neural Network is integrated to the optimization process of the improved Differential Evolution algorithm to form a new algorithm call ABDE (ANN-based Differential Evolution) algorithm This new algorithm is then applied to solve optimization problems of the reinforced composite plate structures Thirdly, an elitist selection technique is utilized to modify the selection step of the original Jaya algorithm to improve the convergence of the algorithm and formed a new version of the original Jaya called iJaya algorithm The improved Jaya algorithm is then applied to solve for optimization problem of the Timoshenko composite beam and obtained very good results Finally, the so-called called (SLMD-iJaya) algorithm which is the combination of the improved Jaya algorithm and the Global Single-Loop Deterministic Methods (SLDM) has been proposed as a new tool set for solving the Reliability-Based Design Optimization problems This new method is applied to look for optimal design of Timoshenko composite beam structures with certain level of reliability iv TÓM TẮT Hầu toán thiết kế kỹ thuật coi tốn tối ưu địi hỏi kỹ thuật tối ưu hóa để giải Trong thập kỷ qua, nhiều kỹ thuật tối ưu hóa đề xuất áp dụng để giải loạt vấn đề khác Trong số đó, thuật tốn meta-heuristic trở nên phổ biến năm gần việc giải vấn đề tối ưu hóa thiết kế nhiều loại cấu trúc với vật liệu khác Các thuật toán meta-heuristic bao gồm Genetic Algorithms, Particle Swarm Optimization, Bat Algorithm, Cuckoo Search, Differential Evolutioin, Firefly Algorithm, Harmony Search, Flower Pollination Algorithm, Ant Colony Optimization, Bee Algorithms, Jaya Algorithm nhiều thuật toán khác Trong số phương pháp đề cập trên, Differential Evolution phương pháp sử dụng rộng rãi Kể từ Storn Price [1] giới thiệu lần đầu tiên, nhiều nghiên cứu thực để cải thiện áp dụng DE việc giải vấn đề tối ưu hóa cấu trúc DE chứng minh hiệu suất tuyệt vời việc giải nhiều vấn đề kỹ thuật khác Bên cạnh thuật toán Differential Evolution, thuật toán Jaya Rao [2] đề xuất gần phương pháp hiệu áp dụng rộng rãi để giải nhiều vấn đề tối ưu hóa cho thấy hiệu suất tốt Nó đạt kết vượt trội thử nghiệm với hàm test benchmark so với phương pháp dựa dân số khác Tuy nhiên, giống nhiều thuật toán tối ưu hóa dựa dân số khác, nhược điểm DE Jaya thời gian tính toán tối ưu chậm nhiều so với phương pháp tối ưu hóa dựa độ dốc (gradient-based algorithms) Điều DE Jaya nhiều thời gian để đánh giá hàm mục tiêu cá thể dân số Để khắc phục nhược điểm này, mạng nơ ron nhân tạo (Artificial Neural Networks) nghiên cứu để kết hợp với thuật toán meta-heuristic, Differential Evolution, để tạo thành phương pháp tiếp cận giúp giải v tốn tối ưu hóa thiết kế cách hiệu Bên cạnh đó, vấn đề quan trọng thiết kế kỹ thuật thiết kế tối ưu thường bị ảnh hưởng yếu tố ngẫu nhiên Những yếu tố xảy từ nhiều nguồn khác nhau, chẳng hạn quy trình sản xuất, tính chất vật liệu mơi trường vận hành khiến cấu trúc hoạt động khơng thiết kế ban đầu, dẫn đến rủi ro cho cấu trúc [3] Do đó, tối ưu hóa thiết kế dựa độ tin cậy (Reliability-Based Design Optimization) coi chiến lược tồn diện, cần thiết để tìm kiếm thiết kế tối ưu Trong luận án này, lần phiên cải tiến phương pháp Differential Evolution sử dụng để tìm góc hướng sợi tối ưu độ dày gia cường vật liệu composite Thứ hai, Mạng nơ ron nhân tạo (ANN) tích hợp vào quy trình tối ưu hóa thuật tốn Differentail Evolution cải tiến để hình thành thuật toán gọi thuật toán ABDE (Artificial Neural Network-Based Differential Evolution) Thuật tốn sau áp dụng để giải tốn tối ưu hóa cấu trúc composite gia cường Thứ ba, kỹ thuật lựa chọn tinh hoa (Elitist Selection Technique) sử dụng để hiệu chỉnh bước lựa chọn thuật toán Jaya ban đầu để cải thiện hội tụ thuật tốn hình thành phiên thuật toán Jaya gọi thuật toán iJaya Thuật tốn Jaya cải tiến (iJaya) sau áp dụng để giải tốn tối ưu hóa dầm Timoshenko vật liệu composite thu kết tốt Cuối cùng, thuật toán SLMD-iJaya tạo thành từ kết hợp thuật toán Jaya cải tiến phương pháp vòng lặp đơn xác định (Single-Loop Deterministic Method) đề xuất công cụ để giải vấn đề Tối ưu hóa thiết kế dựa độ tin cậy Phương pháp áp dụng để tìm kiếm thiết kế tối ưu cấu trúc dầm composite Timoshenk cho kết vượt trội vi CONTENTS ORIGINALITY STATEMENT i ACKNOWLEDGEMENTS ii ABSTRACT iii CONTENTS vii NOMENCLATURE x LIST OF TABLES xiii LIST OF FIGURES xiv CHAPTER 1.1 An overview on research direction of the thesis .1 1.2 Motivation of the research 1.3 Goals of the dissertation 1.4 Research scope of the dissertation .7 1.5 Outline 1.6 Concluding remarks CHAPTER 10 2.1 Introduction to Composite Materials 10 2.1.1 Basic concepts and applications of Composite Materials .10 2.1.2 Overview of Composite Material in Design and Optimization 16 2.2 Analysis of Timoshenko composite beam 18 2.2.1 Exact analytical displacement and stress 18 2.2.2 Boundary-condition types .22 2.3 Analysis of reinforced composite plate 23 CHAPTER 26 vii 3.1 Overview of Metaheuristic Optimization 26 3.1.1 Meta-heuristic Algorithm in Modeling .27 3.1.2 Meta-heuristic Algorithm in Optimization 31 3.2 Solving Optimization problems using improved Differential Evolution 41 3.2.1 Brief on the Differential Evolution algorithm [14], [129] .42 3.2.2 The modified algorithm Roulette-Wheel-Elitist Differential Evolution 43 3.3 Solving Optimization problems using improved Jaya algorithm 44 3.3.1 Jaya Algorithm 44 3.2.2 Improvement version of Jaya algorithm 45 3.4 Reliability-based design optimization using a global single loop deterministic method .46 3.4.1 Reliability-based optimization problem formulation 48 3.4.2 A global single-loop deterministic approach 49 CHAPTER 53 4.1 Fundamental theory of Neural Network 53 4.1.1 Basic concepts on Neural Networks [146] 55 4.1.2 Neural Network Structure 56 4.1.3 Neural Network Design Steps 60 4.1.4 Levenberg-Marquardt training algorithm .61 4.1.5 Over fitting, Over training 63 4.2 Artificial Neural Network based meta-heuristic optimization methods 65 CHAPTER 68 viii Springer, 2008 [21] L Marin, D Trias, P Badallo, G Rus, and J Mayugo, “Optimization of composite reinforced panels under mechanical and hygrothermo loads using neural networks and genetic algorithms,” Compos Struct., vol 94, pp 3321– 3326, 2012 [22] Zissis and Dimitrios, “A cloud based architecture capable of perceiving and predicting multiple vessel behaviour,” Appl Soft Comput., vol 35, pp 652– 661, 2015 [23] N Sengupta, M Sahidullah, and G Saha, “Lung sound classification using cepstral-based statistical features,” Comput Biol Med., vol 75, no 1, pp 118– 129, 2016 [24] Schechner and Sam, “Facebook Boosts A.I to Block Terrorist Propaganda,” Wall Str J., 2017 [25] R J Eggert, “Quantifying design feasibility using probabilistic feasibility analysis,” in 1991 ASME design technical conferences, 1991, pp 235–240 [26] A Parkinson, C Sorensen, and N Pourhassan, “General approach for robust optimal design,” J Mech Des Trans ASME, vol 115, pp 74–80, 1993 [27] M Hohenbichler, “New light on first- and second-order reliability methods,” Struct Saf., vol 4, pp 267–284, 1987 [28] Y T Wu, H R Millwater, and T A Cruse, “Advanced probabilistic structural analysis method for implicit performance functions,” AIAA J., vol 28, no 9, pp 1663–1669, 1990 [29] H U Koyluoglu and S R K Nielsen, “New approximations for SORM integrals,” Struct Saf., vol 13, pp 235–246, 1994 [30] T Krishnamurthy and V J Romero, “Construction of response surface with higher order continuity and its application to reliability engineering,” AIAA Article, pp 2002–1466, 2002 [31] X Du and W Chen, “Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design,” J Mech Des, vol 126, no 2, pp 105 225–233, 2004 [32] R Yang and L Gu, “Experience with approximate reliability-based optimization methods,” Struct Multidiscip Optim, vol 26, pp 152–59, 2004, doi: 10.1007/s00158-003-0319-2 [33] T Zou and S Mahadevan, “A direct decoupling approach for efficient reliability-based design optimization,” Struct Multidiscip Optim., vol 31, no 13, pp 190–200, 2006 [34] P B Thanedar and S Kodiyalam, “Structural optimization using probabilistic constraints,” Struct Multidiscip Optim., vol 4, no 3, pp 236–240, 1992 [35] J Tu, K K Choi, and Y H Park, “Design potential method for robust system parameter design,” AIAA J., vol 39, no 4, pp 667–677, 2001 [36] J Liang, Z P Mourelatos, and J Tu, “A single-loop method for reliabilitybased design optimisation,” Int J Prod Dev., vol 5, no 1–2, pp 76–92, 2008 [37] T H Nguyen, J Song, and G H Paulino, “Single-loop system reliability-based design optimization using matrixbased system reliability method: theory and applications,” J Mech Des., vol 132, no 1, pp 011005–011011, 2010 [38] F Li, W Teresa, B Adedeji, H Mengqi, and S Som, “A Single-Loop Deterministic Method for Reliability-Based Design Optimization,” Eng Optim., vol 45, no 4, pp 435–458, 2013 [39] S A Wainwright, W D Biggs, J D Currey, and J M Gosline, Mechanical Design in Organisms Princeton, NJ.: Princeton University Press, 1976 [40] A A Griffith, “The phenomena of rupture and flow in solids,” Philos Trans R Soc., vol 221A, pp 163–198, 1921 [41] R F Gibson, Principles of composite material mechanics CRC Press, 2016 [42] Z Gurdal, R Haftka, and P Hajela, Design and Optimization of Laminated composite materials John Wiley & Sons, INC, 1999 [43] Z G Apalak, M K Apalak, R Ekici, and M Yildirim, “Layer optimization for maximum fundamental frequency of rigid point-supported laminated composite plates”,” Polym Compos., vol 32, no 12, pp 1988–2000, 2011 106 [44] M H Sadr and H G Bargh, “Optimization of laminated composite plates for maximum fundamental frequency using Elitist-Genetic algorithm and finite strip method,” J Glob Optim., vol 54, no 4, pp 707–728, 2012 [45] S.-F Hwang, Y.-C Hsu, and Y Chen, “A genetic algorithm for the optimization of fiber angles in composite laminates,” J Mech Sci Technol., vol 28, no 8, pp 3163–3169, 2014 [46] M H Hajmohammad, M Salari, S A Hashemi, and M H Esfe, “Optimization of stacking sequence of composite laminates for optimizing buckling load by neural network and genetic algorithm,” Indian J Sci Technol., vol 6, no 8, pp 5070–5077, 2013 [47] Z Jing, X Fan, and Q Sun, “Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm,” Compos Struct., vol 121, pp 225–236, 2015 [48] V Ho-Huu, T D Do-Thi, H Dang-Trung, T Vo-Duy, and T Nguyen-Thoi, “Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method,” Compos Struct., vol 146, pp 132–147, 2016 [49] H.-K Cho, “Design optimization of laminated composite plates with static and dynamic considerations in hygrothermal environments,” Int J Precis Eng Manuf., vol 14, no 8, pp 1387–1394, 2013 [50] Q Liu and J Paavola, “Lightweight design of composite laminated structures with frequency constraint,” Compos Struct, vol 156, pp 356–360, 2016 [51] C M C Roque, P A L S Martins, A J Ferreira, and R M Jorge, “Differential evolution for free vibration optimization of functionally graded nano beams,” Compos Struct, vol 156, pp 29–34, 2016 [52] G C Tsiatas and A E Charalampakis, “Optimizing the natural frequencies of axially functionally graded beams and arches,” Compos Struct., vol 160, pp 256–266, 2017 [53] Q Liu, “Exact sensitivity analysis of stresses and lightweight design of 107 Timoshenko composite beams,” Compos Struct, vol 143, no 272–86, 2016 [54] Q Liu, “Analytical sensitivity analysis of eigenvalues and lightweight design of composite laminated beams,” Compos Struct, vol 143, pp 272–286, 2016, doi: http://dx.doi.org/10.1016/j.compstruct.2016.02.028 [55] F Reguera and V H Cortínez, “Optimal design of composite thin-walled beams using simulated annealing,” Thin- Wall Struct., vol 104, pp 71–81, 2016 [56] R Kathiravan and R Ganguli, “Strength design of composite beam using gradient and particle swarm optimization,” Compos Struct, vol 81, pp 471–9, 2007 [57] S Suresh, P Sujit, and A Rao, “Particle swarm optimization approach for multi- objective composite box-beam design,” Compos Struct, vol 81, pp 598–605, 2007 [58] W Lentz and E Armanios, “Optimum coupling in thin-walled, closed-section composite beams,” J Aerosp Eng, vol 11, pp 81–89, 1998 [59] S H Crandall, N C Dahl, and T J Lardner, An Introduction to the Mechanics of Solids New York, NY: McGraw-Hill, Inc., 1978 [60] J R Vinson and R L Sierakowski, The Behavior of Structures Composed of Composite Materials Dordrecht, The Netherlands.: Martinus Nijhoff Publishers, 1986 [61] M Kolli and K Chandrashekhara, “Finite element analysis of reinforced laminated plates under transverse loading,” Compos Sci Technol., vol 56, no 12, pp 1355–1361, 1996 [62] X S Yang, Nature-Inspired Metaheuristic Algorithms, 1st ed Luniver Press, 2008 [63] X S Yang, Engineering Optimization: An Introduction with Metaheuristic Applications Hoboken, NJ, USA: John Wiley and Sons, 2010 [64] C Blum and A Roli, “Metaheuristics in combinatorial optimization: Overview and conceptural comparision,” ACM Comput Surv., vol 35, no 268–308, 108 2003 [65] X S Yang, “Review of metaheuristics and generalized evolutionary walk algorithm,” Int J Bio-Inspired Comput., vol 3, no 2, pp 77–84, 2011 [66] J Kennedy and R Eberhart, “Particle swarm optimizatio,” in Proc of the IEEE Int Conf on Neural Networks, 1995, pp 1942–1948 [67] S Kirkpatrick, C D Gellat, and M P Vecchi, “Optimization by simulated annealing,” Science (80- )., vol 220, pp 671–680, 1983 [68] M F Metenidis, M Witczak, and J Korbicz, “A novel genetic programming approach to nonlinear system modelling: application to the DAMADICS benchmark problem,” Eng Appl Art Int., vol 17, no 363–370, 2004 [69] A H Gandomi, A H Alavi, and G J Yun, “Nonlinear Modeling of Shear Strength of SFRC Beams Using Linear Genetic Programming,” Struct Eng Mech., vol 38, no 1, pp 1–25, 2011 [70] A H Gandomi, X S Yang, and A H Alavi, “Mixed variable structural optimization using firefly algorithm,” Comput Struct., vol 89, no 23/24, pp 2325–2336, 2011 [71] A H Gandomi, X S Yang, and A H Alavi, “Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems,” Eng Comput., vol 29, pp 17–35, 2011, doi: 10.1007/s00366-011-0241-y [72] A H Gandomi, X S Yang, S Talatahari, and S Deb, “Coupled Eagle Strategy and Differential Evolution for Unconstrained and Constrained Global Optimization,” Comput Math with Appl., vol 63, no 1, pp 191–200, 2012 [73] A H Gandomi, S K Babanajad, A H Alavi, and Y Farnam, “A Novel Approach to Strength Modeling of Concrete under Triaxial Compression.,” J Mater Civ Eng., doi: 10.1061/(ASCE)MT.1943-5533.0000494 [74] S Haykin, Neural networks – A comprehensive foundation, 2nd ed Englewood Cliffs.: Prentice Hall Inc, 1975 [75] J R Koza, Genetic programming: On the programming of computers by means of natural selection Cambridge:MA: MIT Press, 1992 109 [76] S S Sakla and A Ashour, “Prediction of tensile capacity of single adhesive anchors us-ing neural networks,” Comput Struct., vol 83, no 21–22, pp 1792–1803, 2005 [77] L I Perlovsky, Neural networks and intellect Oxford University Press, 2001 [78] R M Friedberg, “A learning machine: Part I,” IBM J Res Dev., vol 2, pp 2– 13, 1958 [79] N L Cramer, “A representation for the adaptive generation of simple sequential programs,” Genet Algorithms their Appl., pp 183–187, 1985 [80] A A Javadi and M Rezania, “Applications of artificial intelligence and data mining techniques in soil modeling,” Geomech Eng., vol 1, no 1, pp 53–74, 2009 [81] R S Torres et al., “A genetic programming framework for content-based image retrieval,” Pattern Recognit., vol 42, no 2, pp 283–292, 2009 [82] W Banzhaf, P Nordin, R Keller, and F Francone, Genetic Programming - An Introduction On the Automatic Evolution of Computer Programs and its Application San Francisco.: dpunkt/Morgan Kaufmann: Heidelberg, 1998 [83] A H Alavi, A H Gandomi, J Bolury, and A Mollahasani, “Linear and TreeBased Genetic Programming for Solving Geotechnical Engineering Problems,” in Metaheuristics in Water Resources, Geotechnical and Transportation Engineering, Elsevie, 2012, pp 289–310 [84] E K Ceven and O Ozdemir, “Using Fuzzy Logic to Evaluate and Predict Chenille Yarn’s Shrinkage Behaviour,” FIBRES Text East Eur., vol 15, no 3, pp 55–59, 2007 [85] L A Zadeh, “Fuzzy sets,” Inf Control, vol 8, pp 338–353, 1965 [86] S Afandizadeh-Zargari, S Zabihi, A H Alavi, and A H Gandomi, “A Computational Intelligence Based Approach for Short-Term Traffic Flow Prediction.,” Expert Syst., vol 29, no 2, pp 124–142, 2012 [87] I Topcu and M Sarıdemir, “Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic.,” Comput 110 Mater Sci., vol 41, pp 305–311, 2008 [88] X S Yang, “Metaheuristic optimization,” Scholarpedia, vol 6, no 8, p 11472, 2011 [89] X S Yang, “Chaos-enhanced firefly algorithm with automatic parameter tuning,” Int J Swarm Intell Res., vol 2, no 4, pp 1–11, 2011 [90] S Koziel and X S Yang, Computational Optimization, Methods and Algorithms, Studies in Computational Intelligence, vol 356 Berlin, Germany.: Springer, 2011 [91] J Holland, Adaptation in Natural and Artificial systems Ann Anbor: University of Michigan Press, 1975 [92] D Rani, S K Jain, D K Srivastava, and M Perumal, “Genetic Algorithms and Their Applications to Water Resources Systems,” in Metaheuristics in Water Resources, Geotechnical and Transportation Engineering, Elsevier, 2012, pp 43–77 [93] A Nikjoofar and M Zarghami, “Water Distribution Networks Designing by the Multiobjective,” 2012 [94] K J Geem ZW, “A new heuristic optimization algorithm; harmony searc,” Simulation, vol 76, pp 60–68, 2001 [95] K Lee and Z Geem, “A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice,” Comput Methods Appl Mech Eng., vol 194, pp 3902–3933, 2005 [96] K Lee, Z Geem, and S.-H Lee, “The harmony search heuristic algorithm for discrete structural optimization,” Eng Optim., vol 37, pp 663–684, 2005 [97] G ZW, “Optimal cost design of water distribution networks using harmony search,” Eng Optim., vol 38, pp 259–277, 2006 [98] S Degertekin, “Optimum design of steel frames using harmony search algorithm.,” Struct Multidiscip Optim., vol 36, pp 393–401, 2009 [99] S Degertekin, “Harmony search algorithm for optimum design of steel frame structures: a comparative study with other optimization methods,” Struct Eng 111 Mech., vol 29, pp 391–410, 2008 [100] M T Ayvaz and A Elci, “Application of the Hybrid HS Solver Algorithm to the Solution of Groundwater Management Problems,” in Metaheuristics in Water Resources, Geotechnical and Transportation Engineering, Elsevier, 2012, pp 79–97 [101] Y M Cheng and Z W Geem, “Hybrid Heuristic Optimization Methods in Geotechnical Engineering,” in Metaheuristics in Water Resources, Geotechnical and Transportation Engineering, Elsevier, 2012, pp 205–229 [102] J Kennedy, R Eberhart, and Y Shi, Swarm intelligence San Francisco (CA) Morgan Kaufman Publishers, 2001 [103] S Talatahari, M Kheirollahi, C Farahmandpour, and A H Gandomi, “A multi-stage particle swarm for optimum design of truss structures,” Neural Comput Applic, 2013, doi: 10.1007/s00521-012-1072-5 [104] A Kaveh and S Talatahari, “Hybrid Algorithm of Harmony Search, Particle Swarm and Ant Colony for Structural Design Optimization,” Stud Comput Intell., vol 239, pp 159–198, 2009 [105] A Kaveh and S Talatahari, “A Discrete Particle Swarm Ant Colony Optimization for Design of Steel Frames,” Asian J Civ Eng., vol 9, no 6, pp 563–575, 2008 [106] A Kaveh and S Talatahari, “A Particle Swarm Ant Colony Optimization Algorithm for Truss Structures With Discrete Variables,” J Constr Steel Res., vol 65, no 8–9, pp 1558–1568, 2009 [107] A Hadidi, A Kaveh, A B Farahmand, S Talatahari, and C Farahmandpour, “An Efficient Optimization Algorithm Based on Particle Swarm and Simulated Annealing for Space Trusses,” Int J Optim Civ Eng., vol 1, no 3, pp 375– 395, 2011 [108] Y Shi and R Eberhart, “A modified particle swarm optimizer,” in Proceedings of IEEE International Conference on Evolutionary Computation, 1998, pp 69– 73 112 [109] P Angeline, “Evolutionary optimization versus particle swarm optimization: philosophy and performance difference,” in Proceedings of Annuale Conference on Evolutionary programming, 1998, pp 601–610 [110] Y Shi and R Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of the 1999 IEEE Congress on Evolutionary Computation 1999, 1999, pp 1945–1950 [111] M Dorigo, “Optimization, learning and natural algorithms,” Politecnico di Milano, 1992 [112] M Dorigo, V Maniezzo, and A Colorni, “The ant system: optimization by a colony of cooperating agents,” IEEE Trans Syst Man, Cybern Part B, Cybern., vol 26, no 1, pp 29–41, 1996 [113] J L Deneubourg and S Goss, “Collective patterns and decision-making,” Ethnol Ecol Evol., vol 1, pp 295–311, 1989 [114] S Goss, R Beckers, J L Deneubourg, S Aron, and J M Pasteels, “How trail laying and trail following can solve foraging problems for ant colonies,” Behav Mech Food Sel., vol 20, 1990 [115] S V P and H Y Talatahari S., “Ant Colony Optimization for Estimating Parameters of Flood Frequency Distributions,” in Metaheuristics in Water Resources, Geotechnical and Transportation Engineering, Elsevier [116] A Kaveh and S Talatahari, “An Improved Ant Colony Optimization for Constrained Engineering Design Problems, Engineering Computations,” Int J Comput Eng Softw., vol 27, no 1, pp 155–182, 2010 [117] X S Yang, “Engineering optimization via nature-inspired virtual bee algorithms in: Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach,” Lect Notes Comput Sci., vol 3562, pp 317–323, 2005 [118] D Karaboga, “Lecture Notes in Computer Science,” 2005 [119] D T Pham, A Ghanbarzadeh, E Koc, S Otri, S Rahim, and M Zaidi, “Erciyes University, Computer Engineering Department,” in Proceedings of 113 IPROMS 2006 Conference, 2006, pp 454–461 [120] A Afshar, O B Haddad, M A Marino, and B J Adams, “Honey-bee mating optimization (HBMO) algorithm for optimal reservoir operation,” J Franklin Inst., vol 344, pp 452–462, 2007 [121] D Karaboga, “Artificial bee colony algorithm,” Scholarpedia, vol 5, p 6915, 2010 [122] B Basturk and D Karaboga, “An artificial bee colony (ABC) algorithm for numeric function optimization,” in Proceedings of the IEEE Swarm Intelligence Symposium, 2006 [123] X S Yang, “Firefly algorithms for multimodal optimization,” in 5th Symposium on Stochastic Algorithms, Foundation and Applications (SAGA 2009), 2009, pp 169–178 [124] X S Yang, “Bat algorithm: a novel approach for global engineering optimization,” Eng Comput., vol 29, no 5, pp 464–483, 2012 [125] M K Sayadi, R Ramezanian, and N Ghaffari-Nasab, “A discrete firefly metaheuristic with local search for makespan minimization in permutation flow shop scheduling problems,” Int J Ind Eng Comput., vol 1, pp 1–10, 2010 [126] T Apostolopoulos and A Vlachos, “Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem,” Int J Comb., vol 2011, 2011 [127] A H Gandomi, X S Yang, S Talatahari, and A Alavi, “Firefly Algorithm with Chaos.,” Commun Nonlinear Sci Numer Simul., doi: 10.1016/j.cnsns.2012.06.009 [128] D Dinh-Cong, V Ho-Huu, T Vo-Duy, Q Ngo-Thi-Hong, and T NguyenThoi, “Efficiency of Jaya algorithm for solving the optimization-based structural damage identification problem based on a hybrid objective function,” Eng Optim., 2017, doi: 10.1080/0305215X.2017.1367392 [129] V Ho-Huu, T Nguyen-Thoi, T Khac-Truong, L Le-Anh, and M H NguyenThoi, “A fast efficient differential evolution based on roulette wheel selection 114 for shape and sizing optimization of truss with frequency constraints,” 2015 [130] A Lipowski and A Lipowska, “Roulette-wheel selection via stochastic acceptance,” Physica A, vol 391, pp 2193–2196, 2012, doi: 10.1016/j.physa.2011.12.004 [131] N Padhye, P Bhardawaj, and K Deb, “Improving differential evolution through a unified approach,” Glob Optim, vol 55, pp 771–99, 2013 [132] Valdebenito, MarcosA., and S GerhartI., “A Survey on Approaches for Reliability-Based Optimization,” Struct Multidiscip Optim., vol 42, pp 645– 663, 2010 [133] Y Luo, A Li, and Z Kang, “Reliability-based design optimization of adhesive bonded steel–concrete composite beams with probabilistic and nonprobabilistic uncertainties,” Eng Struct., vol 33, no 7, pp 2110–2119, 2011, doi: https://doi.org/10.1016/j.engstruct.2011.02.040 [134] F Sbaraglia, “Robust and Reliability-Based Design Optimization of a Composite Floor Beam,” Key Eng Mater., vol 77, pp 486–491, 2018 [135] Chen, Zhenzhong, HaoboQiu, LiangGao, L Su, and P Li, “An Adaptive Decoupling Approach for Reliability-Based Design Optimization,” Comput Struct., vol 117, 2012, doi: 10.1016/j.compstruc.2012.12.001 [136] T Kohonene and G Deboeck, Visual Explorations in Finance with Selforganizing Maps London: Springer, 1998 [137] M L Minsky and S Papert, Perceptrons: An Introduction to Computational Geometry MIT Press, 1969 [138] S Amari, “Neural theory of association and concept formation.,” Biol Cybern., vol 26, pp 175–185, 1977 [139] J Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” in Proc Natl Acad Sci U.S.A, 1982, pp 2554–2558 [140] D E Rumelhart, G Hinton, and R Williams, “Learning internal representation by error propagation,” in Parallel Distributed Processing Exploration in the Microstructure of Cognition: Foundations, 1st ed., Cambridge:MA: MIT 115 Press, 1986, p [141] P Werbos, “Backpropagation through time: What it does and how to it,” in Proc IEEE, 1990 [142] T Kohonene, “Self-organized formation of topologically correct feature maps.,” Biol Cybern., vol 43, pp 59–69, 1982 [143] T Moody and C Darken, “Fast learning in networks of locally tuned processing units.,” Neural Comput., vol 1, pp 281–294, 1989 [144] J Taylor and C Mannion, New Developments in Neural Computing Bristol, England: Adam Hilger, 1989 [145] T Yamakawa, “Pattern recognition hardware system employing a fuzzy neuron,” in Proceedings of the International Conference on Fuzzy Logic and Neural Networks, 1990, pp 943–948 [146] P Kim, MatLab Deep Learning with Machine Learning, Neural Networks and Artificial Intelligence Apress, 2017 [147] M H Beale, M T Hagan, and H B Demuth, “Neural Network Toolbox TM Getting Started Guide How to Contact MathWorks,” 2016 [148] H M Gomes, “Truss optimization with dynamic constraints using a particle swarm algorithm,” Expert Syst Appl, vol 38, no 1, pp 957–968, 2011, doi: http://dx.doi.org/10.1016/j.eswa.2010.07.086 [149] A Kaveh and A Zolghadr, “Democratic PSO for truss layout and size optimization with frequency constraints,” Comput Struct., vol 130, pp 10–21, 2014, doi: Show more https://doi.org/10.1016/j.compstruc.2013.09.002 [150] L F F Miguel and L F F Miguel, “Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms,” Expert Syst Appl, vol 39, no 10, pp 9458–9467, 2012, doi: https://doi.org/10.1016/j.eswa.2012.02.113 [151] W Zuo, J Bai, and B Li, “A hybrid OC–GA approach for fast and global truss optimization with frequency constraints,” Appl Soft Comput., vol 14, no Part C, pp 528–535, 2014 116 [152] M Khatibinia and S Naseralavi, “Truss optimization on shape and sizing with frequency constraints based on orthogonal multi-gravitational search algorithm,” J Sound Vib., vol 333, no 24, pp 6349–6369, 2014, doi: https://doi.org/10.1016/j.jsv.2014.07.027 [153] A Kaveh and M I Ghazaan, “Hybridized optimization algorithms for design of trusses with multiple natural frequency constraints,” Adv Eng Softw., vol 79, pp 137–147, 2015, doi: https://doi.org/10.1016/j.advengsoft.2014.10.001 [154] T Nguyen-Thoi, T Rabczuk, T Lam-Phat, V Ho-Huu, and P Phung-Van, “Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3),” Theor Appl Fract Mech., vol 72, pp 150–163, 2014 [155] L Li and X Ren, “Reinforced plate bending analysis in terms of refined triangular laminated plate element,” Compos Struct., vol 92, no 12, pp 2936– 2945, 2010 [156] S Shan and G G Wang, “Reliable Design Space and Complete Single-Loop Reliability-Based Design Optimization,” Reliab Eng Syst Saf., vol 93, no 8, pp 1218–1230, 2008, doi: 10.1016/j.ress.2007.07.006 [157] X Du and W Chen, “Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design,” J Mech Des, vol 126, no 2, pp 225–233, 2004 117 LIST OF PUBLICATIONS Parts of this dissertation have been published in international journals, national journals or presented in conferences These papers are: International Journal T Lam-Phat, V Ho-Huu, S Nguyen-Ngoc, S Nguyen-Hoai, Trung Nguyen-Thoi Deterministic and reliability-based lightweight design of Timoshenko composite beams Engineering with Computers, 2020, https://doi.org/10.1007/s00366-02000946-8 T Lam-Phat, S Nguyen-Hoai, V Ho-Huu, Q Nguyen, T Nguyen-Thoi An Artificial Neural Network-Based Optimization of Reinforced Composite Plate Using A New Adjusted Differential Evolution Algorithm Proceedings of the International Conference on Advances in Computational Mechanics 2017 pp 229-242 (Part of the Lecture Notes in Mechanical Engineering book series (LNME)) Link: https://link.springer.com/chapter/10.1007/978-981-10-7149-2_16 Q Nguyen, S Nguyen-Hoai, T Chuong-Thiet, T Lam-Phat Optimization of the Longitudinal Cooling Fin by Levenberg–Marquardt Method Proceedings of the International Conference on Advances in Computational Mechanics 2017 pp 217227 (Part of the Lecture Notes in Mechanical Engineering book series (LNME)) Link: https://link.springer.com/chapter/10.1007/978-981-10-7149-2_15 T Nguyen-Thoi, T Rabczuk, T Lam-Phat, V Ho-Huu, P Phung-Van (2014) Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3) Theoretical and Applied Fracture Mechanics Vol.72, 150-163 Link: https://www.sciencedirect.com/science/article/pii/S016784421400041X National Journal Lam Phat Thuan, Nguyen Nhat Phi Long, Nguyen Hoai Son, Ho Huu Vinh, Le Anh Thang Global Optimization of Laminzation Composite Beams Using An Improved Differential Evolution Algorithm Journal of Science and Technology in Civil Engineering NUCE 2020 14 (1): 54–64 Nguyen-Thoi, T., Ho-Huu, V., Dang-Trung, H., Bui-Xuan, T., Lam-Phat, T (2013) Optimization analysis of reinforced composite plate by sequential quadratic programming Journal of Science and Technology, Vol 51(4B), p 156-165 Nguyen Thoi Trung, Bui Xuan Thang, Ho Huu Vinh, Lam Phat Thuan, Ngo Thanh Phong An Effective Algorithm For Reliability-Based Optimization Of Reinforced 118 Mindlin Plate Vietnam Journal of Mechanics, VAST, Vol 35, No (2013), pp 335 – 346 International Conference Thuan Lam-Phat, Son Nguyen-Hoai, Vinh Ho-Huu, Trung Nguyen-Thoi Optimization of reinforced composite plate using adjusted different evolution algorithm Proceeding of the international conference on computational methods (Vol.3, 2016), Berkeley, CA, USA National Conference Thuan Lam-Phat, Son Nguyen-Hoai, Vinh Ho-Huu, Trung Nguyen-Thoi Optimization analysis of reinforced composite plate by adjusted different evolution Hội nghị Khoa học – Công nghệ tồn quốc khí 2015 10 Lâm Phát Thuận, Nguyễn Hoài Sơn, Lê Anh Thắng, Hồ Hữu Vịnh Tối ưu hóa góc hướng sợi Composite gia cường dùng thuật toán Differential Evolution kết hợp mạng thần kinh nhân tạo Hội nghị học toan quốc lần thứ X, 8-9/12/2017) 119 ... vấn đề tối ưu hóa cho thấy hiệu suất tốt Nó đạt kết vượt trội thử nghiệm với hàm test benchmark so với phương pháp dựa dân số khác Tuy nhiên, giống nhiều thuật tốn tối ưu hóa dựa dân số khác,... thiết kế kỹ thuật coi tốn tối ưu địi hỏi kỹ thuật tối ưu hóa để giải Trong thập kỷ qua, nhiều kỹ thuật tối ưu hóa đề xuất áp dụng để giải loạt vấn đề khác Trong số đó, thuật toán meta-heuristic trở... thuật toán meta-heuristic, Differential Evolution, để tạo thành phương pháp tiếp cận giúp giải v tốn tối ưu hóa thiết kế cách hiệu Bên cạnh đó, vấn đề quan trọng thiết kế kỹ thuật thiết kế tối ưu

Ngày đăng: 10/03/2021, 18:15

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w