Tính đơn điệu của hàm số 1... Đưa về cùng cơ số và logarit hóa:[r]
(1)CHUYÊN ĐỀ 7: PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ – LOGARIT
(TRẦN THÀNH SANG) Cơng thức cần nhớ
an = an
1
; a0 = ;
m m n n
a a ( m; n nguyên
dương , n > 1)
Các quy tắc:
ax.ay = ax+y (a.b)x =ax.bx x
a x y
a y a
x x
a a
x b b x y y x x.y
a a a
= logaN a = N
logax = b x= ab
Đặc biệt : alogax = x ; loga ax = x ;
loga1 =
Các qui tắc biến đổi : với a , B , C > ; a
ta có:
loga(B.C) = logaB + logaC
loga
B C
= logaB logaC
loga B =
logaB
Công thức đổi số : với a , b , c > ; a , c
1 ta có :
logca.logab = logcb
log bc log ba
log ac
0 < a, b : logab =
1 log ab
Chú ý : log10x = lg x ; logex = ln x Hàm số mũ - logarit
Hàm số mũ : y = ax với a > ; a
TXĐ : D = R MGT : (0; + )
+ a > ; h/s đồng biến : x1 > x2 x
a
> ax2
+ < a < ; h/s nghịch biến : x1 > x2 x
a
< ax2
Hàm số Logarit: y = logax với a > 0; a
TXĐ : D = (0 ; + ) MGT : R
+ a > ; h/s đồng biến : x1 > x2 > logax1 >
logax2
+ < a < 1;h/s ngh biến: x1 > x2 > logax1
<logax2
Đạo hàm hàm số mũ - logarit
(ex) / = ex
( ax) / = ax.lna
(lnx) / =
1
x x (0;+)
(logax) / =
1 x ln a
( au)/ = u/.au.lna
( eu)/ = u/.eu
(lnu)/ =
u u
(logau )/ =
u u ln a
(2)1 Phương trình mũ - logarit :
a Đưa số logarit hóa:
f (x)
a = ag(x) f(x) = g(x) v(x)
u = ( u(x) 1 ).v(x) = f (x)
a = b ( với b > ) f(x) = logab
logaf(x) = logag(x)
f (x) g(x) f (x) g(x)
log f (x)a b a
f(x) = ab
logu(x)v(x)
= b
v(x) ; u(x) ; u(x) b
v(x) u(x)
BÀI TẬP THAM KHẢO
1. 2x4 3
2.
2 6
2
2x x 16
3. 32x3 9x23x5
4. 2x2 x 41 3 x
5. 52x + 1 – 52x -1 = 110
6.
5 17
7
32 128
4
x x
x x
7. 2x+ 2x -1 + 2x – 2 = 3x – 3x – 1 + 3x - 8. (1,25)1 – x = (0,64)2(1 x)
9. 22x + 5 + 22x + 3 = 12 10. 334 92 2
x x
11. 5x 8x −x1
=500
12. 2x(√x2+4− x −2)=4(√x2+4− x −2)
13.2x+1 + 2x+2 = 5x+1 + 3.5x 14.2x - = 3
15.3x + 1 = 5x – 16.3x – 3 = 5x27x12 17. 2x2 5x25x6
18.52x + 1- 7x + 1 = 52x + 7x 19. log3x+log3(x+2)=1
20. log2(x2−3)−log2(6x −10)+1=0 21. ln(x+1)+ln(x+3)=ln(x+7)
22. logx4+log(4x)=2+logx3
23. log4[(x+4)(x+3)]+log4
x −2
x+3=2
24. log√3(x −2)log5x=2 log3(x −2) 25.log4(x + 2) – log4(x -2) = log46 26.lg(x + 1) – lg( – x) = lg(2x + 3)
27.log4x + log2x + 2log16x = 28.log4(x +3) – log4(x2 – 1) = 29.log3x = log9(4x + 5) + ½ 30.log4x.log3x = log2x + log3x –
31.log2(9x – 2+7) – = log2( 3x – + 1) 32.log(x2 – x -2 ) < 2log(3-x)
33.2 – x + 3log52 = log5(3x – 52 - x) 34.log3(3x – 8) = – x
35. log7x=log3(√x+2)
b Đặt ẩn phụ:
(3).ab f (x) +.ab f (x) + = ; đặt : t = af (x) t >
.af (x)+.bf (x)+ = a.b = 1; đặt: t = af (x);
1 t=bf (x)
.a2f (x)+.
f (x) a.b +
.b2f (x) = ; đặt: t =
f (x) a b
BÀI TẬP
1. 34x8 4.32x527 0 2. 4x 5.2x 4
3. 4x 2.2x1 3
4. 6.9x13.6x6.4x 0 5. 1 2
x x
6. 16x17.4x16 0
7. 22 2 9.2 2 0
x x
8. 32x1 9.3x 6
9. 6.9x13.6x6.4x 0 10.
1
5
2
2 5
x x
11. x 53 x 20
12. 4 15 4 15
x x
13. 6 6 10
x x
14. 4x2−3x+2
+4x2+6x+5=42x2+3x+7+1
15. 23x−6 2x−
23(x −1)+
12
2x=1
16. 9x+2 (x −2)3x+2x −5=0
17.
2x
100x=6 (0,7)
x
+7
18. (1
3)
2
x+3
(13)
1
x+1 = 12
19. 4x1 2x1 2x2 12
20. 22x21 9.2x2x22x2 0
21. -7 3x-1
+√1-6 3x+9x+1=0
22. 4x-13 6x
+6 9x=0
23. 12 3x+3 15x-5x+1=20
24. 32x-1
=2+3x-1
25. (√6-√35)x+(√6+√35)x=12
26. 4x-6 2x+1
+32=0
27. 9x−
(263 ).3
x
+17=0
28. 22x+1−2x+3−64
=0
29. (√2−√3)x+(√2+√3)x=4
30. (7+4√3)x−3(2−√3)x+2=0
31. 4x2+1
+6x
2
+1
=9x
2
+1 32. 2x2−5x+6
+21− x2=2 26−5x+1
33. log16x+logx4=3
34. logx2−log4x+7
6=0
35. log3x −2 log2x=−2+logx
36. 4
+log2x+
2
2−log2x=1
37. log4x8−log2x2+5
2=0
38. 3√log3x −log3(3x)−1=0 39.
x −1¿3=7
x −1¿2+log2¿
log22
¿
40. log22(4x)+log2x
8 =8
41. log3
(3x)+
logx3=7
42.
x −1¿2=log2(4x)
1
2log√2(x+3)+log4¿ 43.
log√2+1√x2−3x+2+log√2−1√x −1=log3−2√2(4x+8)
44. log2(3x−1)log2(2⋅3x−2)=2 45. log2(2x)logx(2x)=log41
2
46. log2
x
2+log2(4x)=3 47. log5x5
x+log5
(4)c Tính đơn điệu hàm số 1. 25x+10x=22x+1
2. 4x−2 6x
=3 9x
3. 4 3x
−9 2x=5
x
2
4. 125x
+50x=23x+1
5.
2 2
1
2x -2x x x 1
6. 3x + 5x = 6x + 2 7. 1+82x
=3x
8. 32x −3+(3x −10)3x −2+3− x=0
9. −2x2
− x
+2x−1=(x −1)2
10.3x + 4 x = 5x 11.3x – 12x = 4x 12. log2x+√2x+2=2
13.
2x+√1+log2x
=1
14. log2(x2−4)+x=log2[8(x+2)] 15. log22x+ (x-5)log2x-2x+6=0 16. log2(x+3log6x)
=log6x
17. 2log2(x+1)
=x
18. log4
√5(x
−2x −2)=log2(x2−2x −3)
19. x2
+3log2x
=xlog25
20. log3
2
x+(x −4)log3x − x+3=0 2 Bất phương trình mũ - logarit
af (x)> ag(x)
f (x) g(x) a f (x) g(x) a
af (x) > b
b có nghiệm x
b > 0, a>1 f(x) > logab
b>0, < a < f(x) < logab af (x) < b
b pt vơ nghiệm
b > 0, a > f(x) < logab
b > 0, 0<a< f(x) > logab
logaf(x) > logag(x) (0 < a 1)
f(x) > g(x) >
(a1)[ f(x) g(x) ] >
logaf(x) > b
a > f(x) > ab < a < < f(x) < ab
logaf(x) < b
a > < f(x) < ab < a < f(x) > ab
v(x) u(x) >
u(x) >
(5) u(x)v(x)< u(x) > [ u(x) 1 ].v(x) < a Đưa số logarit hóa:
1. 33xx−2x+2
−2x ≤1
2. (√5+2)x-1≥(√5−2)
x-1
x+1
3. (√10+3)
x−3
x−1
<(√10−3)
x+1
x+3
4. 2√x12
−2x≤2
x −1
5. 9x+9x+1+9x+2<4x+4x+1+4x+2
6. 2|21x+1|≥
1 23x+1
7. (x2
−2x+1)
x−1
x+1≥1
8. (x2−1)x2+2x
>|x2−1|3
9. 3x+1
+5x+3≤3x+4+5x+2
10. 16x – 4 ≥ 8 11.
2
1
9
x
12.
6
9x 3x
13. 6
4x x
14.
2
4 15
3
1
2
2
x x
x
15. 52x + > 5x 16.
2 logsin
3
x x
17. log2(x2−16)≥log2(4x −11) 18. |log3x −2|<1
19. √log321x −− x3<1
20. log2
3
log3|x −3|≥0
21. log1
2[
log2(3x+1)]>−1
22. logx(5x2−8x+3)>2
23. logx3x −1
(6)24. (0,08)logx −0,5x
≥(5√2
2 )
logx−0,5(2x −1)
25. 0,12logx−1x≥
(5√33)
logx −1(2x −1)
26. |1+logx2004|<2
27. loga(35− x
3)
loga(5− x) >3
28. (4x−12 2x
+32)log2(2x −1)≤0 29. logx2(
4x −2
|x −2|)≥
1
30. log1
3
√2x2−3x+1
>
log1
3
(x+1)
31. log24x −log1 2
(x83)+9 log2( 32
x2)<4 log1 2 x
32. log1
5
(x2−6x+8)+2 log5(x −4)>0
33. log1
2[
log4(x2−5)
]>0
34. log2x(x
2
−5x+6)<1
35. 5log3x −x2
<1
36. log3(3x−1)
x −1 ≥1
37. 12log1
2
(x −1)>log1
2
(1+√3 x −2)
38.
¿ xlogyz
+zlogyz
=512
ylogzx
+xlogzy
=8
zlogzx
+ylogxz
=2√2
¿{ {
¿
b Đặt ẩn phụ: 1. (13)2x+3
(13)
2
x+1>12
2. 9x-2 3x
<3
3. (3+√5)2x-x
2
+(3−√5)2x-x
2
-21+2x-x2
0
4. 22√x+3− x −6
+15 2√x+3−5<2x
5. 251+2x− x2
+91+2x − x
2
34 52x − x2
6. 3log3
x−18 xlog31x
+3>0
7. 32x−8 3x+√x+4−9 9√x+4
>0
8. (13)x−1−(1
9)
x
>4
(7)9. √9x−3x+2
>3x−9
10. 9√x2
−3+1
+3<28 3√x2−3−1
11. 4x2+1
32x−4 3x+1≤0
12. 4x2
+x+1−2x+2
+1≤0
13. log2
2 + log2x ≤ 14. log1/3x > logx3 – 5/2 15. log2 x + log2x ≤ 16.
1
1 log xlogx
17. 16
1 log 2.log
log
x x
x
18.
4
3
log (3 1).log ( )
16
x
x
(8)1. y y x x
2. 2
3 ( )( 8)
8
y
x y x xy
x y 3. y y x x 4.
3 11
3 11
x y x y y x 5.
2 36 36
y x y x
6. 2
2
3
y
x y x
x xy y
7. 4 32 x x y y 8.
4
4 144
y x y x 9.
2 20
5 50
y x y x 10.
2 17
3.2 2.3
y x y x 11.
3
3
(9)13. 2
6
log log
x y x y 14.
2
2
3
log
log log
x y x y 15.
log log
6 y
x y x
x y
16. 2
6
log
log log
x y x y
17.
2
3
3
log log
x y
x y x y
18. 2 log
2 log
x y x y 19. log
log
9 y y x x 20. 2 2
log log 16
log log
y x x y x y 21.
log 2
log 2
x y x y y x 22. 2 log log
3 10
log log
y x x y x y 23. 32 logy