1. Trang chủ
  2. » Trung học cơ sở - phổ thông

De tham khao thi tuyen sinh lop 10 13

4 6 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 48,32 KB

Nội dung

[r]

(1)

Đề 13

Bài 1: Cho biểu thøc A =

4( 1) 4( 1)

1

4( 1)

x x x x

x x x

      

 

 

 

a) Tìm điều kiện x để A xác định b) Rút gọn A

Bài : Trên mặt phẳng tọa độ cho hai điểm A(5; 2) B(3; -4) a) Viết phơng tình đờng thẳng AB

b) Xác định điểm M trục hoành để tam giác MAB cân M Bài : Tìm tất số tự nhiên m để phơng trình ẩn x sau:

x2 - m2x + m + = 0

cã nghiƯm nguyªn

Bài : Cho tam giác ABC Phân giác AD (D  BC) vẽ đờng tròn tâm O qua A D đồng thời tiếp xúc với BC D Đờng tròn cắt AB AC lần lợt E F Chứng minh

a) EF // BC

b) Các tam giác AED ADC; àD ABD tam giác đồng dạng c) AE.AC = à.AB = AC2

Bài : Cho số dơng x, y tháa m·n ®iỊu kiƯn x2 + y2  x3 + y4 Chứng

minh:

(2)

Đáp án

Bài 1:

a) Điều kiện x tháa m·n

2

1

4( 1)

4( 1)

4( 1)

x x x x x x x                    1 x x x x          

  x > vµ x  2

KL: A xác định < x < x > b) Rút gọn A

A =

2

2

( 1) ( 1)

( 2)

x x x

x x         A =

1 1 2

2

x x x

x x

     

 

Víi < x < A =

2 1 x

Víi x > A =

2

x

KÕt ln

Víi < x < th× A =

2 1 x

Víi x > A =

2

x

Bài 2:

a) A B có hồnh độ tung độ khác nên phơng trình đờng thẳng AB có dạng y = ax + b

A(5; 2)  AB  5a + b = B(3; -4)  AB  3a + b = -4 Gi¶i hÖ ta cã a = 3; b = -13

Vậy phơng trình đờng thẳng AB y = 3x - 13 b) Giả sử M (x, 0)  xx’ ta có

MA = (x 5)2 (0 2)2 MB = (x 3)2 (04)2

MAB c©n  MA = MB  (x 5)2 4  (x 3)2 16  (x - 5)2 + = (x - 3)2 + 16

 x =

(3)

Phơng trình có nghiệm nguyên = m4 - 4m - số phơng

Ta lại có: m = 0; < loại m = th×  = = 22 nhËn

m  th× 2m(m - 2) >  2m2 - 4m - > 0

 - (2m2 - 2m - 5) <  <  + 4m + 4

 m4 - 2m + <  < m4

 (m2 - 1)2 < < (m2)2

không phơng

Vậy m = giá trị cần tìm Bài 4:

a)

  (  )

2

EADEFDsd ED

(0,25)

  (  )

2

FADFDCsd FD

(0,25)

EDA FAD  EFD FDC (0,25)

 EF // BC (2 gãc so le b»ng nhau) b) AD lµ phân giác góc BAC nên DE DF

2

ACD

s®(AEDDF ) =

1

2s®AE = s®ADE

do ACDADE v EAD DAC

DADC (g.g) Tơng tự: sđ

  (  )

2

ADFsd AFsd AFDDF

=

  

1

( )

2 sd AFDDEsd ABD

 

ADFABD

do AFD ~ (g.g c) Theo trên:

+ AED ~ DB

AE AD

ADAC hay AD2 = AE.AC (1)

+ ADF ~ ABD 

AD AF ABAD  AD2 = AB.AF (2)

Tõ (1) vµ (2) ta cã AD2 = AE.AC = AB.AF

Bµi (1®):

Ta cã (y2 - y) +   2y3  y4 + y2

 (x3 + y2) + (x2 + y3)  (x2 + y2) + (y4 + x3)

mà x3 + y4 x2 + y3 đó

x3 + y3 x2 + y2 (1)

+ Ta cã: x(x - 1)2  0: y(y + 1)(y - 1)2 0

 x(x - 1)2 + y(y + 1)(y - 1)2  0

 x3 - 2x2 + x + y4 - y3 - y2 + y  0

 (x2 + y2) + (x2 + y3)  (x + y) + (x3 + y4)

mµ x2 + y3 x3 + y4

 x2 + y2 x + y (2)

F E

A

B

(4)

vµ (x + 1)(x - 1)  (y - 1)(y3 -1)  0

x3 - x2 - x + + y4 - y - y3 +  0

 (x + y) + (x2 + y3)  + (x3 + y4)

mµ x2 + y3 x3 + y4

 x + y  Tõ (1) (2) vµ (3) ta cã:

Ngày đăng: 05/03/2021, 16:06

w