1. Trang chủ
  2. » Địa lý lớp 12

Chuan KT THCS Mon Toan

32 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 32
Dung lượng 397,92 KB

Nội dung

VÒ kiÕn thøc: HiÓu kh¸i niÖm hÖ hai ph¬ng tr×nh bËc nhÊt hai Èn vµ nghiÖm cña hÖ hai ph¬ng tr×nh bËc nhÊt hai Èn.. TÝnh sè dông cô mçi xÝ nghiÖp ph¶i lµm theo kÕ ho¹ch.[r]

(1)

Chủ đề Mức độ cần đạt Ghi chú I Ôn tập bổ túc số tự nhiờn

1 Khái niệm tập hợp, phần tử. Về kỹ năng:

- Biết dùng thuật ngữ tập hợp, phần tử tập hợp

- S dụng kí hiệu , , , 

- Đếm số phần tử tập hợp hữu hạn

VÝ dô Cho A = 3; 7, B = 1; 3; 7. a Điền kí hiệu thích hợp (, , vào ô vuông: A,  A, A  B b TËp hợp B có phần tử ? 2 Tập hợp N số tự nhiên

- Tập hợp N, N*

- Ghi đọc số tự nhiên Hệ thập phân, chữ số La Mã

- Các tính chất phép cộng, trừ, nhân N

- PhÐp chia hÕt, phÐp chia cã d - L thõa víi sè mị tù nhiªn

VỊ kiÕn thức:

Biết tập hợp số tự nhiên tính chất phép tính tập hợp số tự nhiên

Về kỹ năng:

- c viết đợc số tự nhiên đến lớp tỉ

- Sắp xếp đợc số tự nhiên theo thứ tự tăng giảm

- Sử dụng kí hiệu: , , , , ,  - Đọc viết đợc số La Mã từ đến 3

- Làm đợc phép tính cộng, trừ, nhân, chia hết với số tự nhiên

- Hiểu vận dụng đợc tính chất giao hốn, kết hợp, phân phối tính tốn

- Tính nhẩm, tính nhanh cách hợp lí - Làm đợc phép chia hết phép chia có d trờng hợp số chia không ba chữ số - Thực đợc phép nhân chia luỹ thừa số (với số mũ tự nhiên

- Sử dụng đợc máy tính bỏ túi để tính tốn

- Bao gồm thực thứ tự phép tính, việc đa vào bỏ dấu ngoặc tính tốn

- Nhấn mạnh việc rèn luyện cho học sinh ý thức tính hợp lí lời giải Chẳng hạn học sinh biết đợc phép tính 32  47 = 404 sai

- Bao gåm céng, trõ nhÈm c¸c số có hai chữ số; nhân, chia nhẩm số cã hai ch÷ sè víi mét sè cã mét ch÷ số

- Quan tâm rèn luyện cách tính toán hợp lí Chẳng hạn:

13 + 96 + 87 = 13 + 87 + 96 = 196 - Kh«ng yêu cầu học sinh thực dÃy tính cồng kềnh, phức tạp không cho phép sử dụng máy tÝnh bá tói

3 TÝnh chÊt chia hÕt tËp hỵp N

- TÝnh chÊt chia hÕt cđa mét tỉng - C¸c dÊu hiƯu chia hÕt cho 2; 5; 3;

- Ước bội

- Số nguyên tố, hợp số, phân tích số thừa số nguyên tố - Ước chung, ƯCLN; bội chung, BCNN

VỊ kiÕn thøc:

BiÕt c¸c khái niệm: ớc bội, ớc chung ƯCLN, bội chung BCNN, số nguyên tố hợp số

Về kỹ năng:

- Vn dng cỏc du hiu chia hết để xác định số cho có chia hết cho 2; 5; 3; hay không - Phân tích đợc hợp số thừa số nguyên tố trờng hợp đơn giản

- Tìm đợc ớc, bội số, ớc chung, bội chung đơn giản hai ba số

Nhấn mạnh đến việc rèn luyện kỹ tìm ớc bội số, ớc chung,

ƯCLN, bội chung, BCNN hai số (hoặc ba số trờng hợp đơn giản) Ví dụ Khơng thực phép chia, cho biết số d phép chia 3744 cho 2, cho 5, cho 3, cho

Ví dụ Phân tích số 95, 63 thõa sè nguyªn tè

(2)

- Tìm đợc BCNN, ƯCLN hai số trờng hp n gin

a Tìm hai ớc hai béi cđa 33, cđa 54 b T×m hai béi chung 33 54. Ví dụ Tìm ƯCLN BCNN 18 3. II Số nguyên

- Số nguyên âm Biểu diễn số nguyên trục sè

- Thứ tự tập hợp Z Giá tr tuyt i

- Các phép cộng, trừ, nhân tập hợp Z tính chất phép toán

- Bội ớc số nguyên

Về kiến thức:

- Biết số nguyên âm, tập hợp số nguyên bao gồm số nguyên dơng, số số nguyên âm

- Biết khái niệm bội ớc số nguyên Về kỹ năng:

- Biết biểu diễn sè nguyªn trªn trơc sè

- Phân biệt đợc số nguyên dơng, số nguyên âm số

- Vận dụng đợc quy tắc thực phép tính, tính chất phép tính tính tốn

- Tìm viết đợc số đối số nguyên, giá trị tuyệt đối số nguyên

- Sắp xếp dãy số nguyên theo thứ tự tăng giảm

- Làm đợc dãy phép tính với số nguyên

Biết đợc cần thiết có số nguyên âm thực tiễn tốn học Ví dụ Cho số 2, 5,  6,  1, 18, 0. a Tìm số nguyên âm, số nguyên dơng số

b Sắp xếp số cho theo thứ tự tăng dần

c Tìm số đối số cho Ví dụ Thực phép tính: a ( + 6 ( 4

b ( - 13 : ( 6

VÝ dơ a T×m béi cđa b Tìm ớc 10

III Ph©n sè

- Ph©n sè b»ng

- Tính chất phân số - Rút gọn phân số, phân số tối giản

- Quy đồng mẫu số nhiều phân số - So sánh phõn s

- Các phép tính phân số

- Hỗn số Số thập phân Phần trăm - Ba toán phân số - Biểu đồ phần trăm

VÒ kiÕn thøc:

- BiÕt khái niệm phân số: a

b với a Z,b Z (b  0). - BiÕt kh¸i niƯm hai ph©n sè b»ng : a

b= c d nÕu ad = bc (bd 0)

- BiÕt c¸c khái niệm hỗn số, số thập phân, phần trăm

Về kỹ năng:

- Vn dng c tớnh cht phân số tính tốn với phân s

- Biết tìm phân số số cho tríc

VÝ dơ

a) T×m

3 cđa -8,7.

b) T×m mét sè biÕt

3 cđa nã b»ng 31,08

c) TÝnh tØ sè cña

(3)

- BiÕt t×m mét sè biết giá trị phân số

- BiÕt t×m tØ sè cđa hai sè

- Làm dãy phép tính với phân số số thập phân trờng hợp đơn giản

- Biết vẽ biểu đồ phần trăm dới dạng cột, dạng ô vng nhận biết đợc biểu đồ hình quạt.

1 13

15 (0,52 +

8 19 15 60

 

 

 : 1

23 24 Không yêu cu v biu hỡnh qut

IV Đoạn thẳng 1 Điểm Đờng thẳng. - Ba điểm thẳng hàng

- Đờng thẳng qua hai điểm

Về kiến thøc:

- Biết khái niệm điểm thuộc đờng thẳng, điểm không thuộc đờng thẳng

- Biết khái niệm hai đờng thẳng trùng nhau, cắt nhau, song song

- Biết khái niệm ba điểm thẳng hàng, ba điểm không thẳng hàng

- Biết khái niệm điểm nằm hai điểm Về kỹ năng:

- BiÕt dïng c¸c ký hiƯu , 

- Biết vẽ hình minh hoạ quan hệ: điểm thuộc khơng thuộc đờng thẳng

Ví dụ Học sinh biết nhiều cách diễn đạt nội dung:

a Điểm A thuộc đờng thẳng a, điểm A nằm đờng thẳng a, đờng thẳng a qua điểm A

b Điểm B không thuộc đờng thẳng a, điểm B nằm đờng thẳng a, đờng thẳng a không qua điểm B

Ví dụ Vẽ ba điểm thẳng hàng điểm nằm hai điểm lại

Ví dụ Vẽ hai điểm A, B, đờng thẳng a qua A nhng không qua B Điền ký hiệu ,  thích hợp vào trống: A  a, B  a

2 Tia Đoạn thẳng Độ dài đoạn

thẳng Trung điểm đoạn thẳng. Về kiến thức:- Biết khái niệm tia, đoạn thẳng

- Bit cỏc khỏi nim hai tia đối nhau, hai tia trùng

- Biết khái niệm độ dài đoạn thẳng

- Hiểu vận dụng đợc đẳng thức AM + MB = AB để giải toán đơn giản

-BiÕt khái niệm trung điểm đoạn thẳng. Về kỹ năng:

- Biết vẽ tia, đoạn thẳng Nhận biết đợc tia, đoạn thẳng hình vẽ

- Biết dùng thớc đo độ dài để đo đoạn thẳng - Biết vẽ đoạn thẳng có độ dài cho trớc - Vận dụng đợc đẳng thức AM + MB = AB để giải toán đơn giản

VÝ dô Häc sinh biÕt dïng thuật ngữ:: đoạn thẳng (lớn hơn, bé đoạn thẳng

Ví dụ Cho biết điểm M nằm hai điểm A, B AM = 3cm, AB = 5cm a MB b»ng bao nhiêu? Vì sao? b Vẽ hình minh hoạ

(4)

- BiÕt vÏ trung ®iĨm cđa đoạn thẳng V Góc

1 Nửa mặt phẳng Góc Số đo góc.

Tia phân giác góc. Về kiến thức:- Biết khái niệm nửa mặt phẳng - BiÕt kh¸i niƯm gãc

- HiĨu c¸c kh¸i niƯm: gãc vu«ng, gãc nhän, gãc tï, gãc bĐt, hai gãc kỊ nhau, hai gãc bï - BiÕt kh¸i niƯm sè ®o gãc

- Hiểu đợc: tia Oy nằm hai tia Ox, Oz :

xOy + yOz = xOz để giải toán n gin

- Hiểu khái niệm tia phân giác góc Về kỹ năng:

- Bit v góc Nhận biết đợc góc hình vẽ

- Biết dùng thớc đo góc để đo góc - Biết vẽ góc có số đo cho trớc - Biết vẽ tia phân giác góc

VÝ dơ Häc sinh biÕt dïng c¸c tht ngữ: góc (lớn hơn, bé góc VÝ dơ Cho biÕt tia Ot n»m gi÷a hai tia Ox, Oy vµ xOt = 3, xOy = 7

a Gãc tOy b»ng bao nhiªu? Vì sao? b Vẽ hình minh hoạ

Vớ dụ Học sinh biết xác định tia phân giác góc cách gấp hình dùng thớc đo gúc

2 Đờng tròn Tam giác. Về kiến thức:

- Biết khái niệm đờng trịn, hình trịn, tâm, cung trịn, dây cung, đờng kính, bán kính - Nhận biết đợc điểm nằm trên, bên trong, bên ngồi đờng trịn

- BiÕt kh¸i niƯm tam gi¸c

- Hiểu đợc khái niệm đỉnh, cạnh, góc tam giác

- Nhận biết đợc điểm nằm bên trong, bên ngồi tam giác

VỊ kü năng:

- Bit dựng com pa v ng tròn, cung tròn Biết gọi tên ký hiệu đờng trũn

-Biết vẽ tam giác Biết gọi tên ký hiệu tam giác. - Biết đo yếu tố (cạnh, góc) tam giác cho trớc

Ví dụ Học sinh biết dùng com pa để so sánh hai đoạn thẳng

Ví dụ Cho điểm O Hãy vẽ đờng trịn (O; 2cm)

Ví dụ Học sinh biết dùng thớc thẳng, thớc đo độ dài com pa để vẽ tam giác biết độ dài ba cạnh

(5)

I Sè h÷u tØ Sè thùc

1 Tập hợp Q các số hữu tỉ. - Khái niệm sè h÷u tØ

- BiĨu diƠn sè h÷u tØ trục số - So sánh số hữu tỉ

- Các phép tính Q: cộng, trừ, nhân, chia sè h÷u tØ Lịy thõa víi sè mị tù nhiên số hữu tỉ

Về kiến thức:

Biết đợc số hữu tỉ số viết đợc dới dạng a b với a , b∈Z ,b 0

Về kỹ năng:

- Thực thành thạo phép tính số hữu tỉ - Biết biểu diễn số hữu tỉ trục số, biểu diễn số hữu tỉ nhiều phân số - Biết so sánh hai số hữu tỉ

- Giải đợc tập vận dụng quy tắc phép tính Q

VÝ dơ a)  =  =  =

 =  0,5.

b) ,6 = 5=   = 10

2 TØ lÖ thøc. - TØ sè, tØ lƯ thøc

- C¸c tÝnh chÊt cđa tØ lƯ thøc vµ tÝnh chÊt cđa d·y tØ sè

Về kỹ năng:

Bit dụng tính chất tỉ lệ thức dãy tỉ số để giải toán dạng: tìm hai số biết tổng (hoặc hiệu) tỉ số chúng

VÝ dơ T×m hai sè x vµ y biÕt: 3x = 7y vµ x - y = -16

Không yêu cầu học sinh chứng minh tính chất tỉ lệ thức d·y c¸c tØ sè b»ng 3 Sè thập phân hữu hạn Số thập

phõn vụ hạn tuần hồn Làm trịn số. Về kiến thức:- Nhận biết đợc số thập phân hữu hạn, số thập phân vơ hạn tuần hồn

- BiÕt ý nghÜa cđa việc làm tròn số Về kỹ năng:

Vận dụng thành thạo quy tắc làm tròn số

Không đề cập đến khái niệm sai số tuyệt đối, sai số tơng đối, phép toán sai số

4 TËp hỵp sè thùc R

- Biểu diễn số hữu tỉ dới dạng số thập phân hữu hạn vô hạn tuần hoàn

- Số vô tỉ (số thập phân vô hạn không tuần hoàn Tập hợp số thực So sánh số thực

- Khái niệm bậc hai số thực không âm

Về kiến thức:

- Biết tồn số thập phân vô hạn không tuần hoàn tên gọi chúng số vô tỉ

- Nhận biết tơng ứng tập hợp R tập điểm trục số, thứ tự số thùc trªn trơc sè

- Biết khái niệm bậc hai số không âm Sử dụng kớ hiu

Về kỹ năng:

- Biết cách viết số hữu tỉ dới dạng số thập phân hữu hạn vô hạn tuần hoàn

- Biết sử dụng bảng số, máy tính bỏ túi để tỡm

Ví dụ Viết phân số 8, 20  ,

11 dới dạng số thập phân hữu hạn vô hạn tuần hoàn - Tập hợp số thực bao gồm tất số hữu tỉ vô tỉ

Ví dụ Học sinh phát biểu đợc rằng số thực đợc biểu diễn điểm trục số ngợc lại

(6)

giá trị gần bậc hai số thực không âm

II Hàm số đồ thị 1 Đại lợng tỉ lệ thuận. - Định nghĩa

- TÝnh chÊt

- Giải tốn đại lợng tỉ lệ thuận

VỊ kiÕn thøc:

- Biết công thức đại lợng tỉ lệ thuận: y = ax (a  0)

- Biết tính chất đại lợng tỉ lệ thuận:

1 y x =

2 y

x = a; y y =

1 x x . VÒ kỹ năng:

Gii c mt s dng toỏn đơn giản tỉ lệ thuận

- Học sinh tìm đợc ví dụ thực tế đại lợng tỉ lệ thuận

- Häc sinh cã thÓ giải thành thạo toán: Chia số thành các phần tỉ lệ với số cho trớc

2 Đại lợng tỉ lệ nghịch. - Định nghĩa

- TÝnh chÊt

- Giải toán đại lợng tỉ lệ nghịch

VÒ kiÕn thøc:

- Biết công thức đại lợng tỉ lệ nghịch: y = a x (a  0)

- Biết tính chất đại lợng tỉ lệ nghịch:

x1y1 = x2y2 = a; x x =

2 y y . Về kỹ năng:

- Giải đợc số dạng toán đơn giản tỉ lệ nghịch

Học sinh tìm đợc ví dụ thực tế đại l-ợng tỉ lệ nghịch

Ví dụ Một ngời chạy từ A đến B hết 20 phút. Hỏi ngời chạy từ B A hết phút vận tốc chạy 0,8 lần vận tốc chạy

Ví dụ Thùng nớc uống tàu thuỷ dự định để 15 ngời uống 42 ngày Nếu có ngời tàu dùng đợc ?

3 Khái niệm hàm số th.

- Định nghĩa hàm số

- Mt phng to

- Đồ thị hàm sè y = ax (a  0)

- §å thị hàm số y = a

x (a  0)

VÒ kiÕn thøc:

- BiÕt khái niệm hàm số biết cách cho hàm số bảng công thức

- Bit khỏi nim đồ thị hàm số

- Biết dạng đồ thị hàm số y = ax (a 

0)

- Biết dạng đồ thị hàm số y = a

x (a  0)

(7)

Về kỹ năng:

- Biết cách xác định điểm mặt phẳng toạ độ biết toạ độ biết xác định toạ độ điểm mặt phẳng toạ độ

- Vẽ thành thạo đồ thị hàm số y = ax (a 

0)

- Biết tìm đồ thị giá trị gần hàm số cho trớc giá trị biến số ngợc lại III Biểu thức đại số

- Khái niệm biểu thức đại số, giá trị biểu thức đại số

- Khái niệm đơn thức, đơn thức đồng dạng, phép tốn cộng, trừ, nhân đơn thức

VỊ kiÕn thøc:

- Biết khái niệm đơn thức, bậc đơn thức biến

- BiÕt c¸c khái niệm đa thức nhiều biến, đa thức

một biÕn, bËc cđa mét ®a thøc mét biÕn VÝ dơ Tính giá trị biểu thức x

2y3 + xy tại

x = y = 2. - Khái niệm đa thức nhiều biến Cộng

và trừ đa thức

- Đa thức biến Cộng trừ đa thức biến

- Nghiệm đa thức biến

- Biết khái niệm nghiệm đa thức biến Về kỹ năng:

- Biết cách tính giá trị biểu thức đại số - Biết cách xác định bậc đơn thức, biết nhân hai đơn thức, biết làm phép cộng trừ đơn thức đồng dạng

- Biết cách thu gọn đa thức, xác định bậc đa thức

- BiÕt t×m nghiƯm cđa ®a thøc mét biÕn bËc nhÊt

VÝ dơ T×m nghiệm đa thức f(x = 2x + 1, g(x = - 3x

IV Thèng kª

- Thu thập số liệu thống kê Tần sè

VỊ kiÕn thøc:

- BiÕt c¸c kh¸i niệm: Số liệu thống kê, tần số

Ví dụ HÃy thực việc sau đây: a Ghi điểm kiểm tra toán cuối học kì I học sinh lớp

- Bng tn s biểu đồ tần số (biểu đồ đoạn thẳng biểu đồ hình cột - Số trung bình cộng; mốt dấu hiệu

Biết bảng tần số, biểu đồ đoạn thẳng biểu đồ hình ct tng ng

Về kỹ năng:

- Hiu vận dụng đợc số trung bình cộng, mốt dấu hiệu tình thực tế - Biết cách thu thập số liệu thống kê

- Biết cách trình bày số liệu thống kê bảng tần số, biểu đồ đoạn thẳng biểu đồ hình cột tơng ứng

b Lập bảng tần số biểu đồ đoạn thẳng tơng ng

(8)

V Đờng thẳng vuông góc Đờng thẳng song song.

1 Góc tạo hai đờng thẳng cắt nhau Hai góc đối đỉnh Hai đờng thẳng vng góc.

VỊ kiÕn thøc:

- Biết khái niệm hai góc i nh

- Biết khái niệm góc vuông, gãc nhän, gãc tï

- Biết khái niệm hai đờng thẳng vng góc Về kỹ năng:

- Biết dùng êke vẽ đờng thẳng qua điểm cho trớc vng góc với đờng thẳng cho tr-ớc

Ví dụ Vẽ hai đờng thẳng cắt Hãy: a Đo góc tạo hai đờng thẳng cắt b Chỉ hai góc đối đỉnh

c Chứng tỏ hai góc đối đỉnh

2 Góc tạo đờng thẳng cắt hai đờng thẳng Hai đờng thẳng song song Tiên đề Ơ-clít đờng thẳng song song Khái niệm định lí, chứng minh định lí.

VỊ kiÕn thøc:

- Biết tiên đề Ơ-clít

- Biết tính chất hai đờng thẳng song song

- Biết định lí chứng minh định lí

Về kỹ năng:

- Bit v s dng tên gọi góc tạo đờng thẳng cắt hai đờng thẳng: góc so le trong, góc đồng vị, góc phía, góc ngồi phía

- Biết dùng êke vẽ đờng thẳng song song với đờng thẳng cho trớc qua điểm cho trớc nằm ngồi đờng thẳng (hai cách

Ví dụ Vẽ đờng thẳng cắt hai đờng thẳng cặp góc so le trong, cặp góc đồng vị

Ví dụ Dùng êke vẽ hai đờng thẳng vng góc với đờng thẳng thứ ba

Ví dụ Dùng êke vẽ hai đờng thẳng cắt đờng thẳng tạo thành cặp góc so le góc nhọn êke

VI Tam gi¸c

1 Tổng ba góc tam giác. Về kiến thức:- Biết định lí tổng ba góc tam giác - Biết định lí góc ngồi tam giác Về kỹ năng:

Vận dụng định lí vào việc tính số đo góc tam giác

VÝ dô Cho tam gi¸c ABC cã B^=800 , ^

C=300 Tia phân giác góc A cắt BC ở D Tính ADC ADB

2 Hai tam giác nhau. Về kiến thức:

(9)

Về kỹ năng:

- Biết cách xét hai tam giác - Biết vận dụng trờng hợp tam giác để chứng minh đoạn thẳng nhau, góc

VÝ dơ Cho góc xAy Lấy điểm B tia Ax, điểm D trªn tia Ay cho AB = AD Trªn tia Bx lấy điểm E, tia Dy lấy điểm C cho BE = DC Chøng minh r»ng BC = DE

3 Các dạng tam giác đặc biệt.

- Tam giác cân Tam giác

- Tam giác vuông Định lí Py-ta-go Hai trờng hợp tam giác vuông

Về kiến thøc:

- Biết khái niệm tam giác cân, tam giác - Biết tính chất tam giác cân, tam giác

Ví dụ Cho tam giác nhọn ABC Kẻ AH vng góc với BC (H  BC Cho biết AB = 13cm, AH = 12cm, HC = 16cm Tính độ dài AC, BC

- Biết trờng hợp tam giác vuông

Về kỹ năng:

- Vn dng đợc định lí Py-ta-go vào tính tốn - Biết vận dụng trờng hợp tam giác vuông để chứng minh đoạn thẳng nhau, góc

VÝ dơ Cho tam gi¸c ABC cân A ( ^A <

9 VÏ BH  AC (H  AC, CK  AB (K  AB

a Chøng minh r»ng AH = AK

b Gäi I lµ giao điểm BH CK Chứng minh AI tia phân giác góc A VII Quan hệ yếu tố trong

tam giỏc Các đờng đồng quy của tam giác

1 Quan hệ yếu tố tam gi¸c.

- Quan hệ góc cạnh đối diện tam giác

- Quan hƯ gi÷a ba cạnh tam giác

Về kiến thức:

- Biết quan hệ góc cạnh đối diện tam giác

- Biết bất đẳng thức tam giác Về kỹ năng:

- Biết vận dụng mối quan hệ để giải tập

VÝ dô Chøng minh r»ng tam giác vuông, cạnh huyền lớn cạnh gãc vu«ng

2 Quan hệ đờng vng góc và đờng xiên, đờng xiên hình chiếu nó.

VỊ kiÕn thøc:

- Biết khái niệm đờng vng góc, đờng xiên, hình chiếu đờng xiên, khoảng cách từ điểm đến đờng thẳng

Ví dụ Chứng minh hai đờng xiên kẻ từ điểm nằm đờng thẳng đến đờng thẳng đó:

(10)

- Biết quan hệ đờng vng góc đờng xiên, đờng xiên hình chiếu nú

Về kỹ năng:

Bit dng mối quan hệ để giải tập

thì lớn

b Đờng xiên lớn có hình chiếu lớn

3 Các đờng đồng quy tam giác.

- Các khái niệm đờng trung tuyến, đ-ờng phân giác, đđ-ờng trung trực, đđ-ờng cao tam giác

- Sự đồng quy ba đờng trung tuyến, ba đờng phân giác, ba đờng trung trực, ba đờng cao tam giác

VÒ kiÕn thøc:

- Biết khái niệm đờng trung tuyến, đờng phân giác, đờng trung trực, đờng cao tam giác

- Biết tính chất tia phân giác góc, đờng trung trực on thng

Về kỹ năng:

- Vn dng đợc định lí đồng quy ba đờng trung tuyến, ba đờng phân giác, ba đờng trung trực, ba đờng cao tam giác để giải tập

- Biết chứng minh đồng quy ba đờng phân giác, ba đờng trung trực

Không yêu cầu chứng minh đồng quy ba đờng trung tuyến, ba đờng cao

líp 8

Chủ đề Mức độ cần đạt Ghi chỳ

I Nhân chia đa thức 1 Nhân đa thức

- Nhõn n thc vi đa thức - Nhân đa thức với đa thức - Nhân hai đa thức xếp

VÒ kü năng:

Vn dng c tớnh cht phõn phi ca phép nhân:

A(B + C) = AB + AC

(A + B)(C + D) = AC + AD + BC + BD, đó: A, B, C, D số biểu thức đại số

- Đa phép tính từ đơn giản đến mức độ khơng q khó học sinh nói chung Các biểu thức đa chủ yếu có hệ số khơng q lớn, tính nhanh, tính nhẩm đợc

VÝ dơ Thùc hiƯn phÐp tÝnh: a) 4x2 (5x3 + 3x  1); b) (5x2  4x)(x  2);

(11)

- Kh«ng nên đa phép nhân đa thức có số hạng tử

- Chỉ đa ®a thøc cã hƯ sè b»ng ch÷ (a, b, c, …) thËt cÇn thiÕt

2 Các đẳng thức đáng nhớ - Bình phơng tổng Bình phơng hiệu

- HiƯu hai b×nh ph¬ng

- LËp ph¬ng cđa mét tỉng LËp ph¬ng cđa mét hiƯu

- Tỉng hai lËp phơng Hiệu hai lập phơng

Về kỹ năng:

Hiểu vận dụng đợc đẳng thức:

(A  B)2 = A2  2AB + B2, A2  B2 = (A + B) (A  B), (A  B)3 = A3  3A2B + 3AB2  B3,

A3 + B3 = (A + B) (A2  AB + B2), A3  B3 = (A  B) (A2 + AB + B2), đó: A, B số biểu thức đại số

- Các biểu thức đa chủ yếu có hệ số khơng q lớn, tính nhanh, tính nhẩm đợc

VÝ dơ a) Thùc hiƯn phÐp tÝnh: (x2  2xy + y2)(x  y). b) Rút gọn tính giá trị biểu thức

(x2  xy + y2)(x + y)  2y3 x =

5 y = 3.

- Khi đa phép tính có sử dụng đẳng thức hệ số đơn thức thờng số nguyên

3 Phân tích đa thức thành nhân tử

- Phân tích đa thức thành nhân tử phơng pháp đặt nhân tử chung

- Phân tích đa thức thành nhân tử phơng pháp dùng ng thc

- Phân tích đa thức thành nhân tử phơng pháp nhóm hạng tử - Phân tích đa thức thành nhân tử cách phối hợp nhiều phơng pháp

Về kỹ năng:

Vn dng đợc phơng pháp phân tích đa thức thành nhân tử:

+ Phơng pháp đặt nhân tử chung + Phơng pháp dùng đẳng thức

+ Phơng pháp nhóm hạng tử

+ Phối hợp phơng pháp phân tích thành nhân tử

Các tập đa từ đơn giản đến phức tạp biểu thức thờng khơng có quỏ hai bin

Ví dụ Phân tích đa thức sau thành nhân tử: 1) 15x2y + 20xy2  25xy.

2)

a  2y + y2;

b 27 + 27x + 9x2 + x3; c  27x3;

d  4x2; e (x + y)2  25; 3)

a 4x2 + 8xy  3x  6y;

b 2x2 + 2y2  x2z + z  y2z  2. 4)

(12)

4 Chia ®a thøc.

- Chia đơn thức cho đơn thức - Chia đa thức cho đơn thức - Chia hai đa thức xp

Về kỹ năng:

- Vn dng c quy tắc chia đơn thức cho đơn thức, chia đa thức cho đơn thức

- Vận dụng đợc quy tắc chia hai đa thức biến xếp

- Đối với đa thức nhiều biến, đa tập mà hạng tử đa thức bị chia chia hết cho đơn thức chia

VÝ dơ Lµm phÐp chia : (15x2y3 12x3y2) : 3xy.

- Không nên đa trờng hợp số hạng tử đa thức chia nhiều ba

- Chỉ nên đa bµi tËp vỊ phÐp chia hÕt lµ chđ u VÝ dơ Lµm phÐp chia :

(x4 2x3 +4x2 8x) : (x2 + 4) II Phân thức đại số

1 Định nghĩa Tính chất bản của phân thức Rút gọn phân thức Quy đồng mẫu thức nhiều phân thức.

VÒ kiÕn thøc:

Hiểu định nghĩa: Phân thức đại số, hai phân thức bng

Về kỹ năng:

Vn dng đợc tính chất phân thức để rút gọn phân thức quy đồng mẫu thức phân thức

- Rút gọn phân thức mà tử mẫu có dạng tích chứa nhân tử chung Nếu phải biến đổi việc biến đổi thành nhân tử khơng khó khăn

VÝ dơ Rút gọn phân thức:

2 3x yz 15xz ;

2 3(x y)(x z)

6(x y)(x z)

 

  ;

2

x 2x x

 

 ;

2 x 2x

x

 

 .

- Quy đồng mẫu phân thức có mẫu chung không ba nhân tử Nếu mẫu đơn thức đa nhiều ba biến

2 Cộng trừ phân thức đại số

- Phép cộng phân thức đại số - Phép trừ phân thức đại số

VÒ kiÕn thøc:

Biết khái niệm phân thức đối phân

thøc A

B (B ) (là phân thức A B

đợc

kÝ hiƯu lµ  A B ). Về kỹ năng:

Vn dng đợc quy tắc cộng, trừ

- Chủ yếu đa phép tính cộng, trừ hai phân thức đại số từ đơn giản đến phức tạp với mẫu chung không nhân tử

VÝ dơ Thùc hiƯn c¸c phÐp tÝnh:

a) 5x

3xy

2x 3xy

; b) 4x

3x

+ 2x

6x

(13)

phân thức đại số (các phân thức mẫu phân thức không mẫu)

c)

2 5x y

xy

3x 2y y

;

d) y

xy 5x  2

15y 25x y 25x

 .

- Phần quy tắc đổi dấu phải đa thành mục riêng nhằm rèn luyện kĩ đổi dấu cho học sinh

3 Nhân chia phân thức đại số Biến đổi biểu thức hữu tỉ.

- Phép nhân phân thức đại số - Phép chia phân thức đại số - Biến đổi biểu thức hữu tỉ

VÒ kiÕn thøc:

- Nhận biết đợc phân thức nghịch đảo hiểu có phân thức khác  có phân thức nghịch đảo

- Hiểu thực chất biểu thức hữu tỉ biểu thức chứa phép toán cộng, trừ, nhân, chia phõn thc i s

Về kỹ năng:

- Vận dụng đợc quy tắc nhân hai phân thức:

A B

C D =

A.C B.D

- Vận dụng đợc tính chất phép nhân phân thức đại số:

A B

C D=

C D

A

B (tÝnh giao ho¸n);

A C E A C E

B D F B D F

   

   

   (tÝnh kÕt hỵp);

A C E A C A E

B D F B D B F

 

  

 

 

(tính chất phân phối phép nhân phép cộng)

- Đa phép tính mà kết rút gọn đợc Ví dụ

a)

3 3

5 3

8x y 9z 8.9x y z 6x

15z 4xy 15.4xy z 5yz ;

b)

2

2 2

x y x y (x y)(x y) 3xy x y

:

6x y 3xy 6x y x y 2xy

    

 

 .

- Hệ thống tập đa đợc xếp từ đơn giản đến phức tạp

- Không đa tốn mà phần biến đổi thành nhân tử (để rút gọn) khó khăn Nên chủ yếu đẳng thức đáng nhớ

(14)

III Phơng trình bậc một ẩn

1 Khái niệm phơng trình, ph-ơng trình tph-ơng đph-ơng.

- Phơng trình ẩn

- Định nghĩa hai phơng trình tơng đơng

VỊ kiÕn thøc:

- Nhận biết đợc phơng trình, hiểu nghiệm phơng trình: Một phơng trình với ẩn x có dạng A(x) = B(x), vế trái A(x) vế phải B(x) hai biểu thức biến x

- Hiểu khái niệm hai phơng trình tơng đơng: Hai phơng trình đợc gọi tơng đ-ơng chúng có tập hợp nghiệm

Về kỹ năng:

Vn dng c quy tc chuyển vế quy tắc nhân

- Đa ví dụ thực tế (một tốn có ý nghĩa thực tế) dẫn đến phải giải phơng trình

- Đa ví dụ hai phơng trình tơng đơng hai phơng trình khơng tơng đơng

- Về tập, đa tốn đơn giản, dễ nhẩm nghiệm phơng trình từ học sinh hiểu đợc hai phơng trình tơng đơng hay khơng tơng đơng

2 Phơng trình bậc ẩn. - Phơng trình đa đợc dạng ax + b = 

- Ph¬ng trình tích

- Phơng trình chứa ẩn mẫu

VÒ kiÕn thøc:

Hiểu định nghĩa phơng trình bậc nhất: ax

+ b =  (x ẩn; a, b số, a

Nghiệm phơng trình bậc Về kỹ năng:

- Cú k nng bin i tng đơng để đa ph-ơng trình cho dạng ax + b =

- Về phơng trình tích:

A.B.C = (A, B, C đa thức chứa ẩn

Yêu cầu nắm vững cách tìm nghiệm phơng trình cách tìm nghiệm phơng trình:

A = , B = , C = 

- Giới thiệu điều kiện xác định (ĐKXĐ phơng trình chứa ẩn mẫu nắm vững quy tắc giải phơng trình chứa ẩn mẫu:

+ Tìm điều kiện xác định + Quy đồng mẫu khử mẫu

- Với phơng trình tích, khơng đa dạng có q ba nhân tử khơng nên đa dạng có nhân tử bậc hai đầy đủ phải biến đổi đa dạng tích

Ví dụ Giải phơng trình

(x 7(x + 3 = ; (3x + 5(2x  7 = ; (x  1(3x  5(x2 + 1 = 

- Với phơng trình chứa ẩn mẫu, đa tập mà vế phơng trình có khơng q hai phân thức việc tìm điều kiện xác định phơng trình dừng lại chỗ tìm nghiệm phơng trình bậc Ví dụ Giải phơng trình

a

2x x 2x x

 

 

b

1 x

3

x x

  

(15)

+ Giải phơng trình vừa nhận đợc

+ Xem xét giá trị x tìm đợc có thoả mãn ĐKXĐ khơng kết luận nghiệm ca phng trỡnh

3 Giải toán cách lập

ph-ơng trình bậc ẩn. Về kiến thức:

Nắm vững bớc giải toán cách lập phơng trình:

Bớc 1: Lập phơng tr×nh:

+ Chọn ẩn số đặt điều kiện thích hợp cho ẩn số

+ Biểu diễn đại lợng cha biết theo ẩn đại lợng biết

+ Lập phơng trình biểu thị mối quan hệ cỏc i lng

Bớc 2: Giải phơng trình

Bớc 3: Chọn kết thích hợp trả lời

- Đa tơng đối đầy đủ thể loại toán (toán chuyển động đều; tốn có nội dung số học, hình học, hố học, vật lí, dân số 

- Chú ý toán thực tế đời sống xã hội, thực tiễn sản xuất xây dựng

IV Bất phơng trình bậc một ẩn

1 Liên hệ thứ tự phép cộng, phÐp nh©n.

VỊ kiÕn thøc:

Nhận biết đợc bất đẳng thức Về kỹ năng:

Biết áp dụng số tính chất bất đẳng thức để so sánh hai số chứng minh bất đẳng thức

a < b vµ b < c  a < c a < b  a + c < b + c a < b  ac < bc víi c >  a < b  ac > bc víi c < 

Khơng chứng minh tính chất bất đẳng thức mà đa ví dụ số cụ thể để minh hoạ

VÝ dô

a < vµ <  < 5; b <  + < + 1; c <  2.3 < 5.3;

<  2.(  3 > 5.(  3;

2 Bất phơng trình bậc một

ẩn Bất phơng trình tơng đơng. Về kiến thức:Nhận biết bất phơng trình bậc ẩn nghiệm nó, hai bất phơng trình tơng đơng

VỊ kỹ năng:

Vn dng c quy tc chuyn vế quy tắc nhân với số để biến đổi tơng đơng

VÝ dô

a 15x + > 7x  1

 15x +  (5x + 1 > 7x - 1  (5x + 1 b 4x - < 3x +

 (4x - 5 < (3x + 7

(16)

bất phơng trình (4x - (1 + x2 < (3x + 7 (1 + x2 d  25x + <  4x 5

 ( 25x + 3 ( 1 > ( 4x  5 ( 1 hay lµ 25x  > 4x +

3 Giải bất phơng trình bậc nhất

một ẩn. Về kỹ năng:

- Giải thành thạo bất phơng trình bậc Èn

- BiÕt biĨu diƠn tËp hỵp nghiƯm bất phơng trình trục số

- S dụng phép biến đổi tơng đơng để biến đổi bất phơng trình cho dạng ax + b < , ax + b > , ax + b  , ax + b   từ rút nghiệm bất phơng trình

- §a vÝ dơ vỊ nghiƯm vµ tËp nghiƯm cđa bÊt phơng trình bậc

Ví dụ 3x + > 2x - (1

a Víi x = ta cã 3.1 + > nên x = nghiệm bất phơng trình (1

b 3x + > 2x - (1

 3x  2x >  -  x > 

TËp hỵp tÊt giá trị x lớn tập nghiệm bất phơng trình (1

- Cách biểu diễn tập nghiệm bất phơng trình (1 trªn trơc sè:

( │

   +  - Tập hợp giá trị x >  đợc kí hiệu

S = x x 3 VÝ dô 15x + 29 < 15x + (2

 15x  15x + 29  <   .x + < Suy bất phơng trình (2 v« nghiƯm

TËp nghiƯm cđa bÊt phơng trình (2 S = Biểu diƠn trªn trơc sè:

  + 4 Phơng trình chứa dấu giá trị

tuyt i. V k nng: Bit cách giải phơng trình

ax + b= cx + d (a, b, c, d lµ h»ng sè

VÝ dô

a) x= 2x + b) 2x  5= x -

(17)

V Tø gi¸c 1 Tø gi¸c låi

- Các định nghĩa: Tứ giỏc, t giỏc li

- Định lí: Tổng c¸c gãc cđa mét tø gi¸c b»ng 36

VỊ kiÕn thøc:

Hiểu định nghĩa tứ giác Về kỹ năng:

Vận dụng đợc định lí tổng góc tứ giác

2 Hình thang, hình thang vuông hình thang cân Hình bình hành Hình chữ nhật Hình thoi Hình vuông.

Về kỹ năng:

- Vn dng c định nghĩa, tính chất, dấu hiệu nhận biết (đối với loại hình này để giải tốn chứng minh dựng hình đơn giản

- Vận dụng đợc định lí đờng trung bình tam giác đờng trung bình hình thang, tính chất điểm cách đờng thẳng cho trớc

3 Đối xứng trục đối xứng tâm Trục đối xứng, tâm đối xứng của hình.

Về kiến thức: Nhận biết đợc:

+ Các khái niệm “đối xứng trục” “đối xứng tâm”

+ Trục đối xứng hình hình có trục đối xứng Tâm đối xứng hình hình có tâm đối xứng

- “Đối xứng trục” “đối xứng tâm” đợc đa xen kẽ cách thích hợp vào nội dung chủ đề tứ giác - Cha yêu cầu học sinh lớp vận dụng đối xứng trục đối xứng tâm giải tốn hình học

VI Đa giác Diện tích đa giác

1 Đa giác Đa giác đều. Về kiến thức: Hiểu :

+ Các khái niệm: đa giác, đa giác + Quy ớc thuật ngữ “đa giác” đợc dùng trờng phổ thông

+ Cách vẽ hình đa giác có số cạnh 3, 6, 12, 4,

Định lí tổng số đo góc hình n-giác lồi đợc đa vào tập

2 Các cơng thức tính diện tích của hình chữ nhật, hình tam giác, hình tứ giác đặc biệt.

VÒ kiÕn thøc:

(18)

chøng minh công thức tính diện tích hình chữ nhật

Về kỹ năng:

Vn dng c cỏc cụng thc tính diện tích

đã học Ví dụ Tính diện tích hình thang vng ABCD có^A= ^D = 9, AB = 3cm, AD = 4cm ABC = 135 3 Tính diện tích hình đa

giác lồi. Về kỹ năng: Biết cách tính diện tích hình đa giác lồi cách phân chia đa giác thành tam giác

Ví dụ Cho hình chữ nhật ABCD Kẻ AH vu«ng gãc víi BD (H  BD) TÝnh diƯn tÝch hình chữ nhật ABCD biết AH = 2cm BD = 8cm

VII Tam giác đồng dạng

1 Định lí Ta-lét tam giác. - Các đoạn thẳng tỉ lệ

- nh lớ Ta-lét tam giác (thuận, đảo, hệ quả

- Tính chất đờng phân giác tam giác

VÒ kiÕn thøc:

- Hiểu định nghĩa: Tỉ số hai đoạn thẳng, đoạn thẳng tỉ lệ

- Hiểu định lí Ta-lét tính chất ng phõn giỏc ca tam giỏc

Về kỹ năng:

Vận dụng đợc định lí học 2 Tam giác đồng dạng.

- Định nghĩa hai tam giác đồng dạng

- Các trờng hợp đồng dạng hai tam giác - ứng dụng thực tế tam giác đồng dạng

VÒ kiÕn thøc:

- Hiểu định nghĩa hai tam giác đồng dạng

- Hiểu định lí về:

+ Các trờng hợp đồng dạng hai tam giác

+ Các trờng hợp đồng dạng hai tam giác vng

VỊ kü năng:

- Vn dng c cỏc trng hp đồng dạng tam giác để giải toán

- Biết ứng dụng tam giác đồng dạng để đo gián tiếp khoảng cách

Ví dụ Cho tam giác ABC vuông A, đờng cao AH. Gọi P, Q lần lợt trung điểm đoạn thẳng BH, AH Chứng minh :

(19)

VIII Hình lăng trụ đứng Hình chóp

1 Hình hộp chữ nhật Hình lăng trụ đứng Hình chóp đều. Hình chóp cụt đều.

- Các yếu tố hình - Các cơng thức tính diện tích, thể tích

VỊ kiÕn thøc:

Nhận biết đợc loại hình học yếu tố chỳng

Về kỹ năng:

- Vn dng c cơng thức tính diện tích, thể tích học

- Biết cách xác định hình khai triển hình học

Thừa nhận (khơng chứng minh cơng thức tính thể tích hình lăng trụ đứng hình chóp

2 Các quan hệ không gian trong hình hộp.

- Mặt phẳng: Hình biểu diễn, xác định

- Hình hộp chữ nhật quan hệ song song giữa: đờng thẳng đ-ờng thẳng, đđ-ờng thẳng mặt phẳng, mặt phẳng mặt phẳng - Hình hộp chữ nhật quan hệ vng góc giữa: đờng thẳng đ-ờng thẳng, đđ-ờng thẳng mặt phẳng, mặt phẳng mặt phẳng

VÒ kiÕn thøc:

Nhận biết đợc kết đợc phản ánh hình hộp chữ nhật quan hệ song song quan hệ vng góc đối t-ợng đờng thẳng, mặt phẳng

- Không giới thiệu tiên đề hình học khơng gian - Thừa nhận (khơng chứng minh kết xác định mặt phẳng Sử dụng yếu tố trực quan để minh hoạ cho nội dung

líp 9

Chủ đề Mức độ cần đạt Ghi chú

I Căn bậc hai Căn bậc ba. 1 Khái niệm bËc hai

Căn thức bậc hai đẳng thức A2 =A

VÒ kiÕn thøc:

Hiểu khái niệm bậc hai số khơng âm, kí hiệu bậc hai, phân biệt đợc bậc hai dơng bậc hai âm số dơng, định nghĩa bậc hai số hc

Về kỹ năng:

Tớnh c cn bậc hai số biểu thức bình ph-ơng số bình phph-ơng biểu thức khác

Qua vài toán cụ thể, nêu rõ cần thiết khái niệm bậc hai

(20)

2 Các phép tính phÐp biÕn

đổi đơn giản bậc hai. Về kỹ năng:- Thực đợc phép tính bậc hai: khai ph-ơng tích nhân thức bậc hai, khai phph-ơng thơng chia thức bậc hai

- Thực đợc phép biến đổi đơn giản bậc hai: đa thừa số dấu căn, đa thừa số vào dấu căn, khử mẫu biểu thức lấy căn, trục thức mẫu

- Biết dùng bảng số máy tính bỏ túi để tính bậc hai số dơng cho trớc

- C¸c phép tính bậc hai tạo điều kiện cho viƯc rót gän biĨu thøc cho tríc

- §Ị phòng sai lầm tơng tự cho rằng:

AB= A B

- Không nên xét biểu thức phức tạp Trong trờng hợp trục thức mẫu, nên xét mẫu tổng hiệu hai bậc hai - Khi tính bậc hai số dơng nhờ bảng số máy tính bỏ túi, kết thờng giá trị gần

3 Căn bậc ba. Về kiến thức:

Hiểu khái niệm bậc ba số thực Về kỹ năng:

Tớnh c cn bc ba số biểu diễn đợc thành lập phơng số khác

- Chỉ xét số ví dụ đơn giản bậc ba

VÝ dô TÝnh 3343, 30, 064.

- Không xét phép tính phép biến đổi bậc ba

II Hµm sè bËc nhÊt

1 Hµm sè y = ax + b a  . VỊ kiÕn thøc:

HiĨu c¸c tÝnh chÊt hàm số bậc Về kỹ năng:

Biết cách vẽ vẽ đồ thị hàm số y = ax + b (a  

- Rất hạn chế việc xét hàm số y = ax + b với a, b số vô tỉ

- Không chứng minh tính chất hµm sè bËc nhÊt

- Khơng đề cập đến việc phải biện luận theo tham số nội dung hàm số bậc 2 Hệ số góc đờng thẳng Hai

đờng thẳng song song hai đờng thẳng cắt nhau.

VÒ kiÕn thøc:

- Hiểu khái niệm hệ số góc đờng thẳng y = ax + b (a  

- Sử dụng hệ số góc đờng thẳng để nhận biết cắt song song hai đờng thẳng cho trớc

Ví dụ Cho đờng thẳng: y = 2x + (d1;

y = - x + (d2; y = 2x – (d3

(21)

III. Hệ hai phơng trình bậc hai ẩn 1 Phơng trình bậc hai Èn.

VỊ kiÕn thøc:

HiĨu kh¸i niƯm phơng trình bậc hai ẩn, nghiệm cách giải phơng trình bậc hai ẩn

Vớ d Vi phơng trình sau, tìm nghiệm tổng quát phơng trình biểu diễn tập nghiệm mặt phẳng toạ độ:

a 2x – 3y =  b 2x - y = 2 HÖ hai phơng trình bậc nhất

hai ẩn. Về kiến thức: Hiểu khái niệm hệ hai phơng trình bậc hai ẩn nghiệm hệ hai phơng trình bậc hai Èn

3 Giải hệ phơng trình ph-ơng pháp cộng đại số, phph-ơng pháp thế.

Về kỹ năng:

Vn dng c cỏc phng pháp giải hệ hai phơng trình bậc hai ẩn: Phơng pháp cộng đại số, phơng pháp

Khơng dùng cách tính định thức để giải hệ hai phơng trình bậc hai ẩn

4 Giải toán cách lập hệ

phơng trình Về kỹ năng:- Biết cách chuyển toán có lời văn sang toán giải hệ phơng trình bậc nhÊt hai Èn

- Vận dụng đợc bớc giải tốn cách lập hệ hai phơng trình bậc hai ẩn

Ví dụ Tìm hai số biết tổng chúng 156, lấy số lớn chia cho số nhỏ đợc th-ơng số d

Ví dụ Hai xí nghiệp theo kế hoạch phải làm tổng cộng 36 dụng cụ Xí nghiệp I vợt mức kế hoạch 12%, xí nghiệp II vợt mức kế hoạch 1%, hai xí nghiệp làm tổng cộng 4 dụng cụ Tính số dụng cụ xí nghiệp phải làm theo kế hoạch

IV Hµm sè y = ax2 (a 0) Phơng trình bậc hai Èn 1 Hµm sè y = ax2 (a  0) Tính

chất Đồ thị. Về kiến thức:

Hiểu tính chất hàm số y = ax2. Về kỹ năng:

Bit v th hàm số y = ax2 với giá trị số a

- Chỉ nhận biết tính chất hàm số y = ax2 nhờ đồ thị Khơng chứng minh tính chất phơng pháp biến đổi đại số

(22)

là số hữu tỉ 2 Phơng trình bËc hai mét Èn. VÒ kiÕn thøc:

Hiểu khái niệm phơng trình bậc hai ẩn

Về kỹ năng:

Vn dng c cỏch gii phơng trình bậc hai ẩn, đặc biệt cơng thức nghiệm phơng trình (nếu phơng trình có nghim

Ví dụ Giải phơng tr×nh:

a 6x2 + x - = 0; b 3x2 + 5x + = 0.

3 HƯ thøc Vi-Ðt vµ øng dơng. VỊ kỹ năng:

Vn dng c h thc Vi-ột ứng dụng nó: tính nhẩm nghiệm ph-ơng trình bậc hai ẩn, tìm hai số biết tổng tích chúng

VÝ dơ T×m hai sè x vµ y biÕt x + y = xy = 20

4 Phơng trình quy phơng trình

bc bai. V kin thức: Biết nhận dạng phơng trình đơn giản quy phơng trình bậc hai biết đặt ẩn phụ thích hợp để đa phơng trình cho phơng trình bậc hai ẩn phụ Về kỹ năng:

Vận dụng đợc bớc giải phơng trình quy phơng trình bậc hai

Chỉ xét phơng trình đơn giản quy phơng trình bậc hai: ẩn phụ đa thức bậc nhất, đa thức bậc hai bậc hai ẩn

Ví dụ Giải phơng trình: a 9x4 10x2 + = 0

b 3(y2 + y2  2(y2 + y  = 0 c 2x  x + =

5 Giải toán cách lập

ph-ơng trình bậc hai ẩn. Về kỹ năng:- Biết cách chuyển toán có lời văn sang toán giải phơng trình bậc hai ẩn

- Vn dụng đợc bớc giải toán cách lập phơng trình bậc hai

VÝ dơ TÝnh c¸c kÝch thớc hình chữ nhật có chu vi 120m vµ diƯn tÝch b»ng 875m2.

VÝ dơ Một tổ công nhân phải làm 144 dụng cụ Do công nhân chuyển làm việc khác nên ngời lại phải làm thêm dụng cụ Tính số công nhân lúc đầu tổ suất ngời nh

V Hệ thức lợng tam giác vuông 1 Một số hệ thức tam giác

vuông. Về kiến thức:

Hiểu cách chứng minh hệ thức Về kỹ năng:

Vận dụng đợc hệ thức để giải toán giải số trờng hợp thực tế

Cho tam giác ABC vng A có AB = 30 cm, BC = 50 cm Kẻ đờng cao AH Tính

(23)

Bảng lợng giác - Hiểu định nghĩa: sin, cos, tan, cot

- Biết mối liên hệ tỉ số lợng giác góc phụ

Về kỹ năng:

- Vận dụng đợc tỉ số lợng giác để giải tập - Biết sử dụng bảng số, máy tính bỏ túi để tính tỉ số l-ợng giác góc nhọn cho trớc số đo góc biết tỉ số lợng giác góc

Cịng cã thĨ dïng c¸c kÝ hiƯu tg, cotg

VÝ dơ Cho tam gi¸c ABC cã Â = 4, AB = 1cm, AC = 12cm TÝnh diƯn tÝch tam gi¸c ABC

3 HƯ thức cạnh các góc tam giác vuông (sử dụng tỉ số lợng giác).

Về kiến thøc:

HiĨu c¸ch chøng minh c¸c hƯ thøc cạnh góc tam giác vuông

Về kỹ năng:

Vn dng c cỏc hệ thức vào giải tập giải số toán thực tế

Ví dụ Giải tam giác vuông ABC biết  = 9, AC = 1cm vµ C^ = 3

4 øng dơng thùc tÕ c¸c tØ sè lợng giác góc nhọn

Về kỹ năng:

(24)

VI Đờng tròn

1 Xác định đờng tròn.

- Định nghĩa đờng trịn, hình trịn - Cung dây cung

- Sự xác định đờng tròn, đ-ờng tròn ngoại tiếp tam giác

VỊ kiÕn thøc: HiĨu :

+ Định nghĩa đờng trịn, hình trịn + Các tính chất đờng trịn

+ Sự khác đờng trịn hình trịn

+ Khái niệm cung dây cung, dây cung ln nht ca ng trũn

Về kỹ năng:

- Biết cách vẽ đờng tròn qua hai điểm ba điểm cho trớc Từ biết cách vẽ đờng tròn ngoại tiếp tam giác

- ứng dụng: Cách vẽ đờng tròn theo điều kiện cho trớc, cách xác định tâm đờng trịn

Ví dụ Cho tam giác ABC M trung điểm cạnh BC Vẽ MD  AB ME  AC Trên tia BD CE lần lợt lấy điểm I, K cho D trung điểm BI, E trung điểm CK Chứng minh bốn điểm B, I, K, C nằm đờng trịn

2 Tính chất đối xứng

- Tâm đối xứng

- Trục i xng

- Đờng kính dây cung

- Dây cung khoảng cách đến tâm

VỊ kiÕn thøc:

Hiểu đợc tâm đờng trịn tâm đối xứng đờng trịn đó, đờng kính trục đối xứng đ-ờng trịn Hiểu đợc quan hệ vng góc đđ-ờng kính dây, mối liên hệ dây cung khong cỏch t tõm n dõy

Về kỹ năng:

Biết cách tìm mối liên hệ đờng kính dây cung, dây cung khoảng cách từ tõm n dõy

- Không đa toán chứng minh phức tạp

- Trong bi nên có phần chứng minh phần tính tốn, nội dung chứng minh ngắn gọn kết hợp với kiến thức tam giác đồng dạng

3 Ví trí tơng đối đờng thẳng

và đờng tròn, hai đờng tròn. Về kiến thức:- Hiểu đợc vị trí tơng đối đờng thẳng đờng tròn, hai đờng tròn qua hệ thức tơng ứng (d < R, d > R, d = r + R, …

- Hiểu điều kiện để vị trí tơng ứng xảy - Hiểu khái niệm tiếp tuyến đờng tròn, hai đ-ờng trịn tiếp xúc trong, tiếp xúc ngồi Dựng đợc tiếp tuyến đờng tròn qua điểm cho trớc ngồi đờng trịn

- Biết khái niệm đờng tròn nội tiếp tam giác Về kỹ năng:

- Biết cách vẽ đờng thẳng đờng trịn, đờng trịn

Ví dụ Cho đoạn thẳng AB điểm M không trùng với A B Vẽ đờng tròn (A; AM (B; BM Hãy xác định vị trí tơng đối hai đờng tròn trờng hợp sau:

a Điểm M nằm đờng thẳng AB b Điểm M nằm A B

(25)

đờng tròn số điểm chung chúng 0, 1, - Vận dụng tính chất học để giải tập số tốn thực tế

Ví dụ Hai đờng tròn (O) (O') cắt nhau A B Gọi M trung điểm OO' Qua A kẻ đờng thẳng vng góc với AM, cắt đờng tròn (O) (O') lần lợt C D Chứng minh AC = AD

VII Góc với đờng trịn 1 Góc tâm Số đo cung.

- Định nghĩa góc tâm

- Số đo cung tròn

Về kiến thức:

Hiểu khái niệm góc tâm, số đo cung Về kỹ năng:

ng dng gii đợc tập số toán thực tế

Ví dụ Cho đờng trịn (O dây AB Lấy hai điểm M N cung nhỏ AB cho chúng chia cung thành ba cung nhau:

AM = MN = NB.

C¸c b¸n kính OM ON cắt AB lần lợt C vµ D Chøng minh r»ng AC = BD vµ AC > CD 2 Liên hệ cung dây. VÒ kiÕn thøc:

Nhận biết đợc mối liên hệ cung dây để so sánh đợc độ lớn hai cung theo hai dây tơng ứng ngc li

Về kỹ năng:

Vn dng đợc định lí để giải tập

Ví dụ Cho tam giác ABC cân A nội tiếp đờng tròn (O Biết  = 5 Hãy so sánh cung nhỏ AB, AC BC

3 Góc tạo hai cát tuyến của đờng trịn.

- Định nghĩa góc nội tiếp - Góc nội tiếp cung bị chắn

- Góc tạo tiếp tuyến dây cung

- Gúc có đỉnh bên hay bên ngồi đờng trịn

- Cung chứa góc Bài toán quỹ tÝch “cung chøa gãc”

VÒ kiÕn thøc:

- Hiểu khái niệm góc nội tiếp, mối liên hệ góc nội tiếp cung bị chắn

- Nhận biết đợc góc tạo tiếp tuyến dây cung - Nhận biết đợc góc có đỉnh bên hay bên ngồi đờng trịn, biết cách tính số đo góc

- Hiểu tốn quỹ tích “cung chứa góc” biết vận dụng để gii nhng bi toỏn n gin

Về kỹ năng:

Vận dụng đợc định lí, hệ để giải tập

Ví dụ Cho tam giác ABC nội tiếp đờng tròn (O, R Biết  =  ( < 9) Tính độ dài BC Ví dụ Cho tam giác ABC vng A, có cạnh BC cố định Gọi I giao điểm ba đ-ờng phân giác Tìm quỹ tích điểm I A thay đổi

(26)

- Định lí thuận - Định lí đảo

VỊ kiÕn thøc:

Hiểu định lí thuận định lí đảo tứ giác nội tiếp Về kỹ năng:

Vận dụng đợc định lí để giải tập tứ giác nội tiếp đờng tròn

Ví dụ Cho tam giác nhọn ABC có đờng cao AD, BE, CF đồng quy H Nối DE, EF, FD Tìm tất tứ giác nội tiếp có hình vẽ

5 Cơng thức tính độ dài đờng trịn, diện tích hình trịn Giới thiệu hình quạt trịn diện tích hình quạt trịn.

Về kỹ năng:

Vn dng c cụng thức tính độ dài đờng trịn, độ dài cung trịn, diện tích hình trịn diện tích hình quạt trịn để giải tập

Kh«ng chøng minh công thức S = R2 C = 2R

VIII H×nh trơ, h×nh nãn, h×nh cầu

- Hình trụ, hình nón, hình cầu.

- Hình khai triển mặt phẳng hình trụ, hình nón

- Công thức tính diện tích xung quanh thể tích hình trụ, hình nón, hình cầu

Về kiến thức:

Qua mụ hình, nhận biết đợc hình trụ, hình nón, hình cầu đặc biệt yếu tố: đờng sinh, chiều cao, bán kính có liên quan đến việc tính tốn diện tích thể tích hình

VỊ kü năng:

Bit c cỏc cụng thc tớnh din tích thể tích hình, từ vận dụng vào việc tính tốn diện tích, thể tích vật có cấu tạo từ hình nói

Ngày đăng: 05/03/2021, 14:24

w