1. Trang chủ
  2. » Luận Văn - Báo Cáo

Tính đa điều hòa dưới của nghiệm của phương trình Fefferman và ứng dụng

34 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 427,13 KB

Nội dung

Tính đa điều hòa dưới của nghiệm của phương trình Fefferman và ứng dụng Tính đa điều hòa dưới của nghiệm của phương trình Fefferman và ứng dụng Tính đa điều hòa dưới của nghiệm của phương trình Fefferman và ứng dụng luận văn tốt nghiệp,luận văn thạc sĩ, luận văn cao học, luận văn đại học, luận án tiến sĩ, đồ án tốt nghiệp luận văn tốt nghiệp,luận văn thạc sĩ, luận văn cao học, luận văn đại học, luận án tiến sĩ, đồ án tốt nghiệp

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THỊ LỤA TÍNH ĐA ĐIỀU HỊA DƯỚI CỦA NGHIỆM CỦA PHƯƠNG TRÌNH FEFFERMAN VÀ ỨNG DỤNG LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội - 2019 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THỊ LỤA TÍNH ĐA ĐIỀU HỊA DƯỚI CỦA NGHIỆM CỦA PHƯƠNG TRÌNH FEFFERMAN VÀ ỨNG DỤNG LUẬN VĂN THẠC SĨ KHOA HỌC Chuyên ngành: Toán giải tích Mã số: 60460102 Cán hướng dẫn: PGS TS NGUYỄN THẠC DŨNG Hà Nội - 2019 LỜI CẢM ƠN Để hoàn thành đề tài luận văn, em xin gửi lời cảm ơn sâu sắc tới thầy giáo hướng dẫn Nguyễn Thạc Dũng tận tình giúp đỡ em suốt trình nghiên cứu luận văn trực tiếp hướng dẫn em hoàn thiện đề tài luận văn tốt nghiệp Thầy dành thời gian tâm huyết vào cơng việc, thầy ln đặt niềm tin vào học trị khơng ngừng mong mỏi học trị ln tiến bộ, lĩnh hội nhiều kiến thức Em xin bày tỏ lòng cảm ơn tới thầy giáo, giáo khoa Tốn Cơ - Tin học, trường Đại học Khoa học Tự nhiên - Đại học Quốc gia Hà Nội giảng dạy giúp đỡ em có mơi trường học tập tốt suốt thời gian học tập trường Cuối xin cảm ơn bố mẹ ủng hộ việc học tập; cảm ơn bạn bè, anh chị em đồng nghiệp giúp đỡ, cổ vũ động viên học tập, công việc q trình hồn thiện luận văn.Tơi xin cảm ơn anh chị bạn lớp cao học Toán nhiệt tình giúp đỡ động viên tơi suốt trình học tập lớp Hà Nội, ngày 21 tháng 11 năm 2019 Học viên Nguyễn Thị Lụa Mục lục LỜI CẢM ƠN LỜI MỞ ĐẦU Kiến thức 1.1 Miền siêu giả lồi 1.1.1 Hàm đa điều hòa 1.1.2 Miền giả lồi 1.1.3 Toán tử Laplace-Beltrami đa tạp Kăahler 1.1.4 Min siờu gi li 1.2 Công thức xấp xỉ Phương trình Fefferman miền siêu giả lồi ứng 2.1 Hàm đa điều hòa chặt miều siêu giả lồi 2.2 Mối liên hệ miền siêu giả lồi miền lồi 2.3 Các phản ví dụ 6 7 11 dụng 16 17 19 23 KẾT LUẬN 30 Tài liệu tham khảo 31 LỜI MỞ ĐẦU Cho D miền trơn, bị chặn, giả lồi Cn , u ∈ C (D) hàm giá trị thực H(u) ma trận Hessian phức cỡ n × n u Ta biết u đa điều hòa chặt D H(u) xác định dương D Khi u đa điều hòa chặt D, u cảm sinh metric Kăahler n g = g[u] = i,j=1 2u dz i ⊗ dz j ∂zi ∂z j (1) Ta nói metric g Einstein có độ cong Ricci Rkl = − ∂ log det[gij ] (2) ∂zk ∂z l thỏa mãn phương trình: Rkl = cgkl với số c Khi c < 0, sau chuẩn hóa, ta giả sử c = −(n + 1) Cheng Yau [2] chứng minh phương trình Monge-Ampère det H(u) = e(n+1)u , z ∈ D (3) z ∈ ∂D u = +∞, có nghiệm đa điều hịa chặt nht u C (D) Hn na, metric Kăahler n g[u] = i,j=1 ∂ 2u dz i ⊗ dz j ∂zi ∂z j (4) cảm sinh u mt metric Kăahler-Einstein trờn D Khi D l gi lồi chặt, toán tồn nghiệm nghiệm nghiên cứu Fefferman [3] Feffermann xét phương trình dây det J(ρ) = 1, z ∈ D J(ρ) = −det ρ ρ = 0, z ∈ ∂D ∂ρ ∂ρ ∂ρ , , ∂z ∂z n (∂ρ)∗ H(ρ) , ∂ρ = (5) (∂ρ)∗ = ∂ρ ∂ρ , , ∂z1 ∂zn Phương trình gọi phương trình Feffermann Fefferman tìm t MỤC LỤC nghiệm ρ < D cho u = − log(−ρ) đa điều hòa chặt D Tác giả chứng minh tính đưa cơng thức nghiệm xấp xỉ cho (5) Nếu quan hệ ρ u cho ρ(z) = −e−u(z) , z ∈ D (6) (3) (5) trùng Hơn nữa, chứng minh (xem [8]) det H(u) = J(ρ)e(n+1)u (7) Khi D miền trơn, bị chặn, giả lồi chặt, Cheng Yau [2] chứng minh ρ ∈ C n+3/2 (D) Trên thực tế, người ta có ρ ∈ C n+2− (D) với > đủ nhỏ Điều khẳng định suy từ công thức mở rộng tiệm cận cho ρ thu Lee Melrose [6]: ∞ ρ(z) = r(z) aj (rn+1 log(−r))j a0 (z) + , (8) j=1 r ∈ C ∞ (D) hàm xác định cho D, aj ∈ C ∞ (D) a0 (z) > ∂D Nhiều nghiên cứu [8, 9, 13, 14] chứng tỏ toán thú vị quan trọng Bài toán 0.1 Giả sử D miền trơn, bị chặn, giả lồi chặt Cn Cho ρ nghiệm phương trình Fefferman (5) cho u = −log(−ρ) đa điều hòa chặt D Vậy bổ sung điều kiện D ta có ρ đa điều hòa chặt D Bằng cách giới thiệu khái niệm miền siêu giả lồi báo [7], Song Ying Li đưa đặc trưng hóa cho miền D Cn cho câu trả lời tốn Ngồi ra, tác giả nghiên cứu giá trị cực đại cho giá trị riêng "nhỏ nhất" ("bottom of the spectrum") miền Mục tiêu luận văn trình bày lại kêt báo nói Li Luận văn bao gồm hai chương Trong chương một, giới thiệu lại khái niệm miền giả lồi, hàm xác định, toán tử Laplace-Beltrami Đặc biệt, giới thiệu khái niệm miền siêu giả lồi chứng minh kết xấp xỉ cho hàm xác định Kết dùng chương hai để chứng minh kết Như nói trên, chương hai tập trung vào phân tích kết Li Cụ thể, Định lý 2.2 miền siêu giả lồi lời giải Bài tốn 0.1 tồn Kết MỤC LỤC cuối luận văn Định lý 2.1 đưa mối liên hệ khái niệm miền siêu giả lồi miền lồi Do hạn chế kiến thức nên luận văn khơng tránh khỏi thiếu sót, tác giả mong nhận ý kiến đóng góp thầy phản biện bạn đọc để nâng cao trau dồi kiến thức Các thảo luận góp ý trau đổi tác giả cảm ơn trân trọng Chương Kiến thức 1.1 Miền siêu giả lồi 1.1.1 Hàm đa điều hòa Trong phần ta đưa số tính chất hàm đa điều hòa Trước hết ta nhắc lại vài định nghĩa định lý cho hàm đa điều hòa dưới, chứng minh định lý ta xem Kenzo Adachi ([4], phần 1.2 Đặc trưng tính giả lồi) Định nghĩa 1.1 G g (|z1 |2 )2x1 , ∂x1 ∂|z1 |4 g(|z1 |2 ) =4|z1 |2 y1 g(|z1 |2 ) + |z1 |4 g (|z1 |2 )2y1 , ∂y1 ∂ |z1 |4 g(|z1 |2 ) =16|z1 |2 x21 g (|z1 |2 ) + 2|z1 |4 g (|z1 |2 ) + 4(|z1 |2 + 2x21 )g(|z1 |2 ) ∂x21 + 4|z1 |4 g (|z1 |2 )x21 , ∂ |z1 |4 g(|z1 |2 ) =16|z1 |2 y12 g (|z1 |2 ) + 2|z1 |4 g (|z1 |2 ) + 4(|z1 |2 + 2y12 )g(|z1 |2 ) ∂y12 + 4|z1 |4 g (|z1 |2 )y12 , ∂ (|z1 |4 g(|z1 |2 )) ∂(4|z1 |2 x1 g(|z1 |2 ) + |z1 |4 g (|z1 |2 )2x1 ) = ∂x1 ∂y1 ∂y1 =8x1 y1 g(|z1 |2 ) + 16|z1 |2 x1 y1 g (|z1 |2 ) + 4|z1 |4 x1 y1 g (|z1 |2 ); ngồi ra, ta tính 20t2 |g (t)| + 12tg(t) + 4t3 |g (t)| = 4tg(t) + ≤ 4tg(t) tδ t2 (δ + 2δ(δ − t)) + (δ − t)2 (δ − t)4 11δ (δ − t)4 ≤ 47 δ ≤ 4−5 Mặt khác, ta có 18|z1 |4 |g (|z1 |2 )| + 12|z1 |2 g(|z1 |2 ) + 4|z1 |6 |g (|z1 |2 )| ≤ ∂(|z1 |4 g(|z1 |2 )) < , ∂x1 ∂(|z1 |4 g(|z1 |2 )) < , ∂y1 24 Chương Phương trình Fefferman miền siêu giả lồi ứng dụng ∂(|z1 |4 g(|z1 |2 )) < ∂x1 ∂y1 Do đó, D2 r(z) = 2In + D2 (|z1 |4 g(|z1 |2 )) xác định dương R4 Vì vậy, D lồi chặt Hơn nữa, H(r)(0) = I2 Vậy nên detH(ρD )(0) < Tại z = 0, ta có ∂r = −1, rkj (0) = rijk (0) = 0, ∂z2 Bởi (2.10), ta suy ≤ i, j, k ≤ ∂ log J(r) (0) = với ≤ j ≤ Theo (2.13) (2.17), ∂zj ta có r1111 (0) = −32e−1 , E(r)(0) = |∂r|2 32 r1111 = − e−1 6 Do đó, detH(ρD )J(r)2/3 = − 32 − < 6e Suy ρD khơng đa điều hịa D Để chứng minh tính siêu giả lồi khơng suy tính lồi, ta có phản ví dụ sau Ví dụ 2.2 Cho n ≥ 2, α = 21 (9 − 8α)(1 + α) < C ≤ , ta lấy 20 256 n n zj2 r(z) = |z| + 2Rezn + αRe |zj |4 +C j=1 j=1 đặt D = {z ∈ Cn : r(z) < 0} Khi D siêu giả lồi, D không lồi Chứng minh Tại điểm z = (0, 0, , 0) ∈ ∂D, ta có ∂ ∂ ∂ , vectơ ∂xj ∂yj ∂yn tiếp xúc ∂D với ≤ j ≤ n − Chú ý ∂ 2r = − 2α = −2(α − 1) < 0, ∂yn2 25 Chương Phương trình Fefferman miền siêu giả lồi ứng dụng ta dễ dàng chứng minh hàm ∂D khơng lồi z = Do đó, ∂D không lồi Tuy nhiên, H(r) = In + 4C Diag(|z1 |2 , , |zn |2 ), Diag(|z1 |2 , , |zn |2 ) ma trận đường chéo với phần tử đường chéo |z1 |2 , , |zn |2 Khi ∂ 2r (z) = 4Cδij δkl δik , ∂zi ∂z j ∂zk ∂z l ∂ 3r = 4Cδkl δkj z j , ∂zk ∂z l ∂zj ∂ 2r = (α + 2Cz 2j )δij ∂zi ∂zj Với i, ta tính ri r = , + 4C|zi |2 i n |∂r|2r i = = r ri = i=1 |ri |2 + 4C|zi |2 ∂D, ta có n ∆= i,j=1 ri rj δij − 2 + 4C|zj | (1 + 4C|zi | )(1 + 4C|zj |2 )|∂r|2r ∂2 ∂zi ∂z j Chú ý z ∈ D n n x2j 2xn + (1 + α) yj2 + C + (1 − α) j=1 (x2j + yj2 )2 < j=1 Điều suy 2xn + (1 + α)x2n < ⇔ − Do 2xn + (1 + α)x2n > < xn < 1+α −1 C|zk |4 − (α − 1)|zk |2 < 1+α 1+α (2.22) (2.23) Ta chứng minh (9 − 8α)(1 + α) < C ≤ , 1

Ngày đăng: 04/03/2021, 19:30

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN