1. Trang chủ
  2. » Luận Văn - Báo Cáo

Development of a framework for co2 capture, utilization, and sequestration supply chain network optimization

171 20 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 171
Dung lượng 3,16 MB

Nội dung

TUAN B.H NGUYEN DEVELOPMENT OF A FRAMEWORK FOR CO2 CAPTURE, UTILIZATION, AND SEQUESTRATION SUPPLY CHAIN NETWORK OPTIMIZATION Tuan B.H Nguyen Development of a framework for CO2 capture, utilization, and sequestration supply chain network optimization ISBN: The research described in this thesis was carried out at the: Laboratory of Process Systems Engineering, Center for Environmental Research and Sustainable Technology (UFT), Department of Production Engineering, Universität Bremen, Bremen, Germany Cover: Thegioidohoa.com Printed by Gildeprint Drukkerijen DEVELOPMENT OF A FRAMEWORK FOR CO2 CAPTURE, UTILIZATION, AND SEQUESTRATION SUPPLY CHAIN NETWORK OPTIMIZATION Vom Fachbereich Produktionstechnik der UNIVERSITÄT BREMEN zur Erlangung des Grades Doktor-Ingenieur genehmigte Dissertation von M Sc Tuan B.H Nguyen Gutachter: Prof Dr Ir Edwin Zondervan Prof Dr.-Ing Jorg Thöming Tag der mündlichen Prüfung: 06.09.2019 Dedicated to my family, and my beloved “Learn from yesterday, live for today, hope for tomorrow The important thing is not to stop questioning.” Appendix Table E.4.3 CO2 sources: type, composition, emission and geological information (continue) No Name of emission sources Type of industry CO2 composition CO2 emissions, ton/year Latitude Longitude 152 Werk 950, Leuna, SR 1,2 Production of hydrogen and synthesis gas 0.12 444157 51.3225332 12.0148403 153 Salpetersäure-Fabrik Production of nitric acid 439623 49.66667 7.5 154 HeidelbergCement AG Zementwerk Leimen Production of cement clinker 0.19 432651 49.3575764 8.6890181 155 Kraftwerk Nord Energy conversion ≥ 50 MW FWL 0.03 429580 49.51373 8.431556 156 NAP-1486 Kraftwerk II, Block Energy conversion ≥ 50 MW FWL 0.09 428444 51.7006 7.12131 157 Herdofenanlage Fortuna-Nord Coke ovens 0.25 421806 50.9904195 6.6730875 158 Heizkraftwerk Mitte Energy conversion ≥ 50 MW FWL 0.14 421556 52.278611 10.514722 159 Kraftwerk Westfalen Energy conversion ≥ 50 MW FWL 0.14 421504 51.680278 7.969722 160 Einheitliche Anlage Stahlwerk Dillinger Hütte Production of pig iron and steel 0.2 415211 49.3554088 6.7317446 161 Aluminiumoxidwerk Stade - AOS Energy conversion ≥ 50 MW FWL 0.11 413799 53.6434567 9.4323749 162 Kraftwerk Mainz Energy conversion ≥ 50 MW FWL 0.14 393878 50.0256106 8.244024 163 Heizkraftwerk Lausward Energy conversion ≥ 50 MW FWL 0.03 384917 51.221389 6.731111 135 Appendix Table E.4.3 CO2 sources: type, composition, emission and geological information (continue) No Name of emission sources Type of industry CO2 composition CO2 emissions, ton/year Latitude Longitude 164 Ethylenanlage OM4 Production of basic organic chemicals 0.13 383768 50.83051 6.9475 165 Bioethanolfabrik Zeitz Energy conversion ≥ 50 MW FWL 0.11 379185 51.0529187 12.125239 166 HKW Lichterfelde Energy conversion ≥ 50 MW FWL 0.09 378595 52.425556 13.31 167 0080 Kraftwerk Holthausen Energy conversion ≥ 50 MW FWL 0.11 378479 51.1756818 6.8395563 168 GuD-IKW Staßfurt Energy conversion ≥ 50 MW FWL 0.03 375702 51.8849385 11.5590605 169 Industriekraftwerk Plattling Energy conversion ≥ 50 MW FWL 0.03 374742 49 11.5 170 Heizkraftwerk Sandreuth Energy conversion ≥ 50 MW FWL 0.03 374374 49.438611 11.060556 171 Drehrohrofen mit Heißgaserzeuger für die Rohmühle II zur Herstellung von Zementklinker Production of cement clinker 0.19 370556 51.6104562 8.3366938 172 Kraftwerk zur Stromerzeugung Energy conversion ≥ 50 MW FWL 0.14 357982 51.4312886 6.7592271 173 Petrochemische Anlage Münchsmünster Production of basic organic chemicals 0.13 352050 48.7667 11.6833 174 Kraftwerk Ingolstadt Energy conversion ≥ 50 MW FWL 0.11 349022 48.761882 11.50246 136 Appendix Table E.4.3 CO2 sources: type, composition, emission and geological information (continue) No Name of emission sources Type of industry CO2 composition CO2 emissions, ton/year Latitude Longitude 175 Papiererzeugung Production of paper 0.25 348382 49.9563261 9.0823479 176 Fels KM NSO 1-4 / DSO 5-8 Production of lime 0.3 335875 51.9152025 10.1511865 177 Kalkbrennanlage Hahnstätten Production of lime 0.3 329819 50.3172977 8.0668572 178 Kokerei Prosper Coke ovens 0.25 323528 51.521119 6.953284 179 Industriekraftwerk Wählitz Energy conversion ≥ 50 MW FWL 0.14 319041 51.166944 12.075833 180 GuD-Kraftwerk Energy conversion ≥ 50 MW FWL 0.03 315212 51.4653 13.868 181 Anlage zur Herstellung von Zement Production of cement clinker 0.19 310972 51.6006943 8.3503135 182 Kraftwerk L 57 NW_23_9021016_83 Energy conversion ≥ 50 MW FWL 0.03 307380 51.35427 6.6496687 183 UPM, Schongau Heizkraftwerk Energy conversion ≥ 50 MW FWL 0.11 304334 47.8105 10.8882 184 Wasserstoff-Anlage Production of hydrogen and synthesis gas 0.12 299832 49.66667 7.5 185 PKVarel_Papierfabrik Production of paper 0.25 297112 53.402264 8.1296214 186 HKW Moabit Energy conversion ≥ 50 MW FWL 0.14 292414 52.5375 13.345833 187 Fels KA RSO NSO GGR Production of lime 0.3 281564 48.8964556 11.9294419 137 Appendix Table E.4.3 CO2 sources: type, composition, emission and geological information (continue) No Name of emission sources Type of industry CO2 composition CO2 emissions, ton/year Latitude Longitude 188 Steamcracker I Production of basic organic chemicals 0.13 274018 49.66667 7.5 189 Kraftwerk Kirchmöser Energy conversion ≥ 50 MW FWL 0.03 273242 52.394167 12.418056 190 Grobblechwalzwerk der DH Processing of ferrous metals 0.2 272944 49.3554088 6.7317446 191 Papierproduktion Nordland Production of paper 0.25 271528 52.9776172 7.3606645 192 Reduktionsanlage (RA) Processing of ferrous metals 0.2 265071 53.5246983 9.9004824 193 TRIMET Aluminium SE, Essen Aluminiumschmelzflusselektrolyse Production of primary aluminum 0.012 264037 51.4900459 6.9682297 194 Einheitliche Anlage Alunorf Processing of non-ferrous metals 0.012 262148 51.1520094 6.7777098 195 Kalkbrennofenanlage Production of lime 0.3 261370 51.248197 7.0421084 196 Warmbreitbandwalzwerk Processing of ferrous metals 0.2 260822 52.1461 10.4428 197 HKW Wörth Energy conversion ≥ 50 MW FWL 0.03 260675 49.02072 8.1717 198 HKW Erfurt-Ost Energy conversion ≥ 50 MW FWL 0.03 260271 51.018611 11.039444 199 Kalkbrennanlage Steeden Production of lime 0.3 256807 50.4193314 8.103019 138 Appendix Table E.4.3 CO2 sources: type, composition, emission and geological information (continue) No Name of emission sources Type of industry CO2 composition CO2 emissions, ton/year Latitude Longitude 200 Lengerich Drehofen Production of cement clinker 0.19 255459 52.1739836 7.8839647 201 Elektrolyse Production of primary aluminum 0.012 254944 51.1485288 6.7781976 202 Anlage zur Herstellung von Furnaceruß Production of carbon black 0.049 253968 51.55232 7.45865 203 Geseke Drehofenanlage Production of cement clinker 0.19 253621 51.6340736 8.5099256 204 HKW Cottbus Gesamtanlage Energy conversion ≥ 50 MW FWL 0.14 253433 51.7639 14.39464 205 Werk 939, Leuna, Unit 824 Production of hydrogen and synthesis gas 0.12 252854 51.3225332 12.0148403 206 Anlage zur Herstellung von Zementklinker Production of cement clinker 0.19 252764 51.7603435 8.0732516 207 Kraftwerk Standort Hattorf Energy conversion ≥ 50 MW FWL 0.11 249701 50.85598 9.92396 208 Heizkraftwerk Niederrad Energy conversion ≥ 50 MW FWL 0.03 249168 50.110653 8.682093 209 Orion Engineered Carbons GmbH Werk Kalscheuren Furnacerußanlage Production of carbon black 0.049 248367 50.8769453 6.9163305 210 Kraftwerk Obernburg Energy conversion ≥ 50 MW FWL 0.09 245848 49.84 9.1414 139 Appendix Table E.4.3 CO2 sources: type, composition, emission and geological information (continue) No Name of emission sources Type of industry CO2 composition CO2 emissions, ton/year Latitude Longitude 211 Oxygenstahlwerk Standort Ruhrort Production of pig iron and steel 0.2 244505 51.4608895 6.7490597 212 SDO Raffinerie Harburg-Nord Refineries 0.07 242213 53.4901928 9.9763101 213 DH-Kesselstation Energy conversion ≥ 50 MW FWL 0.14 238619 49.3667503 6.7369215 214 Heizkraftwerk Energy conversion ≥ 50 MW FWL 0.09 237277 48.697222 8.999167 215 Heizkraftwerk Offenbach Energy conversion ≥ 50 MW FWL 0.12 236129 50.1124695 8.7551769 216 Herstellung von Aluminiumhydroxid (AlOH)3 Combustion 0.11 231503 50.9476572 6.6636815 217 Drehrohrofen Production of cement clinker 0.19 231277 48.8833947 10.9857767 218 Heizkraftwerk Energy conversion ≥ 50 MW FWL 0.11 230618 51.46667 6.71667 219 TRIMET Aluminium SE, Aluminiumschmelzflusselektrolyse Hamburg Production of primary aluminum 0.012 230065 53.5172852 9.8891798 220 Anlage zur Papierherstellung Production of paper 0.25 229181 50.7 6.65 221 HKW Potsdam-Süd Energy conversion ≥ 50 MW FWL 0.09 227828 52.365206 13.113053 140 Appendix Table E.4.3 CO2 sources: type, composition, emission and geological information (continue) No Name of emission sources Type of industry CO2 composition CO2 emissions, ton/year Latitude Longitude 222 Wasserstoff-Anlage Production of hydrogen and synthesis gas 0.12 227401 51.6797473 7.1012083 223 Kraftwerk Stuttgart-Münster Energy conversion ≥ 50 MW FWL 0.12 225969 48.815833 9.221111 224 Fels KÜ GGR NSO Production of lime 0.3 225936 52.4884605 13.8116022 225 Kraftwerk Franken I Energy conversion ≥ 50 MW FWL 0.09 222899 49.420836 11.008794 226 Kraftwerk Energy conversion ≥ 50 MW FWL 0.11 222753 53.5185626 9.953181 227 Betrieb 201 / 301_1 Combustion 0.11 219917 49.6545983 8.3621098 228 Floatglasanlage Production of glass 0.11 219906 49 11.5 229 Fritz Winter Eisengießerei Stadtallendorf Processing of ferrous metals 0.2 217037 50.8230225 9.0043554 230 HeidelbergCement AG, Zementwerk Paderborn Production of cement clinker 0.19 214097 51.6989491 8.7441625 231 GuD Hamm - TGH Energy conversion ≥ 50 MW FWL 0.03 212835 51.673889 7.929167 232 Hochofen Production of pig iron and steel 0.2 211866 51.4223336 6.7419027 233 KM III und Kraftwerk Production of paper 0.25 206034 50.3207744 7.2330568 234 GuD-Anlage Dieselstraße Energy conversion ≥ 50 MW FWL 0.09 205587 51.458989 11.993112 141 Appendix Table E.4.3 CO2 sources: type, composition, emission and geological information (continue) No Name of emission sources Type of industry CO2 composition CO2 emissions, ton/year Latitude Longitude 235 KRONOS TITAN GmbH, Werk Leverkusen Anlage zur Herstellung von Titandioxid Combustion 0.11 204879 51.0279028 6.9869921 236 Warmbandwerk Processing of ferrous metals 0.2 203376 51.4707935 7.1651351 237 T02 Kraftwerk Energy conversion ≥ 50 MW FWL 0.09 202758 48.55838 11.74138 238 Kraftwerk Irsching Energy conversion ≥ 50 MW FWL 0.11 202002 48.7675 11.58 239 Fels KK RSO 1-4 Production of lime 0.3 201826 51.7563054 10.8363127 240 Zuckerfabrik Jülich Production of lime 0.3 201710 50.916584 6.3730553 241 Synthesegasanlage Production of hydrogen and 0.12 synthesis gas 200300 49.66667 7.5 Table E.4.4 Potential reservoirs: type, capacity and geological information No Name of reservoirs Type of reservoirs Capacity, tonCO2 Latitude Longitude Altmark Natural gas field 508000000 52.716667 11.4 142 Appendix Table E.4.5 Potential utilization sites: geological information No Name of utilization sites Latitude Longitude Chemiepark Marl 51.683333 7.096667 CHEMPARK Dormagen 51.076111 6.838611 CHEMPARK Leverkusen 51.21895 6.76339 CHEMPARK Krefeld-Uerdingen 51.3553 6.6366 Industrial Park Bayer Bitterfeld GmbH 51.65 12.3667 Chemical Site LEUNA, InfraLeuna GmbH 51.318611 12.008333 Industriepark Höchst, Infraserv Höchst 50.09 8.534444 BASF SE Ludwigshafen 49.66667 7.5 Industriepark Gersthofen 48.442306 10.883056 10 Industriepark Werk GENDORF 48.179722 12.729444 11 Chemical Park Knapsack 50.858889 6.844444 12 Wacker Chemie AG 48.1751448 12.8393079 13 YARA Brunsbüttel 53.9107 9.2089 14 Dow Deutschland Anlagengesellschaft mbH, Werk Stade 53.6489502 9.4850053 15 Chemiepark Schwarzheide 51.481667 13.886667 143 Appendix Table E.4.6 Selected sources to achieve 60 % of CO2 reduction in the CCUS network Source type Total sources Total selected % of total capture CO2 capture (ton/year) Smallest (ton CO2/year) Largest (ton CO2/year) Coke ovens 1.05 2560856 291175 1890056 Combustion 3 0.24 590669 184391 208353 Energy conversion ≥ 50 MW FWL (coal) 59 32 64.53 157081506 228090 28862655 Energy conversion ≥ 50 MW FWL (natural gas) 23 15 7.03 17108879 185028 3230611 Energy conversion ≥ 50 MW FWL (oil and others) 19 5.91 14394857 200478 11019781 Energy conversion ≥ 50 MW FWL (natural gas-fired CCPP) 24 10 3.04 7396955 224251 2943179 Energy conversion ≥ 50 MW FWL (Coal-fired IGCC) 0.00 0 Energy conversion ≥ 50 MW FWL (Waste incinerator) 0.09 212516 212516 212516 Processing of ferrous metals 0.17 421602 183038 238564 Processing of non-ferrous metals 1 0.10 235933 235933 235933 Production of ammonia 5 1.65 4016947 572441 1090868 Production of basic organic chemicals 1.81 4398434 246616 880840 Production of carbon black 2 0.19 452102 223530 228571 144 Appendix Table E.4.6 Selected sources to achieve 60 % of CO2 reduction in the CCUS network (continue) Source type Total sources Total selected % of total capture CO2 capture (ton/year) Smallest (ton CO2/year) Largest (ton CO2/year) Production of cement clinker 32 1.56 3809348 208149 1095321 Production of glass 0.00 0 Production of hydrogen and synthesis gas 5 0.53 1282090 180270 399741 Production of lime 10 1.14 2781581 181539 1836846 Production of nitric acid 1 0.16 395661 395661 395661 Production of paper 0.21 519807 206263 313544 Production of pig iron and steel 4.96 12081556 190679 7381831 Production of primary aluminum 3 0.28 674141 207059 237633 Refineries 17 11 5.34 12998413 217992 2915003 Total 241 127 100 243413854 145 Appendix Table E.4.7 Selected sources to achieve 80 % of CO2 reduction in the CCUS network Source type Total sources Total selected % of total capture CO2 capture (ton/year) Smallest (ton CO2/year) Largest (ton CO2/year) Coke ovens 4 1.04 3372201 291175 1890056 Combustion 3 0.18 590669 184391 208353 Energy conversion ≥ 50 MW FWL (coal) 59 48 59.62 193504027 214757 28862655 Energy conversion ≥ 50 MW FWL (natural gas) 23 18 5.60 18178358 182482 3230611 Energy conversion ≥ 50 MW FWL (oil and others) 19 15 6.13 19910894 181802 11019781 Energy conversion ≥ 50 MW FWL (natural gas-fired CCPP) 24 22 4.33 14064253 191552 2943179 Energy conversion ≥ 50 MW FWL (Coal-fired IGCC) 2 1.56 5053943 1566732 3487211 Energy conversion ≥ 50 MW FWL (Waste incinerator) 0.07 212516 212516 212516 Processing of ferrous metals 0.42 1356993 183038 494408 Processing of non-ferrous metals 1 0.07 235933 235933 235933 Production of ammonia 5 1.24 4016947 572441 1090868 Production of basic organic chemicals 8 1.45 4715279 246616 880840 Production of carbon black 2 0.14 452102 223530 228571 146 Appendix Table E.4.7 Selected sources to achieve 80 % of CO2 reduction in the CCUS network (continue) Source type Total sources Total selected % of total capture CO2 capture (ton/year) Smallest (ton CO2/year) Largest (ton CO2/year) Production of cement clinker 32 25 3.84 12450154 208149 1095321 Production of glass 1 0.06 197915 197915 197915 Production of hydrogen and synthesis gas 5 0.40 1282090 180270 399741 Production of lime 10 1.21 3941663 181539 1836846 Production of nitric acid 1 0.12 395661 395661 395661 Production of paper 0.30 972638 185431 313544 Production of pig iron and steel 6.28 20387206 190679 7381831 Production of primary aluminum 3 0.21 674141 207059 237633 Refineries 17 16 5.73 18586221 217992 2915003 Total 241 205 100 324551805 147 Appendix References [1] É.S Van-Dal, C Bouallou, Design and simulation of a methanol production plant from CO2 hydrogenation, J Clean Prod 57 (2013) 38–45 doi:10.1016/J.JCLEPRO.2013.06.008 [2] N Park, M.-J Park, S.-C Baek, K.-S Ha, Y.-J Lee, G Kwak, H.-G Park, K.-W Jun, Modeling and optimization of the mixed reforming of methane: Maximizing CO2 utilization for non-equilibrated reaction, Fuel 115 (2014) 357–365 doi:10.1016/J.FUEL.2013.07.035 [3] J Xu, G.F Froment, Methane steam reforming, methanation and water-gas shift: I Intrinsic kinetics, AIChE J 35 (1989) 88–96 doi:10.1002/aic.690350109 [4] D.L Trimm, C.-W Lam, The combustion of methane on platinum—alumina fibre catalysts—I: Kinetics and mechanism, Chem Eng Sci 35 (1980) 1405–1413 doi:10.1016/0009-2509(80)85134-7 [5] Z Arab Aboosadi, A.H Jahanmiri, M.R Rahimpour, Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method, Appl Energy 88 (2011) 2691–2701 doi:10.1016/J.APENERGY.2011.02.017 [6] J.E.A Graciano, B Chachuat, R.M.B Alves, Conversion of CO2-Rich Natural Gas to Liquid Transportation Fuels via Trireforming and Fischer–Tropsch Synthesis: ModelBased Assessment, Ind Eng Chem Res 57 (2018) 9964–9976 doi:10.1021/acs.iecr.8b00135 [7] L.T Biegler, I.E Grossmann, A.W Westerberg, Systematic methods for chemical process design, Prentice Hall, Old Tappan, NJ (United States), 1997 [8] Eurostat, Electricity price statistics., (2017) http://ec.europa.eu/eurostat/statisticsexplained/index.php/Electricity_price_statistics (accessed January 25, 2017) [9] C Wulf, M Kaltschmitt, Hydrogen Supply Chains for Mobility—Environmental and Economic Assessment, Sustainability 10 (2018) 1699 [10] A Almansoori, A Betancourt-Torcat, Design of optimization model for a hydrogen supply chain under emission constraints - A case study of Germany, Energy 111 (2016) 414–429 doi:10.1016/J.ENERGY.2016.05.123 [11] E.A Quadrelli, G Centi, J.-L Duplan, S Perathoner, Carbon Dioxide Recycling: Emerging Large-Scale Technologies with Industrial Potential, ChemSusChem (2011) 1194–1215 doi:10.1002/cssc.201100473 [12] K Atsonios, K.D Panopoulos, E Kakaras, Investigation of technical and economic aspects for methanol production through CO2 hydrogenation, Int J Hydrogen Energy 41 (2016) 2202–2214 doi:https://doi.org/10.1016/j.ijhydene.2015.12.074 [13] J Kim, C.A Henao, T.A Johnson, D.E Dedrick, J.E Miller, E.B Stechel, C.T Maravelias, Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis, Energy Environ Sci (2011) 3122–3132 doi:10.1039/C1EE01311D [14] Y Lim, C.-J Lee, Y.S Jeong, I.H Song, C.J Lee, C Han, Optimal Design and Decision for Combined Steam Reforming Process with Dry Methane Reforming to Reuse CO2 as a Raw Material, Ind Eng Chem Res 51 (2012) 4982–4989 doi:10.1021/ie200870m [15] C Hank, S Gelpke, A Schnabl, R.J White, J Full, N Wiebe, T Smolinka, A Schaadt, 148 Appendix H.-M Henning, C Hebling, Economics & carbon dioxide avoidance cost of methanol production based on renewable hydrogen and recycled carbon dioxide – power-tomethanol, Sustain Energy Fuels (2018) 1244–1261 doi:10.1039/C8SE00032H [16] D Mignard, C Pritchard, On the use of electrolytic hydrogen from variable renewable energies for the enhanced conversion of biomass to fuels, Chem Eng Res Des 86 (2008) 473–487 doi:10.1016/J.CHERD.2007.12.008 [17] G.S Sandeep Alavandi, James Seaba, Emerging and Existing Oxygen Production Technology Scan and Evaluation, 2018 [18] A Bazzanella, F Ausfelder, Low carbon energy and feedstock for the European chemical industry, DECHEMA, Gesellschaft für Chemische Technik und Biotechnologie eV, 2017 149 ... Trucks and buses Manufacturing plants in industry Aircrafts Commercial and residential Natural Sources Humans Animals Plants and animal decay Trains and ships Land emission/leakage Flares of gas at... involves capture, storage, transport, and sequestration technologies CO2 capture is the heart of a CCS chain and separates CO2 from a range of stack emissions and intermediate chemical process streams... on Carbon Capture and Storage, Washington, DC, USA (2010) [21] N Kalyanarengan Ravi, M Van Sint Annaland, J.C Fransoo, J Grievink, E Zondervan, Development and implementation of supply chain optimization

Ngày đăng: 28/02/2021, 21:36

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN