The foundation model is described including: elastic stiffness parameter of Winkler foundation, shear layer based on Pasternak model, damping viscous and mass density paramete[r]
(1)
The Influence of Foundation Mass on Dynamic Behavior of Beam Subjected to Moving Vehicles
1, 2* 3
1 ,
2
3 hí Minh
-12- -8-2016
[14] tr
T :
Abstract
The influence of mass parameter of dynamic foundation on dynamic response of beam subjected to moving vehicles is studied in this paper The foundation model is described including: elastic stiffness parameter of Winkler foundation, shear layer based on Pasternak model, damping viscous and mass density parameter characterized the influence of mass of the foundation on response of structures Based on principle of dynamic balance and finite element method, the equation of motion of beam subjected to moving vehicles is derived and solved by numerical integration method in the time domain The effects of characteristic parameters of foundation mass on dynamic behavior of beam are investigated detaily
Keywords: Winkler foundation, dynamic foundation, dynamic analysis of beam, moving vehicle, bulk density
1 1
[1]
-Borodich [2], Hetényi [3], Pasternak [4], Reissner [5, 6], Kerr [7, 8], Vlasov [9],
* : Tel.: (+84) 935.888.072
Email: phuonghoabkdn@gmail.com
(2)[13],
[14]
nghiên
2
L,
h A E
(1) :
[14]
Hình 1.
Hình 2. P
n l
i; j
xoay [15, 16]
(2)
[15]
(3) (4)
(5) (6)
nguyên
(3)ph
(8)
:
,
(9)
(10)
(11)
:
: (12)
(13)
sau:
(14)
:
(15) (16) :
(17)
:
(18)
(19)
:
(20)
(21)
(22)
ha
kv cv
mw Mv
zv zw [17]
id (id=1, d
(23)
: fc g
:
t t
ng Mv t+ t :
(24)
trong (25)
=0.25 zv
(4)(26)
(27)
bi
(28)
mw
fc t+ t
(29)
(30)
(31)
mw
t+ t
, , ,
,
e t t e t t e t t
e e e
e t t
M u C u K u
(32)
M]e, [K]e [C]e
F}e véc t+ t
(33)
(xi-vt) hàm Direc-Delta, xi id, [Nw]id
t+ t.
3
, , (33)
[18]
2=1)
L/h K1 Bài báo Matsunaga [18]
10
0 13.8163 13.8162
10 14.1708 14.1709
102 17.0327 17.0326
103 34.3964 34.3963
104 100.5570 100.5564
105 313.8910 314.9778
Hình 3.
[19]
Hình 4.
[19]
(a) (b)
(5)d kg/m3,
N/m2, , m2,
m4,
kg, kg,
N/m, Ns/m; thông
N/m2, N,
Ns/m2 kg/m3
trên Hình
Hình 5.
, m: (a) m/s, (b) m/s
Hình 6.
, m: (a) m/s, (b) m/s
Hình 7.
m: (a) , (b) , (c)
,(d)
Hình 8.
m: (a) , (b) , (c)
,(d)
(a) (b)
(a (b)
(a) (b)
(c) (d)
(d)
(a) (b)
(6)4.
[1] Winkler E., Die Lehre von der Elastizitat und Festigkeit, Dominicus, Prague, 1867
[2] Filonenko-Borodich, M M., Some Approximate Theories of Elastic Foundation, Uchenyie Zapiski Moskovskogo Gosudarstvennogo Universiteta Mekhanica 46, (1940), 3-18 (in Russian)
[3] Hetényi M., Beams on Elastic Foundation: Theory with Applications in the Fields of Civil and Mechanical Engineering, University of Michigan Press, Ann Arbor, Michigan ISBN: 0472084453, 1946
[4] Pasternak P L., On a new method of analysis of an elastic foundation by means of two constants Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvui Arkhitekture, Moscow, 1954 (in Russian)
[5] Reissner, E., A note on deflections of plates on a viscoelastic foundation J Appl Mech 25, (1958), 144-155
[6] Reissner, E., Note on the formulation of the problem of the plate on an elastic foundation Acta Mechanica 4, (1967), 88-91
[7] Kerr A D.,Elastic and viscoelastic foundation models J Appl Mech 31, (1964), 491-498
[8] Kerr, A D., A study of a new foundation model, Acta Mechanica Vol 1, No 2, (1965), 135-147
[9] Vlasov V Z and Leont'ev U N., Beams, plates and shells on elastic foundations (Translated from Russian), Israel Program for Scientific Translation, Jerusalem, Israel 1966
[10] Vallabhan C V G and Y C Das, Parametric study of beams on elastic foundations, J Eng Mech Division 114, (1988), 2072-2082
[11] Vallabhan C V G and Y C Das, Modified Vlasov Model for beams on elastic foundations J Geotech Eng 117, (1991), 956-966
[12]
12, (2005), 32-35 [13]
9, (2014), 83-86 [14]
ch 6, (2015), 47-50
[15] Yokoyama T., Vibration analysis of timoshenko beam-columns on two-parameter elastic foundations, Computers & Structures Vol 61, No 6, (1996), 995-1007
[16] Nguyen Dinh Kien, Dynamic response of prestressed Timoshenko beams resting on two-parameter foundation to moving harmonic load, Technische Mechanik 28, (2008), 237- 258
[17] Mohebpour S.R., Malekzadeh P., Ahmadzadeh A.A Dynamic analysis of laminated composite plates subjected to a moving oscillator by FEM, Composite Structures 93, (2011), 1574-1583
[18] Matsunaga H., Vibration and buckling of deep beam-columns on two-parameter elastic foundations, Journal of Sound and Vibration 228(2), (1999), 359-376