1. Trang chủ
  2. » Giáo Dục - Đào Tạo

slide bài giảng đại số giải tích 12 tiết 31 hàm số mũ hàm số logarit mục 1

18 33 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 2,56 MB

Nội dung

Giáo viên thực hiện: nguyễn quang tánh Trờng tHPT NGUYEN HỮU THẬN KIỂM TRA BÀI CŨ Em cho biết số khơng có lơgarít.? Đ.án: Số số âm, khơng có lơgarít Tìm điều kiện để biểu thức sau có nghĩa? a) f(x) = log3(2x + 3) Đ.án: x >2 b) g(x) = log (1− x) Đ.án: x < KIỂM TRA BÀI CŨ Em nêu bảng tóm tắt tính chất hàm số mũ x a ( a > 0, a ≠ 1) Bảng tóm tắt tính chất hàm số mũ y = x a ( a > 0, a ≠ 1) y= ? Tập xác định ( −∞; + ∞) Đạo hàm y ' = a x ln a Chiều biến thiên a>1: Hàm số đồng biến a 0, ∀x ∈ ¡ ) Tiãút 33 y= ax J.Napier (15501617) y y= y = log a x x O Gv: Nguyễn Quang Tánh Trường THPT Nguyễn Hữu Thận x II.Hàm số lơgarít 1.Định nghĩa Cho số thực dương a khác Hàm số y = logax gọi hàm số lơgarít số a Ví dụ: Các hàm số y = log x, y = log3 x, y=lnx vµ y = log1 x hàm số lơgarít, có số là: 2;3;e; Cho biết tập xác định hàm số y = logax ( < a ≠ 1) Đáp số : D=(0;+ ∞) Tập xác định hàm số y = log (1− x) …… D = (- ∞; 1) điều kiện 1- x > x < Định lí 3: Hàm số y = logax ( a > , a ≠ 1) , có đạo hàm x > và: ( loga x) ' = xlna Chú ý: 1) ( lnx) ' = ; x u' (lnu)' = u 2) Đối với hàm số y = logau(x), ta có: u' ( loga u) ' = ulna Ví dụ: Hàm số y = log3(x2 +1) có đạo hàm (x + 1)' 2x y' = log3(x + 1) ' = = (x + 1)ln3 (x + 1)ln3 ( ) y = ln( x + + x ) Tìm đạo hàm hàm số: y'= (x + 1+ x ) ' x + 1+ x 1+ x 1 + x = = 2 x + 1+ x 1+ x Tìm đạo hàm hàm số: * Nhóm 1, 3: y = (2 x − 1) ln x * Nhóm 2, 4: y = x ln x − Giải: 2 y ' = [(2 x − 1) ln x ]' = (2 x − 1) 'ln x + (2 x − 1)(ln x) ' * Nhóm 1, 3: = ln x(ln x + (2 x − 1)) x y = x ln x − * Nhóm 2, 4: y ' = ( x ln x − 1) ' = x '(ln x − 1) + x(ln x − 1) ' ( x − 1) ' x = ln x − + x = ln x − + 2x −1 2x −1 3.Khảo sát hàm số lơgarít y = logax (0 < a ≠ 1) Ví dụ: Khảo sát hàm số y= loga x (a > 1) Lời giải: 1) Tập xác định: (0; +∞) Bảng biến thiên 2) Sự biến thiên > 0,∀x > y' = xlna Vậy hàm số đồng biến Giới hạn đặc biệt: lim(loga x) = −∞, + x→ x + y’ + +∞ + +∞ y -∞ 3) Đồ thị lim(loga x) = +∞ Tiệm cận: Trục tung tiệm cận đứng x→+∞ a 3) Đồ thị - Đồ thị qua điểm A(1; 0), B(a; 1) - Chính xác hóa đồ thị Tương tự khảo sát hàm số y = logax (0 < a < 1) ta bảng biến thiên đồ thị sau: x y’ y a - +∞ - +∞ - +∞ Bảng tóm tắt tính chất hàm số y = logax (0 < a< ≠ 1) Tập xác định Đạo hàm D = (0; +∞) y' = xlna +) a > 1: hàm số đồng biến Chiều biến thiên Tiệm cận Đồ thị +) < a < 1: hàm số nghịch biến Trục Oy tiệm cận đứng Đi qua A(1; 0) B(a; 1), nằm phía bên phải trục tung 4 Nêu nhận xét mối liên hệ đồ thị hàm số hình 35 hình 36 Nhận xét: Đồ thị hàm số y = ax y = logax, đối xứng Hình qua 35 đường thẳng y=x Hình 36 Câu hỏi trắc nghiệm C©u1 : Trong hàm số sau, hàm số no l hm s l«garit (a) y = logxx +1 (b) y = log-3xx (c) y = 2lnx (d) y = log(3-2x) (c) C©u2 : Tập xác định hàm số y = log0,5(x2-2x ) (a) (a) R\ [0; 2] (b) (0; 2) (c) (-∞; 0] (d) (2; +∞) C©u 3: Cho hàm số y = log3(x +x + 1) ạo hàm hàm số 2x + 2x + (a) y ' = (c ) y ' = ( x + x + 1)log3 x + x +1 (b) y ' = (b) 2x + ( x + x + 1)ln (d ) y ' = 2x + ( x + x + 1)log Câu hỏi trắc C©u4 : Trong nghim hàm số sau, hàm số no đồng biến tâp xác định (a) y = x2 +1 (c) y =log0.5(x+1) (b) y = log3x (b) (d) y = (0,9)x Câu5 : Trong hàm số sau, hàm số no nghịch biến tập xác ®Þnh (a) y = x2 +1 (c) y =log0.5(x+1) (c) (b) y = log3x (d) y = ex H¬ Ghi Ghinhí * Bảng đạo hàm hàm số lũy thừa, mũ, lơgarit (sgk trang 77) * Bảng tóm tắt tính chất hàm số lũy thừa, hàm số mũ, hàm số lôgarit * Học theo sgk làm tập 3, trang 77, 78 Tiết sau luyện tập ... chất hàm số mũ x a ( a > 0, a ≠ 1) Bảng tóm tắt tính chất hàm số mũ y = x a ( a > 0, a ≠ 1) y= ? Tập xác định ( −∞; + ∞) Đạo hàm y ' = a x ln a Chiều biến thiên a >1: Hàm số đồng biến a

Ngày đăng: 27/02/2021, 17:02

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN