Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 126 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
126
Dung lượng
7,4 MB
Nội dung
B GIÁO D C VÀ ÀO T O TR NGă IăH CăBÁCHăKHOAăHÀăN I BÙI QUANG THANH NGHIÊNăC UăCH ăT O,ăTệNHăCH TăQUANGăC AăV Tă LI UăNANOăSnO2 VÀ SiO2ậSnO2 PHAăT PăEu3+ LU N ÁN TI N S KHOA H C V T LI U HƠăN iăậ 2018 B GIÁO D C VÀ ÀO T O TR NGă IăH CăBÁCHăKHOAăHÀăN I BÙI QUANG THANH NGHIÊNăC UăCH ăT O,ăTệNHăCH TăQUANGăC AăV Tă LI UăNANOăSnO2 VÀ SiO2ậSnO2 PHAăT PăEu3+ Ngành: Khoaăh căv tăli u Mư s μ 9440122 LU N ÁN TI N S KHOA H C V T LI U Ng ih ng d n khoa h c: PGS.TS TR N NG C KHIÊM PGS.TS PH M THÀNH HUY HƠăN iă- 2018 L I CAM OAN Tôi xin cam đoan đơy lƠ cơng trình nghiên c u c a riêng tơi, d is h ng d n c a PGS.TS Tr n Ng c Khiêm vƠ PGS.TS Ph m ThƠnh Huy Các k t qu vƠ s li u nghiên c u lƠ trung th c vƠ ch a t ng công b b t kì cơng trình nƠo c a tác gi khác Hà n i ngày 05 tháng 10 năm 2018 T p th Giáo viên h ng d n Tác gi L IC M N L i đ u tiên, tơi xin đ c bƠy t lịng bi t n sơu s c đ n s h ng d n t n tình c a PGS.TS Tr n Ng c Khiêm, ng i ln h t lịng giúp đ , chia s vƠ đ ng viên c v v t ch t l n tinh th n su t trình lƠm nghiên c u sinh vƠ hoƠn thƠnh lu n án Tôi xin chơn thƠnh c m n PGS.TS Ph m ThƠnh Huy đư h ng d n, truy n đ t, góp Ủ r t nhi u ki n th c chuyên môn vƠ t khoa h c sơu s c, đóng vai trị quan tr ng vi c hoƠn thƠnh cơng vi c nghiên c u sinh vƠ lu n án c a tơi Tơi xin bƠy t tình c m chơn thƠnh vƠ bi t n TS Ngô Ng c HƠ đư nhi t tình giúp đ , b sung nhi u k n ng nghiên c u khoa h c đ tơi có th hoƠn thƠnh đ c n i dung b n lu n án Tôi xin bƠy t lịng kính tr ng vƠ c m n sơu s c đ n GS.TS Nguy n c Chi n v nh ng Ủ ki n chuyên môn, nh ng kinh nghi m quỦ báu giúp tơi q trình nghiên c u khoa h c Tôi xin trân tr ng c m n Ban giám đ c vƠ t p th Cán b Vi n Ơo t o Qu c t Khoa h c V t li u (ITIMS) đư h tr r t nhi u cho trình lƠm nghiên c u sinh vƠ hoƠn thƠnh lu n án V i c s h t ng vƠ h th ng phịng thí nghi m hi n đ i, trang thi t b tiên ti n, vi n ITIMS không ch mang l i m t môi tr ng lƠm vi c nghiêm túc, chu n m c mƠ cịn giúp cho tơi h c t p vƠ nghiên c u khoa h c đ t đ c k t qu t t Tôi xin trơn tr ng c m n Ban giám hi u NhƠ tr ng, Vi n sau ih cTr ng i h c Bách khoa HƠ N i đư t o nh ng u ki n thu n l i nh t đ hoƠn thƠnh lu n án Tôi xin trơn tr ng c m n Ban giám hi u vƠ Lưnh đ o Tr ng i h c Xơy d ng đư h tr t t c nh ng t t nh t, t o m i u ki n thu n l i vƠ ch đ u đưi giúp lƠm nghiên c u sinh vƠ hoƠn thƠnh lu n án Tôi xin chơn thƠnh c m n TS Nguy n c D ng, TS Nguy n V n Toán, TS Ph m V n Tu n, ThS H V n Ch ng, ThS Ph m S n Tùng, ThS Nguy n Th Thùy Linh, ThS Nguy n V n Du nghiên c u sinh vƠ th c s khác c a nhóm Quang n t - Vi n ITIMS đư giúp đ , đ ng viên, chia s r t nhi u ki n th c quỦ giá cho trình h c t p vƠ lƠm nghiên c u sinh Tôi chơn thƠnh c m n t i TS Ph m V n Tòng, ThS L u HoƠng Minh, ThS L ng Minh Tu n vƠ đ ng nghi p B mơn V t lí, Khoa C khí Xơy d ng, Tr ng i h c Xơy d ng đ ng viên vƠ h tr r t nhi u cho công tác, giúp hoƠn thƠnh công vi c nghiên c u sinh Cu i cùng, tơi mu n bƠy t lịng bi t n sơu s c t i gia đình, b m , anh ch em đư h tr vƠ đ ng viên, chia s vƠ ng h v v t ch t vƠ tinh th n su t th i gian lƠm nghiên c u sinh Tôi xin dành tình c m đ c bi t c a t i v Ngô Thúy H ng hai thơn yêu Ti n D ng & c Anh ậ cho tình u, cho s c m thơng, quan tơm, chia s , lƠ ni m tin giúp hoƠn thƠnh lu n án Tác gi _ M CL C Trang DANH M C CÁC CH VI T T T VÀ KÍ HI U i DANH M C CÁC B NG BI U ii DANH M C CÁC HÌNH V iii M ÂU CH NGă1.ăTÔNG QUAN 1.1 Gi i thi u v v t li uăcóăkíchăth c nano 1.1.1 T ng quan v v t li u có kích th c nano 1.1.2 Hi u ng b m t hi u ng giam gi l ng t c a v t li u nano 1.1.2.1 Hi u ng b m t c a v t li u có c u trúc nano 1.1.2.2 Hi u ng giam gi l ng t c a v t li u có c u trúc nano 1.1.3 nh h ng c a s gi m kích th c lên hi u ng l ng t 1.1.4 Tính ch t quang h c c a m t c u trúc l ng t 10 1.2 Gi i thi u v vơt liêu SiO2 12 1.2.2 V t li u SiO2 12 1.2.2 C u trúc c a SiO2 12 1.2.3 M t vài ng d ng c a v t li u SiO2 15 1.3 Gi i thi u v đ t hi m ion Eu3+ 16 1.3.1 Gi i thi u chung v nguyên t vƠ ion đ t hi m 16 1.3.2 Hu nh quang c a ion đ t hi m 17 1.3.2.1 S tách m c n ng l ng c u hình c a ion đ t hi m 17 1.3.2.2 C ch hu nh quang c a ion đ t hi m 19 1.3.2.3 Hi n t ng d ch chuy n phát x không phát x 21 1.3.2.4 Hi n t ng d p t t hu nh quang th i gian s ng c a hu nh quang 21 1.3.2.5 S đ t a đ c u hình gi i thích c ch hu nh quang c a ion đ t hi m 22 1.3.3 Hu nh quang c a ion Eu3+ 24 1.3.3.1 Tính ch t quang c a ion Eu3+ 24 1.3.3.2 Hu nh quang c a ion Eu3+ m ng n n SiO2 26 1.3.3.3 Hu nh quang c a ion Eu3+ m ng n n SiO2ậSnO2 27 1.4 Gi i thi u vơt liêu SnO2 31 1.4.1 Cơu truc m ng tinh th SnO2 31 1.4.2 C u trúc vùng n ng l ng c a SnO2 31 1.4.3 Tính ch t hu nh quang c a v t li u nano SnO2 32 1.5 Ph ngăphap ch t o v t li uăkíchăth c nano 34 1.5.1 Ch t o v t li u nano b ng ph ng pháp th y nhi t 34 1.5.2 Ch t o v t li u nano b ng ph ng phap sol ậ gel 35 CH NGă2.ăTH C NGHIÊM 38 2.1 Quy trình t ng h p v t li u b t nano SnO2 pha t p Eu3+ b ngăph ngăphap th y nhi t 38 I 2.1.1 Thi t b hóa ch t s d ng 38 2.1.2 Ch t o v t li u b t nano SnO2 pha t p ion Eu3+ 38 2.1.3 H v t li u b t nano SnO2:Eu3+ 41 2.2 Quy trình t ng h p v t li u màng nano composit SiO2ậSnO2 pha t p Eu3+ b ng ph ngăphap sol ậ gel 41 2.2.1 Thi t b hóa ch t s d ng 41 2.2.2 Quy trình ch t o v t li u màng nano composit SiO2ậSnO2:Eu3+ 42 2.2.3 Các h m u ch t o 44 2.2.3.1 Các công ngh ch t o vƠ k thu t quay ph đ c s d ng 44 2.2.3.2 Công ngh ch t o vƠ thay đ i t l thành ph n m u 45 2.2.3.3 Công ngh ch t o vƠ thay đ i nhi t đ nung m u sau ch t o 46 2.3 M t s ph ngăphápăphơnătíchăc u trúc c a v t li u 48 2.3.1 Ph ng pháp nhi u x tia X (XRD) 48 2.3.2 Ph ng pháp hi n vi n t quét (SEM) 48 2.3.3 Hi n vi n t truy n qua (TEM) 49 2.3.4 Ph hu nh quang (PL) ph kích thích hu nh quang (PLE) 50 CH NGă3 K T QU VÀ TH O LU N 51 3.1 V t li u b t nano SnO2:Eu3+ ch t o b ngăph ngăphápăth y nhi t 51 3.1.1 Kh o sát c u trúc vƠ kích th c tinh th b t nano SnO2:Eu3+ 51 3.1.2 Phân tích c u trúc hình thái h c 52 3.1.3 Hu nh quang c a v t li u b t nano SnO2 pha t p ion Eu3+ 54 3.1.3.1 Ph hu nh quang 3D c a v t li u b t nano SnO2:Eu3+ 54 3.1.3.2 Ph kích thích hu nh quang c a v t li u b t nano SnO2:Eu3+ 55 3.1.3.3 Ph hu nh quang c a v t li u b t nano SnO2:Eu3+ 57 3.1.3.4 Hu nh quang c a b t nano SnO2:Eu3+ ph thu c vào n ng đ t p Eu3+ 59 3.2 V t li u màng nano composit SiO2ậSnO2:Eu3+ ch t o b ngăph ngăphápăSolă ậ gel 64 3.2.1 S nh h ng c a u ki n công ngh ch t o lên màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 64 3.2.1.1 S nh h ng c a nhi t đ lên hình thái b m t tính ch t quang c a màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 64 3.2.1.2 S nh h ng c a hƠm l ng dung mơi C2H5OH lên tính ch t quang c a màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 66 3.2.1.3 S nh h ng c a hƠm l ng H2O lên tính ch t quang c a màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 68 3.2.2 Kh o sát c u trúc c a v t li u màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 70 3.2.2.1 Kh o sát c u trúc c a màng nano composit SiO2ậSnO2 70 3.2.2.2 Kh o sát c u trúc c a màng nano composit SiO2ậSnO2 ph thu c vƠo nhi t đ 71 II 3.2.2.3 S nh h ng c a nhi t đ lên c u trúc c a màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 72 3.2.2.4 Kh o sát c u trúc c a màng nano composit SiO2ậSnO2:Eu3+ ph thu c t l Sn/Si 73 3.2.3 Phân tích c u trúc hình thái h c c a v t li u màng nano composit SiO2ậ SnO2 pha t p ion Eu3+ 74 3.2.4 Kh o sát tính ch t quang c a m u v t li u màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 75 3.2.4.1 Ph hu nh quang 3D c a màng nano composit SiO2ậSnO2:Eu3+ 75 3.2.4.2 Kh o sát ph hu nh quang c a màng nano SiO2 pha t p Eu3+ 76 3.2.4.3 nh h ng c a t l hƠm l ng Sn/Si lên tính ch t quang c a màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 81 3.2.4.4 nh h ng c a n ng đ t p Eu3+ lên tính ch t quang c a màng nano composit SiO2ậSnO2:Eu3+ 90 3.2.4.5 nh h ng c a nhi t đ th p lên tính ch t quang c a màng nano composit SiO2ậSnO2:Eu3+ 94 3.2.4.6 nh h ng c a nhi t đ nung m u lên tính ch t quang c a màng nano composit SiO2ậSnO2:Eu3+ 95 K T LU N 98 TÀI LI U THAM KH O 100 DANH M CăCƠNGăTRÌNHă ÃăCƠNGăB C A LU N ÁN 111 III DANH M C CÁC CH VI T T T VÀ KÍ HI U T đơy đu T viêt t t Y nghia ET Energy transfer Truyên n ng l CB Conduction Band N ng l ng vùng d n VB Valence Band N ng l ng vùng hóa tr NR Non Radiation D ch chuy n không phát x NIR Near Infra-Red Vùng h ng ngo i g n RDF Rare-Earth Doped Fiber S i quang pha t p đ t hi m PL Photoluminescence Quang huynh quang PLE Photolumminescence Excitation MCVD Modified Chemical Vapor Deposition PCVD Plasma Chemical Vapor Deposition XRD X-ray diffraction Nhi u x tia X EDX Energy-dispersive X-ray spectroscopy Field Emission Scanning Electron Microscope High Resolution Transmission Electron Microscopy Ph tán s c n ng l ng tia X Hi n vi n t quét phát x tr ng Hi n vi n t truy n qua phơn gi i cao UV - VIS Ultravioletậvisible spectroscopy Ph h p th TEOS Tetraethylorthosilicate Tên hóa ch t FE-SEM HR-TEM đ.v.t.y rpm n v tùy Ủ ng Kich thích quang huynh quang L ng đ ng hóa h c pha h i c i bi n L ng đ ng hóa h c pha h i k t h p plasma nv Round per minute Vòng quay phút i DANH M C CÁC B NG BI U STT B ng 1.1 B ng 1.2 B ng 2.1 Bang 2.2 Bang 2.3 B ng 3.1 N i dung Trang ng b m t c a h t nano c u t o t nguyên S nguyên t vƠ n ng l t gi ng C u hình n t c a nguyên t vƠ ion đ t hi m H m u b t nano SnO2:Eu3+ v i n ng đ pha t p Eu3+ thay đ i Hóa ch t thi t b th c nghi m ph ng pháp th y nhi t Hê mơu v t li u màng nano composit SiO2ậSnO2:Eu3+ H m u v t li u 90SiO2ậ10SnO2:0,5%Eu3+/SiO2 ph thu c công ngh sol ậ gel vƠ k thu t quay ph ii 16 41 42 46 64 th y hi u ng x y rõ rƠng, d ch chuy n c a 5D0 ậ 7F1 n i tr i h n h n vƠ b tách thƠnh v ch rõ nét 58λ, 5λ4, vƠ 600 nm, d ch chuy n c a 5D0 ậ 7F2 b d p t t hoƠn toƠn Tuy nhiên, nhi t đ nung ti p t c t ng cao s lƠm suy gi m c ng đ hu nh quang t t c d ch chuy n, b i y c u trúc tinh th tr nên hoƠn h o lƠm cho khuy t t t hay sai h ng m ng m t đi, v y lƠm suy gi m nhanh c ng đ hu nh quang c a v t li u C-êng ®é (®.v.t.y) ex 280 nm 900 1000 1100 1200 D0 - F0 D0 - F1 D0 - F2 7 1300 NhiƯt ®é nung đ ( oC) Hình 3.47 Gi n đ mô t c ng đ hu nh quang ph thu c nhi t đ nung 900 ÷ 1300 oC, c a d ch chuy n l ng c c n 5D0 – 7F (0; 2) d ch chuy n l ng c c t 5D0 – 7F Chúng ch t o thành công v t li u màng nano composit SiO2ậSnO2 pha t p ion đ t hi m Eu3+ (SiO2ậSnO2:Eu3+) b ng ph ng pháp sol ậ gel vƠ k thu t quay ph , m u màng nano composit SiO2ậSnO2:Eu3+ thu đ c có hình thái b m t t t H t nano SnO2 hình thành màng v i c u trúc Rutile - Tetragonal có kích th c h t trung bình c 4,5 nm Quá trình kích thích quang h c gián ti p c a ion Eu3+ thông qua h t nano SnO2 có hi u su t cao h n hƠng ch c l n so v i q trình kích thích tr c ti p lên ion đ t hi m Eu3+ Các nghiên c u v ph phát x đ c tr ng c a ion Eu3+ v t li u đư ch r ng c ng đ hu nh quang đ t giá tr c c đ i v i m u có t l mol Sn/Si = [10/90] Khi thay đ i n ng đ t p Eu3+ t 0,25 ÷ 1,50 % mol, kích thích tr c ti p cho c ng đ hu nh quang t ng m t cách n tính, q kích thích gián ti p c ng đ hu nh quang t ng vƠ bưo hòa n ng đ t 1,00 % mol S ph thu c c a ph phát x lên nhi t đ x lý m u kho ng 900 ÷ 1300 oC c ng đư đ c nghiên c u Phát x hu nh quang ng v i d ch chuy n l ng c c n 5D0 ậ 7F(0, 2) gi m d n b d p t t m u x lý nhi t l n h n 1100 oC Phát x hu nh quang d ch chuy n l ng c c t 5D0 ậ 7F(1) đ t c c đ i nhi t đ 1100 oC 97 K T LU N N i dung c a lu n án nƠy, đư t p trung nghiên c u ch t o vƠ tính ch t quang c a v t li u b t nano SnO2 pha t p ion đ t hi m Eu3+ vƠ v t li u mƠng nano composit SiO2ậSnO2 pha t p ion Eu3+ C hai d ng v t li u ch t o đ c đ u cho phát x hu nh quang đ c tr ng mƠu đ c a ion Eu3+ r t t t, góp ph n mang l i tính ng d ng cao th c t nh ch t o linh ki n vƠ thi t b n hu nh quang, t quy mô nghiên c u phịng thí nghi m cho t i ng d ng vƠo th c ti n Chúng đư ch t o thƠnh công v t li u b t nano SnO2 pha t p ion đ t hi m Eu b ng ph ng pháp th y nhi t 3+ V t li u b t nano SnO2:Eu3+ đ c hình thành có c u trúc Rutile - Tetragonal, h t nano có kích th c ~ 6,5 nm V t li u cho hu nh quang có c ng đ m nh t i b c sóng 594 620 nm đ c tr ng c a ion Eu3+ Kh o sát đ c q trình kích thích cho hu nh quang b ng hai cách kích thích tr c ti p lên tâm t p kích thích gián ti p thông qua m ng n n SnO2 Hu nh quang thu đ c b ng kích thích gián ti p cho c ng đ t ng m nh g p nhi u l n so v i kích thích tr c ti p, ch ng t có q trình truy n n ng l ng x y ra, n ng l ng t v t li u n n SnO2 đư đ c chuy n vƠ kích thích cho tâm quang ion đ t hi m Eu3+ Hu nh quang c a ion Eu3+ ph thu c rõ ràng vào n ng đ pha t p m u, cho giá tr c c đ i m u có n ng đ % mol hu nh quang thu đ c nh trình kích thích tr c ti p, vƠ đ t giá tr c c đ i m u % mol cho tr ng h p kích thích gián ti p i u ch ng t có s tham gia c a hi n t ng d p t t b i n ng đ Chúng đư ch t o thƠnh công v t li u mƠng nano composit SiO2ậSnO2 pha t p ion đ t hi m Eu3+ b ng ph ng pháp công ngh sol ậ gel vƠ k thu t quay ph Màng nano composit SiO2ậSnO2:Eu3+ ch t o đ c v i h t nano SnO2 hình thành có c u trúc Rutile - Tetragonal kích th c ~ 4,5 nm Màng nano composit 80SiO2ậ20SnO2 không pha t p europium, nhi t gi d i nhi t đ 850 ÷ 1150 oC cho kích th c h t thay đ i t 4,4 ÷ 5,6 nm Màng nano composit 90SiO2ậ10SnO2 có pha t p 0,5 % mol europium, đ c nhi t gi d i nhi t đ 900 ÷ 1200 oC cho kích th c h t thay đ i t 3,7 98 ÷ 6,8 nm Màng nano composit (100-x)SiO2ậ(x)SnO2:0,5%Eu3+ (x = 5, 10, 20, 30) thu đ c có kích th c thay đ i kho ng 3,8 ÷ 5,5 nm Khi so sánh hu nh quang gi a v t li u màng SiO2:Eu3+ SiO2ậSnO2:Eu3+ th y c ng đ hu nh quang c a v t li u SiO2ậSnO2:Eu3+ m nh h n m t b c so v i màng SiO2:Eu3+ i u ch ng t s đóng góp ch y u c a ơ-xít bán d n SnO2 trình truy n n ng l ng t i tâm phát quang ion Eu3+ Hu nh quang c a v t li u màng nano ph thu c vào t l Sn/Si đ c kh o sát rõ rƠng C ng đ hu nh quang đ t giá tr c c đ i v i t l Sn/Si = [10/90] C ng đ hu nh quang cho b i q trình kích thích gián ti p v i b c sóng 280 nm l n h n 50 l n so v i kích thích tr c ti p t i b c sóng 392 nm Hu nh quang ph thu c vào n ng đ ion Eu3+ thay đ i t 0,25 ÷ 1,50 % mol đư đ c kh o sát Khi t ng n ng đ t p Eu3+ t 0,25 ÷ 1,50 % mol, c ng đ hu nh quang cho b i kích thích tr c ti p t ng lên m t cách n tính, v i kích thích gián ti p c ng đ hu nh quang đ t giá tr bão hòa n ng đ 1,00 % mol Kh o sát hu nh quang theo nhi t đ nung t 900 ÷ 1300 oC cho ta th y: c ng đ hu nh quang liên quan t i d ch chuy n l ng c c n 5D0ậ7F(0, 2) gi m d n nhi t đ t ng vƠ b d p t t hoƠn toƠn nhi t đ 1100 oC; hu nh quang liên quan t i d ch chuy n l ng c c t 5D0 ậ 7F(1) có c ng đ t ng lên vƠ đ t c c đ i nhi t đ 1100 oC, sau gi m d n nhi t đ ti p t c t ng Lu n án đư đ c th c hi n nghiên c u m t cách t m , bƠi b n t khơu ch t o v t li u c ng nh vi c th c hi n phép đo phơn tích c u trúc vƠ tính ch t hu nh quang c a v t li u Tuy nhiên v n nh ng m h n ch khuôn kh c a lu n án ch a th c hi n đ c Các h ng nghiên c u ti p theo mà d đ nh g mμ - Th c hi n thêm m t s phép đo nh m phơn tích vƠ tính tốn v trí có th c a ion Eu3+ m ng n n, s tác đ ng c a đ n c u trúc vƠ tính ch t quang c a v t li u SiO2ậSnO2:Eu - ng d ng c a v t li u mƠng nano composit vƠo vi c ch t o thi t b linh ki n n hu nh quang, thi t b thông tin quang,… 99 TÀI LI U THAM KH O [1] A Henglei (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles Chem Rev, 89, pp 1861-1873 [2] A Kar, S Kundu, A Patra (2011) Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles J Phys Chem C, 115, pp 118ậ124 [3] A Kolmakov, D.O Klenov, Y Lilach, S Stemmer, M Moskovits (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles Nano Lett 5, pp 667ậ673 [4] A.F Wright, M.S Lehmann (1981) The structure of quartz at 25 and 590 C determined by neutron diffraction Journal of Solid State Chemistry, 36, pp 371-380 [5] A.M Ganose, D.O Scanlon (2016) Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics J Mater Chem C., 4, pp 1467ậ1475 [6] B Devakumar, P Halappa, C Shivakumara (2017) Dy3+ /Eu3+ co-doped CsGd(MoO4)2 phosphor with tunable photoluminescence properties for near-UV WLEDs applications Dyes and Pigments, 137, pp 244-255 [7] B.G Lewis, D.C Paine (2000) Applicaitons and Processing of Transparent Conducting Oxides Transparent Conducting Oxides, 25, 8, pp 22-27 [8] B Mitchell, D Timmerman, J Poplawsky, W Zhu, D Lee, R Wakamatsu, J Takatsu, M Matsuda, W Guo, K Lorenz, E Alves, A Koizumi, V Dierolf, Y Fujiwara (2016) Utilization of native oxygen in Eu(RE)-doped GaN for enabling device compatibility in optoelectronic applications Sci Rep., 6, pp 18808 [9] B R Fisher (2005) Time Resolved Fluorescence of CdSe Nanocrystals using Single Molecule Spectroscopy Doctoral thesis, Massachusetts Institute of Technology [10] B Szpikowska, M.Z Sroka, R Czoik, L Zur, W.A Pisarski (2014) Energy transfer from Gd3+ to Eu3+ in silica xerogels Journal of Luminescence, 154, pp 290-293 [11] B.M Mothudi, J.R Botha, H.C Swart (2009) Photoluminescence and phosphorescence properties of MAl2O4: Eu2+ , Dy3+ (M: Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature 500oC Journal of Physica B, 404, pp 4440-4444 100 [12] B.N.S Bhaktha, C Kinowski, M Bouazaoui, B Capoen, O R Cristini, F Beclin, P Roussel, M Ferrari, S Turrell (2009) Controlled Growth of SnO2 Nanocrystals in Eu3+ -Doped SiO2ậSnO2 Planar Waveguides: A Spectroscopic Investigation J Phys Chem C, 113, pp 21555ậ21559 [13] B.S Naidu, M Pandey, V Sudarsan, R Tewari, R.K.Vatsa (2011) Interaction of Sb3+ ions with Eu3+ ions during the room temperature synthesis of luminescent Sb2O3 nanorods: Probed through Eu3+ luminescence Journal of Luminescence, 131, pp 177ậ183 [14] C Bouzidi, A Moadhen, H Elhouichet, M Oueslati (2008) Er 3+ -doped sol– gel SnO2 for optical laser and amplifier applications Appl Phys B 90, pp 465-469 [15] C Fu, J Wang, M Yang, X Su, J Xu, B Jiang (2011) Effect of La doping on microstructure of SnO2 nanopowders prepared by co-precipitation method Journal of Non-Crystalline Solids, 357, 3, pp 1172-1176 [16] C Ronda (2008) Luminescence From Theory to Applications WILEY- VCH Verlag, Germany [17] C Tiseanu, V.I Parvulescu, M.S Dominguez, M Boutonnet (2012) Temperature induced conversion from surface to “bulk” sites in Eu3+ impregnated CeO2 nanocrystals Journal of Applied Physics, 112, pp 013521 [18] C.H Shek, J.K.L Lai, G.M Lin (1999) Grain growth in nanocrystalline SnO2 prepared by sol-gel route Nano Structured Materials 11, 7, pp 887ậ 893 [19] D Calestani, M Zha, A Zappettini, L Lazzarini, G Salviati, L Zanotti, G Sberveglieri (2005) Structural and optical study of SnO2 nanobelts and nanowires Materials Science and Engineering C, 25, pp 625 ậ 630 [20] D Calestani, M Zha, A Zappettini, L Lazzarini, G Salviati, L Zanotti, G Sberveglieri (2005) Structural and optical study of SnO2 nanobelts and nanowires Materials Science and Engineering C, 25, pp 625-630 [21] D Wawrzynczyk, M Nyk, A Bednarkiewicz, W Strek, M Samoc (2014) Morphology and size dependent spectroscopic properties of Eu3+ -doped Gd2O3 colloidal nanocrystals J Nanoparticle Res., 16, pp 2690 [22] D.A Keen, M T Dove (1999) Local structures of amorphous and crystalline phases of silica, SiO2, by neutron total scattering J Phys Condens Matter, 11, pp 9263-9273 [23] D.R Jung, J Kim, C Nahm, H Choi, S Nam, B Park (2011) Review Paper: Semiconductor Nanoparticles with Surface Passivation and Surface Plasmon Electronic Materials Letters, 7, 3, pp 185-194 [24] E.A Morais, L.V.A Scalvi, A Tabata, J.B.B De Oliveira, S.J.L Ribeiro (2008) Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel Journal of Materials Science Letters, 43, pp 345ậ349 101 [25] E.G Yukihara, S.W McKeever (2011) Optically Stimulated Luminescence - Fundamentals and Applications A John Wiley and Sons, Ltd., Publication [26] F Gu, S.F Wang, M Kai, Y.X Qi, G.J Zhou, D Xu, D.R Yuan (2003) Synthesis and Luminescent properties of SnO2 nanoparticles Chemical Physics Letters, 372, pp 451 ậ 454 [27] F Gu, S.F Wang, M Kai, Y.X Qi, G.J Zhou, D Xu, D.R Yuan (2004) Luminescent characteristics of Eu3+ in SnO2 nanoparticles Optical Materials, 25, pp 59ậ64 [28] F.A Jesus, S.T.S Santos, J.M.A Caiut, V.H.V Sarmento (2016) Effects of thermal treatment on the structure and luminescent properties of Eu3+ doped SiO2–PMMA hybrid nanocomposites prepared by a sol–gel process Journal of Luminescence, 170, 2, pp 588-593 [29] G Blasse, B.C Grabmainer (1994) Luminescent Materials Springer Verlag [30] G Jose, K.A Amrutha, T.F Toney, V Thomas, C Joseph, M.A Ittyachen, N.V Unnikrishnan (2006) Structural and optical characterization of Eu3+ /CdSe nanocrystal containing silica glass Materials Chemistry and Physics, 96, 2ậ3, pp 381-387 [31] G Jose, V Thomas, C Joseph, M.A Ittyachen, N.V Unnikrishnan (2004), Optical Characterization of Eu3+ Ions in CdSe Nanocrystal Journal of Fluorescence, 14, 6, pp 733ậ738 [32] G Josea, V Thomasa, T.T Fernandeza, A.K Adiyodia, C Josepha, M.A Ittyachenb, N.V Unnikrishnana (2005) Radiative parameters of Eu3+ ions in CdSe nanocrystal containing silica matrices Physica B, 357, pp 270ậ276 [33] G Schmid (2004) Nanoparticles: From Theory to Application WILEYVCH [34] G.A Hebbink (2002) Luminescent Materials based on Lanthanide Ions Publisher: Twente University Press [35] G.C Righini, M Ferrari (2005) Photoluminescence of rare-earth–doped glasses La Rivista del Nuovo Cimento, 28, pp 1-53 [36] G.E.S Brito, H Fischer (2003) Structure of Redispersible SnO2 Nanoparticles Journal of Sol-Gel Science and Technology, 28, pp 45ậ50 [37] H Chun-Hui (2010) Rare earth coordination chemistry-Fundamentals and applications Rare Earth Coordination Chemistry, Wiley [38] H Guan, Y Sheng, C Xu, Y Dai, X Xie, H Zou (2016) Energy transfer and tunable multicolor emission and paramagnetic properties of GdF 3:Dy3+ , Tb3+ , Eu3+ phosphors Phys Chem Chem Phys., 18, pp 19807-19819 102 [39] H Wen, G Jia, C.K Duan, P.A Tanner (2010) Understanding Eu3+ emission spectra in glass Phys Chem Chem Phys 12, pp 9933-9937 [40] H You, M Nogami (2006) Persistent spectral hole burning of Eu3+ ions in TiO2–SiO2 glass prepared by sol–gel method Journal of Alloys and Compounds, 408ậ412, pp 796ậ799 [41] H Zeng, F You, H Peng, S Huang (2015) Energy transfer from Ce3+ to Tb3+ , Dy3+ and Eu3+ in Na 3Y(BO3)2 Journal of Rare Earths, 33, 10, pp 10511055 [42] H.M Yang, J.X Shi, M.L Gong (2005) A novel red emitting phosphor Ca 2SnO4:Eu3+ Journal of Solid State Chemistry, 178, pp 917ậ920 [43] H.M Yang, J.X Shi, M.L Gong (2006) A new luminescent material Sr 2SnO4:Eu3+ Journal of Alloys and Compounds, 415, pp 213ậ215 [44] H.S Nalwa (2001) Handbook of Nanostructured Materials and Nanotechnology Optical Properties Academic Press [45] H.V Tuyen, N.M Son (2017) Luminescence properties and energy transfer of Tb3+ - Eu3+ co-doped Sr 3B2O6 phosphors International Jounal of Modern Physics B, 31, pp 1750128 [46] H.V Tuyen, N.M Son, V.X Quang (2014) Preparation and Luminescent Properties of Sr 3B2O6:Eu3+ Phosphors International Journal of Engineering and Innovative Technology, 3, 8, pp 156-159 [47] I Ahemen, F.B Dejene, B Viana, P Aschehoug, E Odoh (2016) Effect of Annealing Temperature and Ambient on the Structural and Optical Properties of Eu3+ -doped ZnS Nanocrystals Materials Chemistry and Physics, 184, pp 250-260 [48] I Izeddin, D Timmerman, T Gregorkiewicz, A.S Moskalenko, A.A Prokofiev, I.N Yassievich, M Fujii (2008) Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals Phys Rev B, 78, 3, pp 035327 1-14 [49] I Izeddin, M.A.J Klik, N.Q Vinh, M.S Bresler, T Gregorkiewicz (2007) Donor-stateenabling Er-related luminescence in silicon: Direct identification and resonant excitation Phys Rev Lett., 99, pp 1ậ4 [50] I Manassidis, J Goniakowski, L.N Kantorovich, M.J Gillan (1995) The structure of the stoichiometric and reduced SnO2(110) surface Surface Science, 339, pp 258-271 [51] J Castillo, A.C Yanesa, J.J Velazquez, J.M Ramos, V.D Rodriguez (2009) Luminescent properties of Eu3+ –Tb3+ -doped SiO2–SnO2 based nano-glass– ceramics prepared by sol–gel method Journal of Alloys and Compounds, 473, pp 571ậ575 [52] J Castillo, V.D Rodriguez, A.C Yanes, J.M Ramos (2008) Energy transfer from the host to Er 3+ dopants in semiconductor SnO2 nanocrystals segregated in sol–gel silica glasses J Nanopart Res, 10, pp 499ậ506 103 [53] J Li, Z Yang, B Shao, J Yang, Y Wang, J Qiu, Z Song, Y Yang (2015) Preparation and photoluminescence enhancement of silica-coated LaPO4:Eu3+ three dimensional ordered macroporous films Ceramics International, 41, 6, pp 8109-8113 [54] J Partyka, M Gajek, K Gasek (2014) Effects of quartz grain size distribution on the structure of porcelain glaze Ceramics International, 40, 8, pp 12045-12053 [55] J.H Hong, C Conga, Z Zhanga, K Zhanga (2007) A new photoluminescence emission peak of ZnO–SiO2 nanocomposites and its energy transfer to Eu3+ ions Journal of Physics and Chemistry of Solids, 68, pp 1359ậ1363 [56] K Binnemans (2015) Interpretation of europium(III) spectra Coord Chem Rev., 295, pp 1-45 [57] K Park, H Kim, D.A Hakeem (2017) Effect of host composition and Eu3+ concentration on the photoluminescence of aluminosilicate (Ca,Sr)2Al2SiO7:Eu3+ phosphors Dyes and Pigments, 136, pp 70-77 [58] K.J Klabunde (2001) Nanoscale materials in chemistry Wiley Interscience [59] L Chen, Y Jiang, G Yang, G Zhang, X Xin, D Kong (2009) New red phosphor (Y,Gd,Lu)BO3: Eu3+ for PDP applications Journal of Rare Earths, 27, pp 312-315 [60] L Hou, S Cui, Z Fu, Z Wu, X Fuc, J.H Jeong (2014) Facile template free synthesis of KLa(MoO4)2:Eu3+ ,Tb3+ microspheres and their multicolor tunable luminescence Dalton Trans., 43, pp 5382ậ5392 [61] L Li (2013) Growth and photoluminescence properties of SnO2 nanobelts Materials Letters, 98, pp 146ậ148 [62] L Liu, Z Zhang, S Kang, J Mu (2007) Effect of SnO2 Nanocrystals on the Emission of Eu3+ Ions in Silica Matrix Journal of Dispersion Science and Technology, 28, pp 769 ậ 772 [63] L Zur (2013) Structural and luminescence properties of Eu3+ , Dy3+ and Tb3+ ions inlead germanate glasses obtained by conventional high-temperature melt-quenching technique Journal of Molecular Structure, 1041, pp 50-54 [64] L Yu, M Nogami (2007) Local structure and photoluminescent characteristics of Eu3+ in ZnO–SiO2 glasses Journal of Sol-Gel Science and Technology, 43, pp 355ậ360 [65] L.E Brus (1983) A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites J Chem Phys, 79, pp 5566-5571 [66] L.E Brus (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state J Chem Phys, 80, pp 4403 104 [67] L.E Brus (1986) Electronic wave functions in semiconductor clusters: experiment and theory J Chem Phys, 90, pp 2555-2560 [68] L.P Ravaro, A Tabata, J.B.B Oliveira, L.V.A Scalvi (2010) Raman and photoluminescence of Er 3+ -doped SnO2 obtained via the sol–gel technique from solutions with distinct pH Optical Materials, 33, pp 66-70 [69] M Batzill, U Diebold (2005) The surface and materials science of tin oxide Progress in Surface Science, 79, pp 47ậ154 [70] M Ferrari (2004) Active Sol–Gel Materials, Fluorescence Spectra and Lifetimes SAKKA KL3063B-19, 25, pp 1-32 [71] M Inokuti, F Hirayama (1965) Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence J Chem Phys., 43, 1978 [72] M Najafi, H Haratizadeh, M Ghezellou (2015) The Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods Journal of Nanostructures, 5, 2, pp 129-135 [73] M Nogami, A Ohno (2003) Laser precipitation of SnO2 nanocrystals in glass and energy transferred-fluorescence of Eu3+ ions Journal of NonCrystalline Solids, 330, pp 264ậ267 [74] M Nogami, T Enomoto, T Hayakawa (2002) Enhanced fluorescence of Eu3+ induced by energytransfer from nanosized SnO2 crystals in glass Journal of Luminescence, 97, pp 147ậ152 [75] M Puchalska, E Zycha, M Sobczyk, A Watras, P Deren (2014) Effect of charge compensation on up-conversion and UV excited luminescence of Eu3+ in Yb3+ Eu3+ doped calcium aluminate CaAl4O7 Materials Chemistry and Physics, 147, pp 304-310 [76] N Chiodini, A Paleari, D Di Martino, G Spinolo (2002) SnO2 nanocrystals in SiO2: A wide-band-gap quantum-dot system Appl Phys Lett, 81, pp 1702 [77] N Tiwari, R.K Kuraria, S.R Kuraria (2015) Optical studies of Eu3+ doped CaZrO3 phosphor for display device applications Optik - International Journal for Light and Electron Optics, 126, 23, pp 3488ậ3491 [78] N Woodward, J Poplawsky, B Mitchell, A Nishikawa, Y Fujiwara, V Dierolf (2011) Excitation of Eu3+ in gallium nitride epitaxial layers: Majority versus trap defect center Appl Phys Lett., 98, pp 011102 [79] N.A.K Aznan, M R Johan (2012) Quantum Size Effect in ZnO Nanoparticles via Mechanical Milling Journal of Nanomaterials, Vol 2012, ID 439010 [80] N.D Chien, D.T.X Thao, T.X Anh (2002) Optical properties of silica thin films doped with Eu3+ and Al3+ ions Proceeding of the Fifth Vietnamese ậ German Seminar on Physics and Engineering, Viet Nam 105 [81] N.F Santos, J Rodrigues, T Holz, A Sena, N Ben Sedrine, A Neves, F Costa, T Monteiro (2015) Luminescence studies in SnO2 and SnO2:Eu nanocrystals grown by laser assisted flow deposition Phys Chem Chem Phys., 17, 20, pp 13512ậ13519 [82] N.N Ha, A Nishikawa, Y Fujiwara, T Gregorkiewicz (2016) Investigation of optical gain in Eu-doped GaN thin film grown by OMVPE method J Sci Adv Mater Devices., 1, pp 220-223 [83] N.N Ha, S Cueff, K Dohnalova, M.T Trinh, C Labbé, R Rizk, I.N.Yassievich, T Gregorkiewicz (2011) Photon cutting for excitation of Er 3+ ions in SiO2 sensitized by Si quantum dots Phys Rev B, 84, 241308(R) [84] N.P Bansal, J Lamon (2014) Ceramic Matrix Composites: Materials, Modeling and Technology Composite Materials: Engineering and Science, pp 120-124 [85] N.Q Vinh, N.N Ha, T Gregorkiewicz (2009) Photonic properties of Erdoped crystalline silicon Review paper, Proc., 97, pp 1269-1283 [86] P Dai (2017) Enhanced red emission induced by Tb3+ doping in europiumbased molybdate phosphors Materials Research Bulletin, 94, pp 64-69 [87] P Norman, T.E Schwartzentruber, H Leverentz, S Luo, R.M Paneda, Y Paukku, D.G Truhlar (2013) The Structure of Silica Surfaces Exposed to Atomic Oxygen J Phys Chem C, 117, pp 9311ậ9321 [88] P V Tuan, L.T Hieu, L.Q Nga, N.D Dung, N.N Ha, T.N Khiem (2016) Hydrothermal synthesis and characteristic photoluminescence of Er-doped SnO2 nanoparticles Phys B Condens Matter., 501, pp 34ậ37 [89] P Yasaka, J Kaewkhao (2015) Luminescence from Lanthanides-Doped Glasses and Applications: A Review ICICI-BME, Bandung, 978-1-46737800-0/15 P.K Baitha, J Manam (2015) Structural and spectroscopic diagnosis of ZnO/SnO2 nanocomposite influenced by Eu3+ Journal of Rare Earths, 33, 8, pp 805-813 [90] [91] P.M Leong, T.Y Eeu, T.Q Leow, R Hussin, Z Ibrahim (2013) Luminescence Properties of Rare Earth and Transition Metal Ions Doped Potassium Lead Borophosphate Glass AIP Conf Proc., 1528, 310 92] P.S Chowdhury, S Saha, A Patra (2004) Influence of nanoenvironment on luminescence of Eu3+ activated SnO2 nanocrystals Solid State Communications, 131, pp 785ậ788 [93] P.S Tung, L.T.T Hien, N.N Ha, T.N Khiem, N.D Chien (2016) Influence of composition, doping concentration and annealing temperatures on optical properties of Eu3+ doped ZnO–SiO2 nanocomposites J Nanosci Nanotechnol., 16, 8, pp 7955ậ7958 [94] R Koole et al (2014) Nanoparticles: Size Effects on Semiconductor Nanoparticles Springer-Verlag Berlin Heidelberg 106 [95] R Salh (2011) Defect Related Luminescence in Silicon Dioxide Network: A Review Crystalline Silicon - Properties and Uses, pp 136-172 [96] R.M Almeida, A.C Marques, R Cabeca, L Zampedri, A Chiasera, M Ferrari (2004) Photoluminescence of Erbium-Doped Silicate Sol-Gel Planar Waveguides Journal of Sol-Gel Science and Technology, 31, pp 317ậ322 [97] R.N Rothon (2003) Particulate-Filled Polymer Composites Rapra Technology Limited, Shrewsbury, UK [98] R.S Knox (1963) Theory of Excitons, Solid state Physics supplements Academic Press, New York [99] R.S Ningthoujam, R.K Vatsa, A Vinu, K Ariga, A.K Tyagi (2009) Room Temperature Exciton Formation in SnO2 Nanocrystals in SiO2:Eu Matrix: Quantum Dot System, Heat-Treatment Effect Journal of Nanoscience and Nanotechnology, 9, pp 2634ậ2638 [100] R.S Ningthoujam, V Sudarsan, A Vinu, P Srinivasu, K Ariga, S.K Kulshreshtha, A.K Tyagi (2008) Luminescence Properties of SnO2 Nanoparticles Dispersed in Eu3+ Doped SiO2 Matrix Journal of Nanoscience and Nanotechnology, 8, pp 1489ậ1493 [101] R.S Ningthoujam, V Sudarsan, S.K Kulshreshtha (2007) SnO2:Eu nanoparticles dispersed in silica: A low-temperature synthesis and photoluminescence study Journal of Luminescence, 127, pp 747-756 [102] S Bazargan, K.T Leung (2012) Nano-environment effects on the luminescence properties of Eu3+ -doped nanocrystalline SnO2 thin films J Chem Phys., 137, pp 184704 [103] S Bishnoi, S Chawla (2017) Enhancement of GdVO4:Eu3+ red fluorescence through plasmonic effect of silver nanoprisms on Si solar cell surface Journal of Applied Research and Technology, 15, 2, pp 102-109 [104] S Brovelli, N Chiodini, A Lauria , A Paleari (2008) Erbium -induced blurring of the fractal surface of SnO2 nanocrystals grown in silica J Nanopart Res, 10, pp 737-743 [105] S Brovelli, N Chiodini, A Lauria, F Meinardi, A Paleari (2007) Native and radiation-induced two-fold coordinated sites in nanostructured SnO2:SiO2 Phys stat sol C, 4, 3, pp 822ậ 825 [106] S Dabboussi, H Elhouichet, H Ajlani, A Moadhen, M Oueslati, J.A Roger (2006) Excitation process and photoluminescence properties of Tb3+ and Eu3+ ions in SnO2 and in SnO2: Porous silicon hosts Journal of Luminescence, 121, 2, pp 507-516 S Ghosh, B.N.S Bhaktha (2016) Eu-doped ZnO–HfO2 hybrid nanocrystal embedded low-loss glass-ceramic waveguides Nanotechnology, 27, 10, pp 105202 [107] [108] S Ghosh, K.U.M Kumar, B.N.S Bhaktha (2017) Heat-treatment controlled structural and optical properties of sol-gel fabricated Eu:ZnO thin films Optical Materials, 64, pp 288-294 107 [109] S Kabi, A.G.U Perera (2015) Effect of quantum dot size and size distribution on the intersublevel transitions and absorption coefficients of III-V semiconductor quantum dot Journal of Applied Physics 117, pp 124303 [110] S Luo, J Fan, W Liu, M Zhang, Z Song, C Lin, X Wu, P.K Chu (2006) Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts Nanotechnology 17, pp 1695ậ1699 [111] S Neeleshwar, C.L Chen, C.B Tsai, Y.Y Chen (2005) Size-dependent properties of CdSe quantum dots Phys Rev B, 71, 201307 [112] S Thakur, A.K Gathania (2015) Synthesis and Characterization of YVO4Based Phosphor Doped with Eu3+ Ions for Display Devices Journal of Electronic Materials, 44, 10, pp 3444-3449 [113] S Yao, L Xue, Y Yan (2011) Properties of Eu3+ luminescence in the monoclinic Ba2MgSi2O7 Ceramics ậ Silikáty, 55, 3, pp 251-255 [114] S.J Dhoble, S.K Raut, N.S Dhoble (2015) Synthesis and Photoluminescence Characteristics of Rare Earth Activated some Silicate Phosphors for LED and Display Devices Int J Luminescence and Applications 5, 2, pp 178-182 [115] S.N.B Bhaktha, F Beclin, M Bouazaoui, B Capoen, A Chiasera, M Ferrari, C Kinowski, G.C Righini, O Robbe, S Turrell (2008) Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content Applied Physics Letters, 93, pp 211904 [116] S.S Chang , M.S Jo (2007) Luminescence properties of Eu-doped SnO2 Ceramics International, 33, pp 511ậ514 [117] S.U Lee, W.S Choi, B Hong (2007) Synthesis and characterization of SnO2 :Sb film by dc magnetron sputtering method for applications to transparent electrodes Physica Scripta, 129, pp 312ậ315 [118] S.V Gaponenko (2012) Introduction to Nanophotonics Cambridge University Press [119] T Arai, S Adachi (2014) Difference in Photoluminescence Properties of SnO2:Eu3+ Redish-Orange Phosphors Ảrown by Sol−Ảel and Chemical Etching Methods ECS Journal of Solid State Science and Technology, (11), pp 207-211 [120] T Arai, S Adachi (2014) Simple wet chemical synthesis and photoluminescence characterization of SnO2:Eu3+ reddish-orange phosphor Journal of Luminescence 153, pp 46ậ53 [121] T Hayakawa, M Nogami (2005) High luminescence quantum efficiency of Eu3+ -doped SnO2–SiO2 glasses due to excitation energy transfer from nanosized SnO2 crystals Science and Technology of Advanced Materials, 6, pp 66ậ70 [122] T N Khiem (2005) Sol-gel-derived Er 3+ activated multicomponent silica glasses for photonics Doctoral Thesis, ITALIA 108 [123] T.T Huong, H.T Phuong, L.T Vinh, H.T Khuyen, T.K Anh, L.Q Minh (2016) Functionalized YVO4:Eu3+ nanophosphors with desirable properties for biomedical applications Journal of Science: Advanced Materials and Devices, 1, 3, pp 295-300 [124] T.T Huong, L.T Vinh, H.T Phuong, H.T Khuyen, T.K Anh, V.D Tu, L.Q Minh (2016) Controlled fabrication of the strong emission YVO4:Eu3+ nanoparticles and nanowires by microwave assisted chemical synthesis J Lumin., 173, pp 89ậ93 [125] T.T.T Van, C.T.M Dung, L.Q Vinh, L.V Hieu (2017) Emission of Eu3+ in SiO2-ZnO glass and SiO2–SnO2 glass-ceramic: Correlation between structure and optical properties of Eu3+ ions Journal of Non-Crystalline Solids, 459, pp 57-62 [126] T.T.T Van, T.S Bui, S Turrell, B Capoen, P Roussel, M Bouazaoui, M Ferrari, O Cristinic, C Kinowskic (2012) Controlled SnO2 nanocrystal growth in SiO2–SnO2 glass-ceramic monoliths J Raman Spectrosc, 43, pp 869ậ875 [127] U Caldino, E Alvarez, A Speghini, M Bettinelli (2013) New greenishyellow and yellowish-green emitting glass phosphors: Tb3+ /Eu3+ and Ce3+ / Tb3+ /Eu3+ in zinc phosphate glasses Journal of Luminescence, 135, pp 216ậ 220 [128] U Woggon (1996) Optical Properties of Semiconductor Quantum dot Springer Tracts in Modern Physics [129] V Gueu, H You, T Hayakawa, M Nogami (2007) Eu3+ - fluorescence properties in nano-crystallized SnO2-SiO2 glass-ceramics J Sol-Gel Sci Techn, 41, pp 231ậ236 [130] V Jokanovic, M.D Dramicanin, Z Andric, B Jokanovic, Z Nedic, A M Spasic (2008) Luminescence properties of SiO2:Eu3+ nanopowders: Multistep nano designing Journal of Alloys and Compounds, 453, pp 253ậ260 [131] V Kiisk, T Kangur, M Paalo, T Tatte, S Lange, S Pikker, I Sildos (2011) Structural and luminescence characteristics of SnO2:Eu and SnO2:Eu,Sb nanophosphors upon annealing at high temperatures Materials Chemistry and Physics, 130, pp 293ậ298 [132] V Lantto, T.T Rantala, T.S Rantala (2001) Atomistic understanding of semiconductor gas sensor Journal of the Ceramic Society, 21, pp 19611965 [133] V Mangalam, K Pita, C Couteau (2016) Study of energy transfer mechanism from ZnO nanocrystals to Eu3+ ions Nanoscale Res Lett., 11, 73, pp 1ậ13 [134] V.V Rangari, S.J Dhoble (2015) Synthesis and photoluminescence studies of Ba(Gd, Ln)B9O16:Eu3+ (Ln= La,Y) phosphors for n-UV LED lighting and display devices Journal of Rare Earths, 33, 2, pp 140-147 109 [135] W Chen, D Ghosh, S Chen (2008) Large-scale electrochemical synthesis of SnO2 nanoparticles J Mater Sci., 43, pp 5291ậ5299 [136] W Yi, L Langsheng, Z Huiqun, D Ruiqin (2006) Anneal and Concentration Effect on PL Properties of Sol-Gel Derived Eu3+ Doped SiO2 Glass Journal of Rare Earths, 24, pp 199-203 [137] W.M Yen, S Shionoya, H Yamamoto (2006) Fundamentals of Phosphors CRC Press [138] X Cui, W Zhuang, Z Yu, T Xia, X Huang (2008) Preparation of red phosphor ( Y,Gd)BO3:Eu by soft chemistry methods, Journal of Alloys and Compounds, 451, pp 280-285 [139] X Fu, H Zhang, S Niu, Q Xin (2005) Synthesis and luminescent properties of SnO2:Eu nanopowder via polyacrylamide gel method Journal of Solid State Chemisty, 178, pp 603 ậ 607 [140] X Huang, H Guo, B Li (2017) Eu3+ -activated Na 2Gd(PO4)(MoO4): A novel high-brightness red-emitting phosphor with high color purity and quantum efficiency for white light-emitting diodes Journal of Alloys and Compounds, 720, pp 29-38 [141] X Zhang, L Zhou, Q Pang, M Gong (2014) A broadband-excited and narrow-line GdBO3: Ce3+ , Tb3+ , Eu3+ red phosphor with efficient Ce3+ (Tb3+ )n Eu3+ energy transfer for NUV LEDs Optical Materials, 36, pp 1112ậ1118 [142] X Zhang, M Chen, J Zhang, X Qin, M Gong (2016) Photoluminescence studies of high-efficient red-emitting K2Y(WO4)(PO4):Eu3+ phosphor for NUV LED Materials Research Bulletin, 73, pp 219-225 [143] X Zhang, T Hayakawaa, M Nogamia, Y Ishikawaa (2011) Variation in Eu3+ luminescence properties of GdF 3:Eu3+ nanophosphors depending on matrix GdF polytype Journal of Alloys and Compounds, 509, pp 2076ậ 2080 Y Dwivedi, S.B Rai (2008) Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass Optical Materials, 31, pp 87ậ93 [144] [145] Y Li, R Peng, X Xiu, X Zheng, X.Zhang, G Zhai (2011) Growth of SnO2 nanoparticles via thermal evaporation method Superlattices and Microstructures, 50, 5, pp 511-516 [146] Y Yu, Y Wang, D Chen, P Huang, E Ma, F Bao (2008) Enhanced emissions of Eu3+ by energy transfer from ZnO quantum dots embedded in SiO2 glass Nanotechnology, 19, pp 055711 [147] Z Xiaoting, T Hayakawa, Y Ishikawa, Y Liushuan, M Nogami (2015) Structural Investigation and Eu3+ Luminescence Properties of LaF 3:Eu3+ Nanophosphors Journal of Alloys and Compounds, 644, pp 77-81 [148] Z.X Wei, L Tao, X Jun, X Ling, C.K Ji (2012) The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol gel SiO2 films Chin Phys B, 21, 1, pp 018101 110 DANH M C CƠNG TRÌNH à CƠNG B C A LU N ÁN B.Q Thanh, N.N Ha, T.N Khiem (2012) Towards efficient fluorescence from Eu3+ -doped SnO2 nanoparticles dispersed in silica matrix Advanced Materials and Nanotechnology, ICAMN, Int Conf Proc 1, pp 73-76 nh h ng c a hàm l ng SnO2 lên tính ch t quang c a màng m ng nanocompostie SiO2–SnO2 pha t p ion đ t hi m Eu3+ T p chí Khoa h c vƠ Công ngh , SPMS8, 52 ậ 3B, trang 345-350 B.Q Thanh, N.N Ha, T.N Khiem (2014) B.Q Thanh, N.N Ha, P.S Tung, T.N Khiem (2014) Allocation of optically active Eu3+ ions in SnO2/SiO2 nanocomposite Advances Optics Photonics Spectroscopy and Applications VIII, ICPA8, pp 51-54 B.Q Thanh, N.N Ha, T.N Khiem (2015) Ph hu nh quang c a màng nanocomposite SiO2–SnO2 pha t p Eu Tuy n t p báo cáo H i ngh V t lí ch t r n vƠ Khoa h c V t li u toƠn qu c l n th IX, Q2, trang 485-488 3+ B.Q Thanh, N.N Ha, T.N Khiem, N.D Chien (2015) Correlation between SnO2 nanoparticles and Eu3+ dopants in SiO2 matrix: relation of the crystality, composition and photoluminescence Journal of Luminescence 163, pp 28ậ31 B.Q Thanh, P.V Do, T.N Khiem, N.N Ha (2018) Microscopic and optical parameters of Eu3+ -doped SnO2–SiO2 nanocomposites prepared by sol – gel method Journal of Luminescence 201, pp 129ậ134 111 ... tài nghiên c u ch t o, tính ch t quang c a v t li u nano SnO2 SiO2 -SnO2 pha t p Eu3+, lu n án đư nghiên c u ch t o thành công v t li u nano SnO2 pha t p Eu3+ d ng b t v t li u nano composit SiO2? ? ?SnO2. .. C2H5OH lên tính ch t quang c a màng nano composit SiO2? ? ?SnO2 pha t p ion Eu3+ 66 3.2.1.3 S nh h ng c a hƠm l ng H2O lên tính ch t quang c a màng nano composit SiO2? ? ?SnO2 pha t p ion Eu3+ ... t li u b t nano SnO2 pha t p ion Eu3+ 38 2.1.3 H v t li u b t nano SnO2: Eu3+ 41 2.2 Quy trình t ng h p v t li u màng nano composit SiO2? ? ?SnO2 pha t p Eu3+ b ng ph ngăphap sol ậ gel