1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu chế tạo, tính chất quang của vật liệu nano sno2 và sio2 sno2 pha tạp eu3+

126 13 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 126
Dung lượng 7,4 MB

Nội dung

B GIÁO D C VÀ ÀO T O TR NGă IăH CăBÁCHăKHOAăHÀăN I BÙI QUANG THANH NGHIÊNăC UăCH ăT O,ăTệNHăCH TăQUANGăC AăV Tă LI UăNANOăSnO2 VÀ SiO2ậSnO2 PHAăT PăEu3+ LU N ÁN TI N S KHOA H C V T LI U HƠăN iăậ 2018 B GIÁO D C VÀ ÀO T O TR NGă IăH CăBÁCHăKHOAăHÀăN I BÙI QUANG THANH NGHIÊNăC UăCH ăT O,ăTệNHăCH TăQUANGăC AăV Tă LI UăNANOăSnO2 VÀ SiO2ậSnO2 PHAăT PăEu3+ Ngành: Khoaăh căv tăli u Mư s μ 9440122 LU N ÁN TI N S KHOA H C V T LI U Ng ih ng d n khoa h c: PGS.TS TR N NG C KHIÊM PGS.TS PH M THÀNH HUY HƠăN iă- 2018 L I CAM OAN Tôi xin cam đoan đơy lƠ cơng trình nghiên c u c a riêng tơi, d is h ng d n c a PGS.TS Tr n Ng c Khiêm vƠ PGS.TS Ph m ThƠnh Huy Các k t qu vƠ s li u nghiên c u lƠ trung th c vƠ ch a t ng công b b t kì cơng trình nƠo c a tác gi khác Hà n i ngày 05 tháng 10 năm 2018 T p th Giáo viên h ng d n Tác gi L IC M N L i đ u tiên, tơi xin đ c bƠy t lịng bi t n sơu s c đ n s h ng d n t n tình c a PGS.TS Tr n Ng c Khiêm, ng i ln h t lịng giúp đ , chia s vƠ đ ng viên c v v t ch t l n tinh th n su t trình lƠm nghiên c u sinh vƠ hoƠn thƠnh lu n án Tôi xin chơn thƠnh c m n PGS.TS Ph m ThƠnh Huy đư h ng d n, truy n đ t, góp Ủ r t nhi u ki n th c chuyên môn vƠ t khoa h c sơu s c, đóng vai trị quan tr ng vi c hoƠn thƠnh cơng vi c nghiên c u sinh vƠ lu n án c a tơi Tơi xin bƠy t tình c m chơn thƠnh vƠ bi t n TS Ngô Ng c HƠ đư nhi t tình giúp đ , b sung nhi u k n ng nghiên c u khoa h c đ tơi có th hoƠn thƠnh đ c n i dung b n lu n án Tôi xin bƠy t lịng kính tr ng vƠ c m n sơu s c đ n GS.TS Nguy n c Chi n v nh ng Ủ ki n chuyên môn, nh ng kinh nghi m quỦ báu giúp tơi q trình nghiên c u khoa h c Tôi xin trân tr ng c m n Ban giám đ c vƠ t p th Cán b Vi n Ơo t o Qu c t Khoa h c V t li u (ITIMS) đư h tr r t nhi u cho trình lƠm nghiên c u sinh vƠ hoƠn thƠnh lu n án V i c s h t ng vƠ h th ng phịng thí nghi m hi n đ i, trang thi t b tiên ti n, vi n ITIMS không ch mang l i m t môi tr ng lƠm vi c nghiêm túc, chu n m c mƠ cịn giúp cho tơi h c t p vƠ nghiên c u khoa h c đ t đ c k t qu t t Tôi xin trơn tr ng c m n Ban giám hi u NhƠ tr ng, Vi n sau ih cTr ng i h c Bách khoa HƠ N i đư t o nh ng u ki n thu n l i nh t đ hoƠn thƠnh lu n án Tôi xin trơn tr ng c m n Ban giám hi u vƠ Lưnh đ o Tr ng i h c Xơy d ng đư h tr t t c nh ng t t nh t, t o m i u ki n thu n l i vƠ ch đ u đưi giúp lƠm nghiên c u sinh vƠ hoƠn thƠnh lu n án Tôi xin chơn thƠnh c m n TS Nguy n c D ng, TS Nguy n V n Toán, TS Ph m V n Tu n, ThS H V n Ch ng, ThS Ph m S n Tùng, ThS Nguy n Th Thùy Linh, ThS Nguy n V n Du nghiên c u sinh vƠ th c s khác c a nhóm Quang n t - Vi n ITIMS đư giúp đ , đ ng viên, chia s r t nhi u ki n th c quỦ giá cho trình h c t p vƠ lƠm nghiên c u sinh Tôi chơn thƠnh c m n t i TS Ph m V n Tòng, ThS L u HoƠng Minh, ThS L ng Minh Tu n vƠ đ ng nghi p B mơn V t lí, Khoa C khí Xơy d ng, Tr ng i h c Xơy d ng đ ng viên vƠ h tr r t nhi u cho công tác, giúp hoƠn thƠnh công vi c nghiên c u sinh Cu i cùng, tơi mu n bƠy t lịng bi t n sơu s c t i gia đình, b m , anh ch em đư h tr vƠ đ ng viên, chia s vƠ ng h v v t ch t vƠ tinh th n su t th i gian lƠm nghiên c u sinh Tôi xin dành tình c m đ c bi t c a t i v Ngô Thúy H ng hai thơn yêu Ti n D ng & c Anh ậ cho tình u, cho s c m thơng, quan tơm, chia s , lƠ ni m tin giúp hoƠn thƠnh lu n án Tác gi _ M CL C Trang DANH M C CÁC CH VI T T T VÀ KÍ HI U i DANH M C CÁC B NG BI U ii DANH M C CÁC HÌNH V iii M ÂU CH NGă1.ăTÔNG QUAN 1.1 Gi i thi u v v t li uăcóăkíchăth c nano 1.1.1 T ng quan v v t li u có kích th c nano 1.1.2 Hi u ng b m t hi u ng giam gi l ng t c a v t li u nano 1.1.2.1 Hi u ng b m t c a v t li u có c u trúc nano 1.1.2.2 Hi u ng giam gi l ng t c a v t li u có c u trúc nano 1.1.3 nh h ng c a s gi m kích th c lên hi u ng l ng t 1.1.4 Tính ch t quang h c c a m t c u trúc l ng t 10 1.2 Gi i thi u v vơt liêu SiO2 12 1.2.2 V t li u SiO2 12 1.2.2 C u trúc c a SiO2 12 1.2.3 M t vài ng d ng c a v t li u SiO2 15 1.3 Gi i thi u v đ t hi m ion Eu3+ 16 1.3.1 Gi i thi u chung v nguyên t vƠ ion đ t hi m 16 1.3.2 Hu nh quang c a ion đ t hi m 17 1.3.2.1 S tách m c n ng l ng c u hình c a ion đ t hi m 17 1.3.2.2 C ch hu nh quang c a ion đ t hi m 19 1.3.2.3 Hi n t ng d ch chuy n phát x không phát x 21 1.3.2.4 Hi n t ng d p t t hu nh quang th i gian s ng c a hu nh quang 21 1.3.2.5 S đ t a đ c u hình gi i thích c ch hu nh quang c a ion đ t hi m 22 1.3.3 Hu nh quang c a ion Eu3+ 24 1.3.3.1 Tính ch t quang c a ion Eu3+ 24 1.3.3.2 Hu nh quang c a ion Eu3+ m ng n n SiO2 26 1.3.3.3 Hu nh quang c a ion Eu3+ m ng n n SiO2ậSnO2 27 1.4 Gi i thi u vơt liêu SnO2 31 1.4.1 Cơu truc m ng tinh th SnO2 31 1.4.2 C u trúc vùng n ng l ng c a SnO2 31 1.4.3 Tính ch t hu nh quang c a v t li u nano SnO2 32 1.5 Ph ngăphap ch t o v t li uăkíchăth c nano 34 1.5.1 Ch t o v t li u nano b ng ph ng pháp th y nhi t 34 1.5.2 Ch t o v t li u nano b ng ph ng phap sol ậ gel 35 CH NGă2.ăTH C NGHIÊM 38 2.1 Quy trình t ng h p v t li u b t nano SnO2 pha t p Eu3+ b ngăph ngăphap th y nhi t 38 I 2.1.1 Thi t b hóa ch t s d ng 38 2.1.2 Ch t o v t li u b t nano SnO2 pha t p ion Eu3+ 38 2.1.3 H v t li u b t nano SnO2:Eu3+ 41 2.2 Quy trình t ng h p v t li u màng nano composit SiO2ậSnO2 pha t p Eu3+ b ng ph ngăphap sol ậ gel 41 2.2.1 Thi t b hóa ch t s d ng 41 2.2.2 Quy trình ch t o v t li u màng nano composit SiO2ậSnO2:Eu3+ 42 2.2.3 Các h m u ch t o 44 2.2.3.1 Các công ngh ch t o vƠ k thu t quay ph đ c s d ng 44 2.2.3.2 Công ngh ch t o vƠ thay đ i t l thành ph n m u 45 2.2.3.3 Công ngh ch t o vƠ thay đ i nhi t đ nung m u sau ch t o 46 2.3 M t s ph ngăphápăphơnătíchăc u trúc c a v t li u 48 2.3.1 Ph ng pháp nhi u x tia X (XRD) 48 2.3.2 Ph ng pháp hi n vi n t quét (SEM) 48 2.3.3 Hi n vi n t truy n qua (TEM) 49 2.3.4 Ph hu nh quang (PL) ph kích thích hu nh quang (PLE) 50 CH NGă3 K T QU VÀ TH O LU N 51 3.1 V t li u b t nano SnO2:Eu3+ ch t o b ngăph ngăphápăth y nhi t 51 3.1.1 Kh o sát c u trúc vƠ kích th c tinh th b t nano SnO2:Eu3+ 51 3.1.2 Phân tích c u trúc hình thái h c 52 3.1.3 Hu nh quang c a v t li u b t nano SnO2 pha t p ion Eu3+ 54 3.1.3.1 Ph hu nh quang 3D c a v t li u b t nano SnO2:Eu3+ 54 3.1.3.2 Ph kích thích hu nh quang c a v t li u b t nano SnO2:Eu3+ 55 3.1.3.3 Ph hu nh quang c a v t li u b t nano SnO2:Eu3+ 57 3.1.3.4 Hu nh quang c a b t nano SnO2:Eu3+ ph thu c vào n ng đ t p Eu3+ 59 3.2 V t li u màng nano composit SiO2ậSnO2:Eu3+ ch t o b ngăph ngăphápăSolă ậ gel 64 3.2.1 S nh h ng c a u ki n công ngh ch t o lên màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 64 3.2.1.1 S nh h ng c a nhi t đ lên hình thái b m t tính ch t quang c a màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 64 3.2.1.2 S nh h ng c a hƠm l ng dung mơi C2H5OH lên tính ch t quang c a màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 66 3.2.1.3 S nh h ng c a hƠm l ng H2O lên tính ch t quang c a màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 68 3.2.2 Kh o sát c u trúc c a v t li u màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 70 3.2.2.1 Kh o sát c u trúc c a màng nano composit SiO2ậSnO2 70 3.2.2.2 Kh o sát c u trúc c a màng nano composit SiO2ậSnO2 ph thu c vƠo nhi t đ 71 II 3.2.2.3 S nh h ng c a nhi t đ lên c u trúc c a màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 72 3.2.2.4 Kh o sát c u trúc c a màng nano composit SiO2ậSnO2:Eu3+ ph thu c t l Sn/Si 73 3.2.3 Phân tích c u trúc hình thái h c c a v t li u màng nano composit SiO2ậ SnO2 pha t p ion Eu3+ 74 3.2.4 Kh o sát tính ch t quang c a m u v t li u màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 75 3.2.4.1 Ph hu nh quang 3D c a màng nano composit SiO2ậSnO2:Eu3+ 75 3.2.4.2 Kh o sát ph hu nh quang c a màng nano SiO2 pha t p Eu3+ 76 3.2.4.3 nh h ng c a t l hƠm l ng Sn/Si lên tính ch t quang c a màng nano composit SiO2ậSnO2 pha t p ion Eu3+ 81 3.2.4.4 nh h ng c a n ng đ t p Eu3+ lên tính ch t quang c a màng nano composit SiO2ậSnO2:Eu3+ 90 3.2.4.5 nh h ng c a nhi t đ th p lên tính ch t quang c a màng nano composit SiO2ậSnO2:Eu3+ 94 3.2.4.6 nh h ng c a nhi t đ nung m u lên tính ch t quang c a màng nano composit SiO2ậSnO2:Eu3+ 95 K T LU N 98 TÀI LI U THAM KH O 100 DANH M CăCƠNGăTRÌNHă ÃăCƠNGăB C A LU N ÁN 111 III DANH M C CÁC CH VI T T T VÀ KÍ HI U T đơy đu T viêt t t Y nghia ET Energy transfer Truyên n ng l CB Conduction Band N ng l ng vùng d n VB Valence Band N ng l ng vùng hóa tr NR Non Radiation D ch chuy n không phát x NIR Near Infra-Red Vùng h ng ngo i g n RDF Rare-Earth Doped Fiber S i quang pha t p đ t hi m PL Photoluminescence Quang huynh quang PLE Photolumminescence Excitation MCVD Modified Chemical Vapor Deposition PCVD Plasma Chemical Vapor Deposition XRD X-ray diffraction Nhi u x tia X EDX Energy-dispersive X-ray spectroscopy Field Emission Scanning Electron Microscope High Resolution Transmission Electron Microscopy Ph tán s c n ng l ng tia X Hi n vi n t quét phát x tr ng Hi n vi n t truy n qua phơn gi i cao UV - VIS Ultravioletậvisible spectroscopy Ph h p th TEOS Tetraethylorthosilicate Tên hóa ch t FE-SEM HR-TEM đ.v.t.y rpm n v tùy Ủ ng Kich thích quang huynh quang L ng đ ng hóa h c pha h i c i bi n L ng đ ng hóa h c pha h i k t h p plasma nv Round per minute Vòng quay phút i DANH M C CÁC B NG BI U STT B ng 1.1 B ng 1.2 B ng 2.1 Bang 2.2 Bang 2.3 B ng 3.1 N i dung Trang ng b m t c a h t nano c u t o t nguyên S nguyên t vƠ n ng l t gi ng C u hình n t c a nguyên t vƠ ion đ t hi m H m u b t nano SnO2:Eu3+ v i n ng đ pha t p Eu3+ thay đ i Hóa ch t thi t b th c nghi m ph ng pháp th y nhi t Hê mơu v t li u màng nano composit SiO2ậSnO2:Eu3+ H m u v t li u 90SiO2ậ10SnO2:0,5%Eu3+/SiO2 ph thu c công ngh sol ậ gel vƠ k thu t quay ph ii 16 41 42 46 64 th y hi u ng x y rõ rƠng, d ch chuy n c a 5D0 ậ 7F1 n i tr i h n h n vƠ b tách thƠnh v ch rõ nét 58λ, 5λ4, vƠ 600 nm, d ch chuy n c a 5D0 ậ 7F2 b d p t t hoƠn toƠn Tuy nhiên, nhi t đ nung ti p t c t ng cao s lƠm suy gi m c ng đ hu nh quang t t c d ch chuy n, b i y c u trúc tinh th tr nên hoƠn h o lƠm cho khuy t t t hay sai h ng m ng m t đi, v y lƠm suy gi m nhanh c ng đ hu nh quang c a v t li u C-êng ®é (®.v.t.y) ex 280 nm 900 1000 1100 1200 D0 - F0 D0 - F1 D0 - F2 7 1300 NhiƯt ®é nung đ ( oC) Hình 3.47 Gi n đ mô t c ng đ hu nh quang ph thu c nhi t đ nung 900 ÷ 1300 oC, c a d ch chuy n l ng c c n 5D0 – 7F (0; 2) d ch chuy n l ng c c t 5D0 – 7F Chúng ch t o thành công v t li u màng nano composit SiO2ậSnO2 pha t p ion đ t hi m Eu3+ (SiO2ậSnO2:Eu3+) b ng ph ng pháp sol ậ gel vƠ k thu t quay ph , m u màng nano composit SiO2ậSnO2:Eu3+ thu đ c có hình thái b m t t t H t nano SnO2 hình thành màng v i c u trúc Rutile - Tetragonal có kích th c h t trung bình c 4,5 nm Quá trình kích thích quang h c gián ti p c a ion Eu3+ thông qua h t nano SnO2 có hi u su t cao h n hƠng ch c l n so v i q trình kích thích tr c ti p lên ion đ t hi m Eu3+ Các nghiên c u v ph phát x đ c tr ng c a ion Eu3+ v t li u đư ch r ng c ng đ hu nh quang đ t giá tr c c đ i v i m u có t l mol Sn/Si = [10/90] Khi thay đ i n ng đ t p Eu3+ t 0,25 ÷ 1,50 % mol, kích thích tr c ti p cho c ng đ hu nh quang t ng m t cách n tính, q kích thích gián ti p c ng đ hu nh quang t ng vƠ bưo hòa n ng đ t 1,00 % mol S ph thu c c a ph phát x lên nhi t đ x lý m u kho ng 900 ÷ 1300 oC c ng đư đ c nghiên c u Phát x hu nh quang ng v i d ch chuy n l ng c c n 5D0 ậ 7F(0, 2) gi m d n b d p t t m u x lý nhi t l n h n 1100 oC Phát x hu nh quang d ch chuy n l ng c c t 5D0 ậ 7F(1) đ t c c đ i nhi t đ 1100 oC 97 K T LU N N i dung c a lu n án nƠy, đư t p trung nghiên c u ch t o vƠ tính ch t quang c a v t li u b t nano SnO2 pha t p ion đ t hi m Eu3+ vƠ v t li u mƠng nano composit SiO2ậSnO2 pha t p ion Eu3+ C hai d ng v t li u ch t o đ c đ u cho phát x hu nh quang đ c tr ng mƠu đ c a ion Eu3+ r t t t, góp ph n mang l i tính ng d ng cao th c t nh ch t o linh ki n vƠ thi t b n hu nh quang, t quy mô nghiên c u phịng thí nghi m cho t i ng d ng vƠo th c ti n Chúng đư ch t o thƠnh công v t li u b t nano SnO2 pha t p ion đ t hi m Eu b ng ph ng pháp th y nhi t 3+  V t li u b t nano SnO2:Eu3+ đ c hình thành có c u trúc Rutile - Tetragonal, h t nano có kích th c ~ 6,5 nm  V t li u cho hu nh quang có c ng đ m nh t i b c sóng 594 620 nm đ c tr ng c a ion Eu3+  Kh o sát đ c q trình kích thích cho hu nh quang b ng hai cách kích thích tr c ti p lên tâm t p kích thích gián ti p thông qua m ng n n SnO2 Hu nh quang thu đ c b ng kích thích gián ti p cho c ng đ t ng m nh g p nhi u l n so v i kích thích tr c ti p, ch ng t có q trình truy n n ng l ng x y ra, n ng l ng t v t li u n n SnO2 đư đ c chuy n vƠ kích thích cho tâm quang ion đ t hi m Eu3+  Hu nh quang c a ion Eu3+ ph thu c rõ ràng vào n ng đ pha t p m u, cho giá tr c c đ i m u có n ng đ % mol hu nh quang thu đ c nh trình kích thích tr c ti p, vƠ đ t giá tr c c đ i m u % mol cho tr ng h p kích thích gián ti p i u ch ng t có s tham gia c a hi n t ng d p t t b i n ng đ Chúng đư ch t o thƠnh công v t li u mƠng nano composit SiO2ậSnO2 pha t p ion đ t hi m Eu3+ b ng ph ng pháp công ngh sol ậ gel vƠ k thu t quay ph  Màng nano composit SiO2ậSnO2:Eu3+ ch t o đ c v i h t nano SnO2 hình thành có c u trúc Rutile - Tetragonal kích th c ~ 4,5 nm  Màng nano composit 80SiO2ậ20SnO2 không pha t p europium, nhi t gi d i nhi t đ 850 ÷ 1150 oC cho kích th c h t thay đ i t 4,4 ÷ 5,6 nm Màng nano composit 90SiO2ậ10SnO2 có pha t p 0,5 % mol europium, đ c nhi t gi d i nhi t đ 900 ÷ 1200 oC cho kích th c h t thay đ i t 3,7 98      ÷ 6,8 nm Màng nano composit (100-x)SiO2ậ(x)SnO2:0,5%Eu3+ (x = 5, 10, 20, 30) thu đ c có kích th c thay đ i kho ng 3,8 ÷ 5,5 nm Khi so sánh hu nh quang gi a v t li u màng SiO2:Eu3+ SiO2ậSnO2:Eu3+ th y c ng đ hu nh quang c a v t li u SiO2ậSnO2:Eu3+ m nh h n m t b c so v i màng SiO2:Eu3+ i u ch ng t s đóng góp ch y u c a ơ-xít bán d n SnO2 trình truy n n ng l ng t i tâm phát quang ion Eu3+ Hu nh quang c a v t li u màng nano ph thu c vào t l Sn/Si đ c kh o sát rõ rƠng C ng đ hu nh quang đ t giá tr c c đ i v i t l Sn/Si = [10/90] C ng đ hu nh quang cho b i q trình kích thích gián ti p v i b c sóng 280 nm l n h n 50 l n so v i kích thích tr c ti p t i b c sóng 392 nm Hu nh quang ph thu c vào n ng đ ion Eu3+ thay đ i t 0,25 ÷ 1,50 % mol đư đ c kh o sát Khi t ng n ng đ t p Eu3+ t 0,25 ÷ 1,50 % mol, c ng đ hu nh quang cho b i kích thích tr c ti p t ng lên m t cách n tính, v i kích thích gián ti p c ng đ hu nh quang đ t giá tr bão hòa n ng đ 1,00 % mol Kh o sát hu nh quang theo nhi t đ nung t 900 ÷ 1300 oC cho ta th y: c ng đ hu nh quang liên quan t i d ch chuy n l ng c c n 5D0ậ7F(0, 2) gi m d n nhi t đ t ng vƠ b d p t t hoƠn toƠn nhi t đ 1100 oC; hu nh quang liên quan t i d ch chuy n l ng c c t 5D0 ậ 7F(1) có c ng đ t ng lên vƠ đ t c c đ i nhi t đ 1100 oC, sau gi m d n nhi t đ ti p t c t ng Lu n án đư đ c th c hi n nghiên c u m t cách t m , bƠi b n t khơu ch t o v t li u c ng nh vi c th c hi n phép đo phơn tích c u trúc vƠ tính ch t hu nh quang c a v t li u Tuy nhiên v n nh ng m h n ch khuôn kh c a lu n án ch a th c hi n đ c Các h ng nghiên c u ti p theo mà d đ nh g mμ - Th c hi n thêm m t s phép đo nh m phơn tích vƠ tính tốn v trí có th c a ion Eu3+ m ng n n, s tác đ ng c a đ n c u trúc vƠ tính ch t quang c a v t li u SiO2ậSnO2:Eu - ng d ng c a v t li u mƠng nano composit vƠo vi c ch t o thi t b linh ki n n hu nh quang, thi t b thông tin quang,… 99 TÀI LI U THAM KH O [1] A Henglei (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles Chem Rev, 89, pp 1861-1873 [2] A Kar, S Kundu, A Patra (2011) Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles J Phys Chem C, 115, pp 118ậ124 [3] A Kolmakov, D.O Klenov, Y Lilach, S Stemmer, M Moskovits (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles Nano Lett 5, pp 667ậ673 [4] A.F Wright, M.S Lehmann (1981) The structure of quartz at 25 and 590 C determined by neutron diffraction Journal of Solid State Chemistry, 36, pp 371-380 [5] A.M Ganose, D.O Scanlon (2016) Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics J Mater Chem C., 4, pp 1467ậ1475 [6] B Devakumar, P Halappa, C Shivakumara (2017) Dy3+ /Eu3+ co-doped CsGd(MoO4)2 phosphor with tunable photoluminescence properties for near-UV WLEDs applications Dyes and Pigments, 137, pp 244-255 [7] B.G Lewis, D.C Paine (2000) Applicaitons and Processing of Transparent Conducting Oxides Transparent Conducting Oxides, 25, 8, pp 22-27 [8] B Mitchell, D Timmerman, J Poplawsky, W Zhu, D Lee, R Wakamatsu, J Takatsu, M Matsuda, W Guo, K Lorenz, E Alves, A Koizumi, V Dierolf, Y Fujiwara (2016) Utilization of native oxygen in Eu(RE)-doped GaN for enabling device compatibility in optoelectronic applications Sci Rep., 6, pp 18808 [9] B R Fisher (2005) Time Resolved Fluorescence of CdSe Nanocrystals using Single Molecule Spectroscopy Doctoral thesis, Massachusetts Institute of Technology [10] B Szpikowska, M.Z Sroka, R Czoik, L Zur, W.A Pisarski (2014) Energy transfer from Gd3+ to Eu3+ in silica xerogels Journal of Luminescence, 154, pp 290-293 [11] B.M Mothudi, J.R Botha, H.C Swart (2009) Photoluminescence and phosphorescence properties of MAl2O4: Eu2+ , Dy3+ (M: Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature 500oC Journal of Physica B, 404, pp 4440-4444 100 [12] B.N.S Bhaktha, C Kinowski, M Bouazaoui, B Capoen, O R Cristini, F Beclin, P Roussel, M Ferrari, S Turrell (2009) Controlled Growth of SnO2 Nanocrystals in Eu3+ -Doped SiO2ậSnO2 Planar Waveguides: A Spectroscopic Investigation J Phys Chem C, 113, pp 21555ậ21559 [13] B.S Naidu, M Pandey, V Sudarsan, R Tewari, R.K.Vatsa (2011) Interaction of Sb3+ ions with Eu3+ ions during the room temperature synthesis of luminescent Sb2O3 nanorods: Probed through Eu3+ luminescence Journal of Luminescence, 131, pp 177ậ183 [14] C Bouzidi, A Moadhen, H Elhouichet, M Oueslati (2008) Er 3+ -doped sol– gel SnO2 for optical laser and amplifier applications Appl Phys B 90, pp 465-469 [15] C Fu, J Wang, M Yang, X Su, J Xu, B Jiang (2011) Effect of La doping on microstructure of SnO2 nanopowders prepared by co-precipitation method Journal of Non-Crystalline Solids, 357, 3, pp 1172-1176 [16] C Ronda (2008) Luminescence From Theory to Applications WILEY- VCH Verlag, Germany [17] C Tiseanu, V.I Parvulescu, M.S Dominguez, M Boutonnet (2012) Temperature induced conversion from surface to “bulk” sites in Eu3+ impregnated CeO2 nanocrystals Journal of Applied Physics, 112, pp 013521 [18] C.H Shek, J.K.L Lai, G.M Lin (1999) Grain growth in nanocrystalline SnO2 prepared by sol-gel route Nano Structured Materials 11, 7, pp 887ậ 893 [19] D Calestani, M Zha, A Zappettini, L Lazzarini, G Salviati, L Zanotti, G Sberveglieri (2005) Structural and optical study of SnO2 nanobelts and nanowires Materials Science and Engineering C, 25, pp 625 ậ 630 [20] D Calestani, M Zha, A Zappettini, L Lazzarini, G Salviati, L Zanotti, G Sberveglieri (2005) Structural and optical study of SnO2 nanobelts and nanowires Materials Science and Engineering C, 25, pp 625-630 [21] D Wawrzynczyk, M Nyk, A Bednarkiewicz, W Strek, M Samoc (2014) Morphology and size dependent spectroscopic properties of Eu3+ -doped Gd2O3 colloidal nanocrystals J Nanoparticle Res., 16, pp 2690 [22] D.A Keen, M T Dove (1999) Local structures of amorphous and crystalline phases of silica, SiO2, by neutron total scattering J Phys Condens Matter, 11, pp 9263-9273 [23] D.R Jung, J Kim, C Nahm, H Choi, S Nam, B Park (2011) Review Paper: Semiconductor Nanoparticles with Surface Passivation and Surface Plasmon Electronic Materials Letters, 7, 3, pp 185-194 [24] E.A Morais, L.V.A Scalvi, A Tabata, J.B.B De Oliveira, S.J.L Ribeiro (2008) Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel Journal of Materials Science Letters, 43, pp 345ậ349 101 [25] E.G Yukihara, S.W McKeever (2011) Optically Stimulated Luminescence - Fundamentals and Applications A John Wiley and Sons, Ltd., Publication [26] F Gu, S.F Wang, M Kai, Y.X Qi, G.J Zhou, D Xu, D.R Yuan (2003) Synthesis and Luminescent properties of SnO2 nanoparticles Chemical Physics Letters, 372, pp 451 ậ 454 [27] F Gu, S.F Wang, M Kai, Y.X Qi, G.J Zhou, D Xu, D.R Yuan (2004) Luminescent characteristics of Eu3+ in SnO2 nanoparticles Optical Materials, 25, pp 59ậ64 [28] F.A Jesus, S.T.S Santos, J.M.A Caiut, V.H.V Sarmento (2016) Effects of thermal treatment on the structure and luminescent properties of Eu3+ doped SiO2–PMMA hybrid nanocomposites prepared by a sol–gel process Journal of Luminescence, 170, 2, pp 588-593 [29] G Blasse, B.C Grabmainer (1994) Luminescent Materials Springer Verlag [30] G Jose, K.A Amrutha, T.F Toney, V Thomas, C Joseph, M.A Ittyachen, N.V Unnikrishnan (2006) Structural and optical characterization of Eu3+ /CdSe nanocrystal containing silica glass Materials Chemistry and Physics, 96, 2ậ3, pp 381-387 [31] G Jose, V Thomas, C Joseph, M.A Ittyachen, N.V Unnikrishnan (2004), Optical Characterization of Eu3+ Ions in CdSe Nanocrystal Journal of Fluorescence, 14, 6, pp 733ậ738 [32] G Josea, V Thomasa, T.T Fernandeza, A.K Adiyodia, C Josepha, M.A Ittyachenb, N.V Unnikrishnana (2005) Radiative parameters of Eu3+ ions in CdSe nanocrystal containing silica matrices Physica B, 357, pp 270ậ276 [33] G Schmid (2004) Nanoparticles: From Theory to Application WILEYVCH [34] G.A Hebbink (2002) Luminescent Materials based on Lanthanide Ions Publisher: Twente University Press [35] G.C Righini, M Ferrari (2005) Photoluminescence of rare-earth–doped glasses La Rivista del Nuovo Cimento, 28, pp 1-53 [36] G.E.S Brito, H Fischer (2003) Structure of Redispersible SnO2 Nanoparticles Journal of Sol-Gel Science and Technology, 28, pp 45ậ50 [37] H Chun-Hui (2010) Rare earth coordination chemistry-Fundamentals and applications Rare Earth Coordination Chemistry, Wiley [38] H Guan, Y Sheng, C Xu, Y Dai, X Xie, H Zou (2016) Energy transfer and tunable multicolor emission and paramagnetic properties of GdF 3:Dy3+ , Tb3+ , Eu3+ phosphors Phys Chem Chem Phys., 18, pp 19807-19819 102 [39] H Wen, G Jia, C.K Duan, P.A Tanner (2010) Understanding Eu3+ emission spectra in glass Phys Chem Chem Phys 12, pp 9933-9937 [40] H You, M Nogami (2006) Persistent spectral hole burning of Eu3+ ions in TiO2–SiO2 glass prepared by sol–gel method Journal of Alloys and Compounds, 408ậ412, pp 796ậ799 [41] H Zeng, F You, H Peng, S Huang (2015) Energy transfer from Ce3+ to Tb3+ , Dy3+ and Eu3+ in Na 3Y(BO3)2 Journal of Rare Earths, 33, 10, pp 10511055 [42] H.M Yang, J.X Shi, M.L Gong (2005) A novel red emitting phosphor Ca 2SnO4:Eu3+ Journal of Solid State Chemistry, 178, pp 917ậ920 [43] H.M Yang, J.X Shi, M.L Gong (2006) A new luminescent material Sr 2SnO4:Eu3+ Journal of Alloys and Compounds, 415, pp 213ậ215 [44] H.S Nalwa (2001) Handbook of Nanostructured Materials and Nanotechnology Optical Properties Academic Press [45] H.V Tuyen, N.M Son (2017) Luminescence properties and energy transfer of Tb3+ - Eu3+ co-doped Sr 3B2O6 phosphors International Jounal of Modern Physics B, 31, pp 1750128 [46] H.V Tuyen, N.M Son, V.X Quang (2014) Preparation and Luminescent Properties of Sr 3B2O6:Eu3+ Phosphors International Journal of Engineering and Innovative Technology, 3, 8, pp 156-159 [47] I Ahemen, F.B Dejene, B Viana, P Aschehoug, E Odoh (2016) Effect of Annealing Temperature and Ambient on the Structural and Optical Properties of Eu3+ -doped ZnS Nanocrystals Materials Chemistry and Physics, 184, pp 250-260 [48] I Izeddin, D Timmerman, T Gregorkiewicz, A.S Moskalenko, A.A Prokofiev, I.N Yassievich, M Fujii (2008) Energy transfer in Er-doped SiO2 sensitized with Si nanocrystals Phys Rev B, 78, 3, pp 035327 1-14 [49] I Izeddin, M.A.J Klik, N.Q Vinh, M.S Bresler, T Gregorkiewicz (2007) Donor-stateenabling Er-related luminescence in silicon: Direct identification and resonant excitation Phys Rev Lett., 99, pp 1ậ4 [50] I Manassidis, J Goniakowski, L.N Kantorovich, M.J Gillan (1995) The structure of the stoichiometric and reduced SnO2(110) surface Surface Science, 339, pp 258-271 [51] J Castillo, A.C Yanesa, J.J Velazquez, J.M Ramos, V.D Rodriguez (2009) Luminescent properties of Eu3+ –Tb3+ -doped SiO2–SnO2 based nano-glass– ceramics prepared by sol–gel method Journal of Alloys and Compounds, 473, pp 571ậ575 [52] J Castillo, V.D Rodriguez, A.C Yanes, J.M Ramos (2008) Energy transfer from the host to Er 3+ dopants in semiconductor SnO2 nanocrystals segregated in sol–gel silica glasses J Nanopart Res, 10, pp 499ậ506 103 [53] J Li, Z Yang, B Shao, J Yang, Y Wang, J Qiu, Z Song, Y Yang (2015) Preparation and photoluminescence enhancement of silica-coated LaPO4:Eu3+ three dimensional ordered macroporous films Ceramics International, 41, 6, pp 8109-8113 [54] J Partyka, M Gajek, K Gasek (2014) Effects of quartz grain size distribution on the structure of porcelain glaze Ceramics International, 40, 8, pp 12045-12053 [55] J.H Hong, C Conga, Z Zhanga, K Zhanga (2007) A new photoluminescence emission peak of ZnO–SiO2 nanocomposites and its energy transfer to Eu3+ ions Journal of Physics and Chemistry of Solids, 68, pp 1359ậ1363 [56] K Binnemans (2015) Interpretation of europium(III) spectra Coord Chem Rev., 295, pp 1-45 [57] K Park, H Kim, D.A Hakeem (2017) Effect of host composition and Eu3+ concentration on the photoluminescence of aluminosilicate (Ca,Sr)2Al2SiO7:Eu3+ phosphors Dyes and Pigments, 136, pp 70-77 [58] K.J Klabunde (2001) Nanoscale materials in chemistry Wiley Interscience [59] L Chen, Y Jiang, G Yang, G Zhang, X Xin, D Kong (2009) New red phosphor (Y,Gd,Lu)BO3: Eu3+ for PDP applications Journal of Rare Earths, 27, pp 312-315 [60] L Hou, S Cui, Z Fu, Z Wu, X Fuc, J.H Jeong (2014) Facile template free synthesis of KLa(MoO4)2:Eu3+ ,Tb3+ microspheres and their multicolor tunable luminescence Dalton Trans., 43, pp 5382ậ5392 [61] L Li (2013) Growth and photoluminescence properties of SnO2 nanobelts Materials Letters, 98, pp 146ậ148 [62] L Liu, Z Zhang, S Kang, J Mu (2007) Effect of SnO2 Nanocrystals on the Emission of Eu3+ Ions in Silica Matrix Journal of Dispersion Science and Technology, 28, pp 769 ậ 772 [63] L Zur (2013) Structural and luminescence properties of Eu3+ , Dy3+ and Tb3+ ions inlead germanate glasses obtained by conventional high-temperature melt-quenching technique Journal of Molecular Structure, 1041, pp 50-54 [64] L Yu, M Nogami (2007) Local structure and photoluminescent characteristics of Eu3+ in ZnO–SiO2 glasses Journal of Sol-Gel Science and Technology, 43, pp 355ậ360 [65] L.E Brus (1983) A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites J Chem Phys, 79, pp 5566-5571 [66] L.E Brus (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state J Chem Phys, 80, pp 4403 104 [67] L.E Brus (1986) Electronic wave functions in semiconductor clusters: experiment and theory J Chem Phys, 90, pp 2555-2560 [68] L.P Ravaro, A Tabata, J.B.B Oliveira, L.V.A Scalvi (2010) Raman and photoluminescence of Er 3+ -doped SnO2 obtained via the sol–gel technique from solutions with distinct pH Optical Materials, 33, pp 66-70 [69] M Batzill, U Diebold (2005) The surface and materials science of tin oxide Progress in Surface Science, 79, pp 47ậ154 [70] M Ferrari (2004) Active Sol–Gel Materials, Fluorescence Spectra and Lifetimes SAKKA KL3063B-19, 25, pp 1-32 [71] M Inokuti, F Hirayama (1965) Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence J Chem Phys., 43, 1978 [72] M Najafi, H Haratizadeh, M Ghezellou (2015) The Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods Journal of Nanostructures, 5, 2, pp 129-135 [73] M Nogami, A Ohno (2003) Laser precipitation of SnO2 nanocrystals in glass and energy transferred-fluorescence of Eu3+ ions Journal of NonCrystalline Solids, 330, pp 264ậ267 [74] M Nogami, T Enomoto, T Hayakawa (2002) Enhanced fluorescence of Eu3+ induced by energytransfer from nanosized SnO2 crystals in glass Journal of Luminescence, 97, pp 147ậ152 [75] M Puchalska, E Zycha, M Sobczyk, A Watras, P Deren (2014) Effect of charge compensation on up-conversion and UV excited luminescence of Eu3+ in Yb3+ Eu3+ doped calcium aluminate CaAl4O7 Materials Chemistry and Physics, 147, pp 304-310 [76] N Chiodini, A Paleari, D Di Martino, G Spinolo (2002) SnO2 nanocrystals in SiO2: A wide-band-gap quantum-dot system Appl Phys Lett, 81, pp 1702 [77] N Tiwari, R.K Kuraria, S.R Kuraria (2015) Optical studies of Eu3+ doped CaZrO3 phosphor for display device applications Optik - International Journal for Light and Electron Optics, 126, 23, pp 3488ậ3491 [78] N Woodward, J Poplawsky, B Mitchell, A Nishikawa, Y Fujiwara, V Dierolf (2011) Excitation of Eu3+ in gallium nitride epitaxial layers: Majority versus trap defect center Appl Phys Lett., 98, pp 011102 [79] N.A.K Aznan, M R Johan (2012) Quantum Size Effect in ZnO Nanoparticles via Mechanical Milling Journal of Nanomaterials, Vol 2012, ID 439010 [80] N.D Chien, D.T.X Thao, T.X Anh (2002) Optical properties of silica thin films doped with Eu3+ and Al3+ ions Proceeding of the Fifth Vietnamese ậ German Seminar on Physics and Engineering, Viet Nam 105 [81] N.F Santos, J Rodrigues, T Holz, A Sena, N Ben Sedrine, A Neves, F Costa, T Monteiro (2015) Luminescence studies in SnO2 and SnO2:Eu nanocrystals grown by laser assisted flow deposition Phys Chem Chem Phys., 17, 20, pp 13512ậ13519 [82] N.N Ha, A Nishikawa, Y Fujiwara, T Gregorkiewicz (2016) Investigation of optical gain in Eu-doped GaN thin film grown by OMVPE method J Sci Adv Mater Devices., 1, pp 220-223 [83] N.N Ha, S Cueff, K Dohnalova, M.T Trinh, C Labbé, R Rizk, I.N.Yassievich, T Gregorkiewicz (2011) Photon cutting for excitation of Er 3+ ions in SiO2 sensitized by Si quantum dots Phys Rev B, 84, 241308(R) [84] N.P Bansal, J Lamon (2014) Ceramic Matrix Composites: Materials, Modeling and Technology Composite Materials: Engineering and Science, pp 120-124 [85] N.Q Vinh, N.N Ha, T Gregorkiewicz (2009) Photonic properties of Erdoped crystalline silicon Review paper, Proc., 97, pp 1269-1283 [86] P Dai (2017) Enhanced red emission induced by Tb3+ doping in europiumbased molybdate phosphors Materials Research Bulletin, 94, pp 64-69 [87] P Norman, T.E Schwartzentruber, H Leverentz, S Luo, R.M Paneda, Y Paukku, D.G Truhlar (2013) The Structure of Silica Surfaces Exposed to Atomic Oxygen J Phys Chem C, 117, pp 9311ậ9321 [88] P V Tuan, L.T Hieu, L.Q Nga, N.D Dung, N.N Ha, T.N Khiem (2016) Hydrothermal synthesis and characteristic photoluminescence of Er-doped SnO2 nanoparticles Phys B Condens Matter., 501, pp 34ậ37 [89] P Yasaka, J Kaewkhao (2015) Luminescence from Lanthanides-Doped Glasses and Applications: A Review ICICI-BME, Bandung, 978-1-46737800-0/15 P.K Baitha, J Manam (2015) Structural and spectroscopic diagnosis of ZnO/SnO2 nanocomposite influenced by Eu3+ Journal of Rare Earths, 33, 8, pp 805-813 [90] [91] P.M Leong, T.Y Eeu, T.Q Leow, R Hussin, Z Ibrahim (2013) Luminescence Properties of Rare Earth and Transition Metal Ions Doped Potassium Lead Borophosphate Glass AIP Conf Proc., 1528, 310 92] P.S Chowdhury, S Saha, A Patra (2004) Influence of nanoenvironment on luminescence of Eu3+ activated SnO2 nanocrystals Solid State Communications, 131, pp 785ậ788 [93] P.S Tung, L.T.T Hien, N.N Ha, T.N Khiem, N.D Chien (2016) Influence of composition, doping concentration and annealing temperatures on optical properties of Eu3+ doped ZnO–SiO2 nanocomposites J Nanosci Nanotechnol., 16, 8, pp 7955ậ7958 [94] R Koole et al (2014) Nanoparticles: Size Effects on Semiconductor Nanoparticles Springer-Verlag Berlin Heidelberg 106 [95] R Salh (2011) Defect Related Luminescence in Silicon Dioxide Network: A Review Crystalline Silicon - Properties and Uses, pp 136-172 [96] R.M Almeida, A.C Marques, R Cabeca, L Zampedri, A Chiasera, M Ferrari (2004) Photoluminescence of Erbium-Doped Silicate Sol-Gel Planar Waveguides Journal of Sol-Gel Science and Technology, 31, pp 317ậ322 [97] R.N Rothon (2003) Particulate-Filled Polymer Composites Rapra Technology Limited, Shrewsbury, UK [98] R.S Knox (1963) Theory of Excitons, Solid state Physics supplements Academic Press, New York [99] R.S Ningthoujam, R.K Vatsa, A Vinu, K Ariga, A.K Tyagi (2009) Room Temperature Exciton Formation in SnO2 Nanocrystals in SiO2:Eu Matrix: Quantum Dot System, Heat-Treatment Effect Journal of Nanoscience and Nanotechnology, 9, pp 2634ậ2638 [100] R.S Ningthoujam, V Sudarsan, A Vinu, P Srinivasu, K Ariga, S.K Kulshreshtha, A.K Tyagi (2008) Luminescence Properties of SnO2 Nanoparticles Dispersed in Eu3+ Doped SiO2 Matrix Journal of Nanoscience and Nanotechnology, 8, pp 1489ậ1493 [101] R.S Ningthoujam, V Sudarsan, S.K Kulshreshtha (2007) SnO2:Eu nanoparticles dispersed in silica: A low-temperature synthesis and photoluminescence study Journal of Luminescence, 127, pp 747-756 [102] S Bazargan, K.T Leung (2012) Nano-environment effects on the luminescence properties of Eu3+ -doped nanocrystalline SnO2 thin films J Chem Phys., 137, pp 184704 [103] S Bishnoi, S Chawla (2017) Enhancement of GdVO4:Eu3+ red fluorescence through plasmonic effect of silver nanoprisms on Si solar cell surface Journal of Applied Research and Technology, 15, 2, pp 102-109 [104] S Brovelli, N Chiodini, A Lauria , A Paleari (2008) Erbium -induced blurring of the fractal surface of SnO2 nanocrystals grown in silica J Nanopart Res, 10, pp 737-743 [105] S Brovelli, N Chiodini, A Lauria, F Meinardi, A Paleari (2007) Native and radiation-induced two-fold coordinated sites in nanostructured SnO2:SiO2 Phys stat sol C, 4, 3, pp 822ậ 825 [106] S Dabboussi, H Elhouichet, H Ajlani, A Moadhen, M Oueslati, J.A Roger (2006) Excitation process and photoluminescence properties of Tb3+ and Eu3+ ions in SnO2 and in SnO2: Porous silicon hosts Journal of Luminescence, 121, 2, pp 507-516 S Ghosh, B.N.S Bhaktha (2016) Eu-doped ZnO–HfO2 hybrid nanocrystal embedded low-loss glass-ceramic waveguides Nanotechnology, 27, 10, pp 105202 [107] [108] S Ghosh, K.U.M Kumar, B.N.S Bhaktha (2017) Heat-treatment controlled structural and optical properties of sol-gel fabricated Eu:ZnO thin films Optical Materials, 64, pp 288-294 107 [109] S Kabi, A.G.U Perera (2015) Effect of quantum dot size and size distribution on the intersublevel transitions and absorption coefficients of III-V semiconductor quantum dot Journal of Applied Physics 117, pp 124303 [110] S Luo, J Fan, W Liu, M Zhang, Z Song, C Lin, X Wu, P.K Chu (2006) Synthesis and low-temperature photoluminescence properties of SnO2 nanowires and nanobelts Nanotechnology 17, pp 1695ậ1699 [111] S Neeleshwar, C.L Chen, C.B Tsai, Y.Y Chen (2005) Size-dependent properties of CdSe quantum dots Phys Rev B, 71, 201307 [112] S Thakur, A.K Gathania (2015) Synthesis and Characterization of YVO4Based Phosphor Doped with Eu3+ Ions for Display Devices Journal of Electronic Materials, 44, 10, pp 3444-3449 [113] S Yao, L Xue, Y Yan (2011) Properties of Eu3+ luminescence in the monoclinic Ba2MgSi2O7 Ceramics ậ Silikáty, 55, 3, pp 251-255 [114] S.J Dhoble, S.K Raut, N.S Dhoble (2015) Synthesis and Photoluminescence Characteristics of Rare Earth Activated some Silicate Phosphors for LED and Display Devices Int J Luminescence and Applications 5, 2, pp 178-182 [115] S.N.B Bhaktha, F Beclin, M Bouazaoui, B Capoen, A Chiasera, M Ferrari, C Kinowski, G.C Righini, O Robbe, S Turrell (2008) Enhanced fluorescence from Eu3+ in low-loss silica glass-ceramic waveguides with high SnO2 content Applied Physics Letters, 93, pp 211904 [116] S.S Chang , M.S Jo (2007) Luminescence properties of Eu-doped SnO2 Ceramics International, 33, pp 511ậ514 [117] S.U Lee, W.S Choi, B Hong (2007) Synthesis and characterization of SnO2 :Sb film by dc magnetron sputtering method for applications to transparent electrodes Physica Scripta, 129, pp 312ậ315 [118] S.V Gaponenko (2012) Introduction to Nanophotonics Cambridge University Press [119] T Arai, S Adachi (2014) Difference in Photoluminescence Properties of SnO2:Eu3+ Redish-Orange Phosphors Ảrown by Sol−Ảel and Chemical Etching Methods ECS Journal of Solid State Science and Technology, (11), pp 207-211 [120] T Arai, S Adachi (2014) Simple wet chemical synthesis and photoluminescence characterization of SnO2:Eu3+ reddish-orange phosphor Journal of Luminescence 153, pp 46ậ53 [121] T Hayakawa, M Nogami (2005) High luminescence quantum efficiency of Eu3+ -doped SnO2–SiO2 glasses due to excitation energy transfer from nanosized SnO2 crystals Science and Technology of Advanced Materials, 6, pp 66ậ70 [122] T N Khiem (2005) Sol-gel-derived Er 3+ activated multicomponent silica glasses for photonics Doctoral Thesis, ITALIA 108 [123] T.T Huong, H.T Phuong, L.T Vinh, H.T Khuyen, T.K Anh, L.Q Minh (2016) Functionalized YVO4:Eu3+ nanophosphors with desirable properties for biomedical applications Journal of Science: Advanced Materials and Devices, 1, 3, pp 295-300 [124] T.T Huong, L.T Vinh, H.T Phuong, H.T Khuyen, T.K Anh, V.D Tu, L.Q Minh (2016) Controlled fabrication of the strong emission YVO4:Eu3+ nanoparticles and nanowires by microwave assisted chemical synthesis J Lumin., 173, pp 89ậ93 [125] T.T.T Van, C.T.M Dung, L.Q Vinh, L.V Hieu (2017) Emission of Eu3+ in SiO2-ZnO glass and SiO2–SnO2 glass-ceramic: Correlation between structure and optical properties of Eu3+ ions Journal of Non-Crystalline Solids, 459, pp 57-62 [126] T.T.T Van, T.S Bui, S Turrell, B Capoen, P Roussel, M Bouazaoui, M Ferrari, O Cristinic, C Kinowskic (2012) Controlled SnO2 nanocrystal growth in SiO2–SnO2 glass-ceramic monoliths J Raman Spectrosc, 43, pp 869ậ875 [127] U Caldino, E Alvarez, A Speghini, M Bettinelli (2013) New greenishyellow and yellowish-green emitting glass phosphors: Tb3+ /Eu3+ and Ce3+ / Tb3+ /Eu3+ in zinc phosphate glasses Journal of Luminescence, 135, pp 216ậ 220 [128] U Woggon (1996) Optical Properties of Semiconductor Quantum dot Springer Tracts in Modern Physics [129] V Gueu, H You, T Hayakawa, M Nogami (2007) Eu3+ - fluorescence properties in nano-crystallized SnO2-SiO2 glass-ceramics J Sol-Gel Sci Techn, 41, pp 231ậ236 [130] V Jokanovic, M.D Dramicanin, Z Andric, B Jokanovic, Z Nedic, A M Spasic (2008) Luminescence properties of SiO2:Eu3+ nanopowders: Multistep nano designing Journal of Alloys and Compounds, 453, pp 253ậ260 [131] V Kiisk, T Kangur, M Paalo, T Tatte, S Lange, S Pikker, I Sildos (2011) Structural and luminescence characteristics of SnO2:Eu and SnO2:Eu,Sb nanophosphors upon annealing at high temperatures Materials Chemistry and Physics, 130, pp 293ậ298 [132] V Lantto, T.T Rantala, T.S Rantala (2001) Atomistic understanding of semiconductor gas sensor Journal of the Ceramic Society, 21, pp 19611965 [133] V Mangalam, K Pita, C Couteau (2016) Study of energy transfer mechanism from ZnO nanocrystals to Eu3+ ions Nanoscale Res Lett., 11, 73, pp 1ậ13 [134] V.V Rangari, S.J Dhoble (2015) Synthesis and photoluminescence studies of Ba(Gd, Ln)B9O16:Eu3+ (Ln= La,Y) phosphors for n-UV LED lighting and display devices Journal of Rare Earths, 33, 2, pp 140-147 109 [135] W Chen, D Ghosh, S Chen (2008) Large-scale electrochemical synthesis of SnO2 nanoparticles J Mater Sci., 43, pp 5291ậ5299 [136] W Yi, L Langsheng, Z Huiqun, D Ruiqin (2006) Anneal and Concentration Effect on PL Properties of Sol-Gel Derived Eu3+ Doped SiO2 Glass Journal of Rare Earths, 24, pp 199-203 [137] W.M Yen, S Shionoya, H Yamamoto (2006) Fundamentals of Phosphors CRC Press [138] X Cui, W Zhuang, Z Yu, T Xia, X Huang (2008) Preparation of red phosphor ( Y,Gd)BO3:Eu by soft chemistry methods, Journal of Alloys and Compounds, 451, pp 280-285 [139] X Fu, H Zhang, S Niu, Q Xin (2005) Synthesis and luminescent properties of SnO2:Eu nanopowder via polyacrylamide gel method Journal of Solid State Chemisty, 178, pp 603 ậ 607 [140] X Huang, H Guo, B Li (2017) Eu3+ -activated Na 2Gd(PO4)(MoO4): A novel high-brightness red-emitting phosphor with high color purity and quantum efficiency for white light-emitting diodes Journal of Alloys and Compounds, 720, pp 29-38 [141] X Zhang, L Zhou, Q Pang, M Gong (2014) A broadband-excited and narrow-line GdBO3: Ce3+ , Tb3+ , Eu3+ red phosphor with efficient Ce3+ (Tb3+ )n Eu3+ energy transfer for NUV LEDs Optical Materials, 36, pp 1112ậ1118 [142] X Zhang, M Chen, J Zhang, X Qin, M Gong (2016) Photoluminescence studies of high-efficient red-emitting K2Y(WO4)(PO4):Eu3+ phosphor for NUV LED Materials Research Bulletin, 73, pp 219-225 [143] X Zhang, T Hayakawaa, M Nogamia, Y Ishikawaa (2011) Variation in Eu3+ luminescence properties of GdF 3:Eu3+ nanophosphors depending on matrix GdF polytype Journal of Alloys and Compounds, 509, pp 2076ậ 2080 Y Dwivedi, S.B Rai (2008) Optical properties of Eu3+ in oxyfluoroborate glass and its nanocrystalline glass Optical Materials, 31, pp 87ậ93 [144] [145] Y Li, R Peng, X Xiu, X Zheng, X.Zhang, G Zhai (2011) Growth of SnO2 nanoparticles via thermal evaporation method Superlattices and Microstructures, 50, 5, pp 511-516 [146] Y Yu, Y Wang, D Chen, P Huang, E Ma, F Bao (2008) Enhanced emissions of Eu3+ by energy transfer from ZnO quantum dots embedded in SiO2 glass Nanotechnology, 19, pp 055711 [147] Z Xiaoting, T Hayakawa, Y Ishikawa, Y Liushuan, M Nogami (2015) Structural Investigation and Eu3+ Luminescence Properties of LaF 3:Eu3+ Nanophosphors Journal of Alloys and Compounds, 644, pp 77-81 [148] Z.X Wei, L Tao, X Jun, X Ling, C.K Ji (2012) The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol gel SiO2 films Chin Phys B, 21, 1, pp 018101 110 DANH M C CƠNG TRÌNH à CƠNG B C A LU N ÁN B.Q Thanh, N.N Ha, T.N Khiem (2012) Towards efficient fluorescence from Eu3+ -doped SnO2 nanoparticles dispersed in silica matrix Advanced Materials and Nanotechnology, ICAMN, Int Conf Proc 1, pp 73-76 nh h ng c a hàm l ng SnO2 lên tính ch t quang c a màng m ng nanocompostie SiO2–SnO2 pha t p ion đ t hi m Eu3+ T p chí Khoa h c vƠ Công ngh , SPMS8, 52 ậ 3B, trang 345-350 B.Q Thanh, N.N Ha, T.N Khiem (2014) B.Q Thanh, N.N Ha, P.S Tung, T.N Khiem (2014) Allocation of optically active Eu3+ ions in SnO2/SiO2 nanocomposite Advances Optics Photonics Spectroscopy and Applications VIII, ICPA8, pp 51-54 B.Q Thanh, N.N Ha, T.N Khiem (2015) Ph hu nh quang c a màng nanocomposite SiO2–SnO2 pha t p Eu Tuy n t p báo cáo H i ngh V t lí ch t r n vƠ Khoa h c V t li u toƠn qu c l n th IX, Q2, trang 485-488 3+ B.Q Thanh, N.N Ha, T.N Khiem, N.D Chien (2015) Correlation between SnO2 nanoparticles and Eu3+ dopants in SiO2 matrix: relation of the crystality, composition and photoluminescence Journal of Luminescence 163, pp 28ậ31 B.Q Thanh, P.V Do, T.N Khiem, N.N Ha (2018) Microscopic and optical parameters of Eu3+ -doped SnO2–SiO2 nanocomposites prepared by sol – gel method Journal of Luminescence 201, pp 129ậ134 111 ... tài nghiên c u ch t o, tính ch t quang c a v t li u nano SnO2 SiO2 -SnO2 pha t p Eu3+, lu n án đư nghiên c u ch t o thành công v t li u nano SnO2 pha t p Eu3+ d ng b t v t li u nano composit SiO2? ? ?SnO2. .. C2H5OH lên tính ch t quang c a màng nano composit SiO2? ? ?SnO2 pha t p ion Eu3+ 66 3.2.1.3 S nh h ng c a hƠm l ng H2O lên tính ch t quang c a màng nano composit SiO2? ? ?SnO2 pha t p ion Eu3+ ... t li u b t nano SnO2 pha t p ion Eu3+ 38 2.1.3 H v t li u b t nano SnO2: Eu3+ 41 2.2 Quy trình t ng h p v t li u màng nano composit SiO2? ? ?SnO2 pha t p Eu3+ b ng ph ngăphap sol ậ gel

Ngày đăng: 26/02/2021, 14:18

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w