1. Trang chủ
  2. » Cao đẳng - Đại học

Đáp án HSG Toán học lớp 10 trại hè Hùng Vương 2013 - Học Toàn Tập

3 47 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 243,22 KB

Nội dung

Khi đó tâm của bốn hình vuông cơ sở A, B, C, D là bốn đỉnh của một hình vuông nhận tâm I của hình vuông cơ sở ở giữa làm tâm, nên dẫn đến tọa độ điểm I là trung bình cộng tọa độ các đi[r]

(1)

HƯỚNG DẪN CHẤM THI HỌC SINH GIỎI TRẠI HÈ HÙNG VƯƠNG LẦN THỨ IX

MƠN: TỐN - LỚP: 10

Bài Hướng dẫn Điểm

1 Giải hệ phương trình:

3

2

3 28

6 10

y x y

x xy y x y

   

 

   

 5.0

Đặt y = a + b, x = a – b 1.0

Biến đối hệ ban đầu hệ:

 

3

2

7

2

a b

a a b b

    

   



0.75

     

3 3

3

3

7

3 12

a b a b

a a a b b b a b

       

 

 

            

 

1.75

2

1,

2

2, 1

a b

b b

a b

a b

  

    

    

   

 Trả biến tìm

3, 3,

x y

x y

   

    

 1 1.5

2

Cho góc nhọn BAx, hai điểm A B cố định Điểm C chạy tia Ax Đường tròn nội tiếp

tam giác ABC tiếp xúc với BC AC theo thứ tự M N Chứng minh rằng, đường thẳng MN qua điểm cố định

5.0

I

N

M P

O A

B

C

I

N

M P

O A

C

Gọi O tâm đường tròn ngoại tiếp tam giác ABC, P tiếp điểm đường tròn (O) với AB, giao điểm MN với AO I

Do AO tia phân giác góc BAx nên hai điểm P N đối xứng qua AO

1.0 Suy PI PO;   NI NO;   MI MO; mod (do tam giác MIN cân) Từ suy bốn

điểm P, I, O, M thuộc đường tròn (1)

1.0 Mặt khác (O) tiếp xúc với cạnh AB, BC P M nên OPB· OMB·  90 suy tứ giác 1.0

(2)

OMBP nội tiếp đường trịn đường kính BO (2)

Từ (1) (2) suy điểm B, M, I, O P thuộc đường trịn đường kính BO Do

· · 90

BIOBPO , dẫn đến I hình chiếu B AO

1.0 Do góc BAx cố định B cố định nên đường thẳng AO cố định suy điểm I cố định

Vậy đường thẳng MN qua điểm I cố định 1.0

Chú y: thi sinh khơng dùng góc định hướng xét hai trường hợp: điểm I nằm đoạn MN I nằm đoạn MN thiếu trường hợp cịn lại bị trừ điểm 3 Cho x, y, z số thực thuộc khoảng (0; 1) Chứng minh rằng:

 2 2 2    

xx yy zzxyz yxz zyx 4.0

Không tổng quát giả sử x y z

0

x yz y zx

  

   

x, y, z  (0; 1)

Nếu zxy0 VT   VP, BĐT 1.0 Nếu zxy0, ta chứng minh bất đẳng thức sau: với a, b, c thuộc (0; 1) ta có:

1    

bcab ac c ab 

Thật vậy: bc1a b ac c ab    bc1a 2  b ac c ab     2 2  2

1

bc a a bc ab ac a bc a b c

         

1.0

Áp dụng bất đẳng thức cho x, y, z thuộc (0;1) ta

1    

yzxyxz zxy

1    

zxyzxy xyz

1    

xyzxyz yxz

1.0

Nhân vế với vế ba bất đẳng thức ta thu được:

1 1 1     

xyzxy   z x yz yzx zxy (đpcm) 1.0

4 Tìm số nguyên dương (m,n) cho p = m2 + n2 số nguyên tố m3 n3 chia hết

cho p 4.0

Ta có: m3  n3 mod p mn m n    mod p

   

3mn m n 12 modp

    1.0

Kết hợp 3  

4 mod

m   n p suy m n 3 8 mod p

  2   

2 2 mod

m n m n mn m n p

        

Do p số nguyên tố nên có hai khả xảy ra:

1.0 Trường hợp 1:

Nếu 2

2

m n  Mmn 2  1  1 2

2

m m n m n m m n n

n

 

           

  Thử lại thấy (m,n) = (1;2), (2;1), (1;1) thỏa mãn

1.0

Trường hợp 2: 2 2

2 2

mnmnmn Mmn , viết lại:

  

       

2

2 2 2

2 2 1

1 1 1

m n mn m n m n

m n m n m n

          

   

             

Dấu xảy m = n =

Vậy trường hợp ta tìm số thỏa mãn (1;1), (1;2), (2;1)

1.0

Trên mạng lưới ô vuông người ta điền vào ô vuông sở số thực cho số trung bình cộng bốn số bốn hình vng sở có cạnh kề với

(3)

5 điền phải

b Nếu số điền số hữu tỉ số điền vào ô vuông sở có cạnh kề với nó, có thiết phải khơng? Vì sao?

a Vì số thực điền vào vuông số nguyên dương nên tồn số a nhỏ số điền

Giả sử tồn vng sở có chứa số a mà bốn vng sở có cạnh liền kề có vng có chứa số ba Gọi c, d, e ba số ba vng sở có cạnh liền kề cịn lại

Khi đó: 1 

, ,

b a

b c d e a c d e a

 

    

 

 , trái với giả thiết

Như có vng có chứa số a bốn vng có cạnh liền kề với chứa số a Do tất ô vuông chứa số a

1.0

b Nếu số điền số hữu tỉ bốn số bốn vng có cạnh liền kề với vng sở không thiết phải

Ta xây dựng hệ trục tọa độ vng góc có trục tọa độ song song trùng với cạnh lưới vng có đơn vị trục độ dài cạnh ô vuông sở Ở hình vng sở ta điền số trung bình cộng hai tọa độ tâm hình vng

Khi tọa độ tâm hình vng cở sở số hữu tỉ nên số đặt vào số hữu tỉ Và số đặt vào bốn vng sở có cạnh kề với khơng

Ta chứng minh số điền vào ô vuông sở trung bình cộng bốn số bốn vng có cạnh liền kề với sau:

Khơng tổng qt giả sử có hình vẽ bên

Khi tâm bốn hình vng sở A, B, C, D bốn đỉnh hình vng nhận tâm I hình vng sở làm tâm, nên dẫn đến tọa độ điểm I trung bình cộng tọa độ điểm A, B, C, D số đặt hình vng tâm I số hữu tỉ trung bình cộng bốn số hữu tỉ đặt hình vng tâm A, B, C, D

1.0

4

2

5

C B

I A

Ngày đăng: 24/02/2021, 06:56

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w