1. Trang chủ
  2. » Giáo án - Bài giảng

Thi HKI Toan 9 Nam hoc: 2010 - 2011

10 223 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 528 KB

Nội dung

Tuyển tập các đề thi thử kì I To¸n 9 ĐỀ SỐ 1 Bài 1: (1,5 điểm) 1) Tìm x để biểu thức 1 1x x + có nghĩa: 2) Rút gọn biểu thức : A = ( ) 2 2 3 2 288+ − Bài 2. (1,5 điểm)1) Rút gọn biểu thức A = 2 1 x x x x x x − − − − với ( x >0 và x ≠ 1) 2) Tính giá trị của biểu thức A tại 3 2 2x = + Bài 3. (2 điểm).Cho hai đường thẳng (d 1 ) : y = (2 + m)x + 1 và (d 2 ) : y = (1 + 2m)x + 2 1) Tìm m để (d 1 ) và (d 2 ) cắt nhau: 2) Với m = – 1 , vẽ (d 1 ) và (d 2 ) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d 1 ) và (d 2 ) bằng phép tính. Bài 4: (1 điểm)Giải phương trình: 1 9 27 3 4 12 7 2 x x x − + − − − = Bài 5.(4 điểm) Cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn sao cho · 0 60MAB = . Kẻ dây MN vuông góc với AB tại H. 1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM): 2. Chứng minh MN 2 = 4 AH .HB . 3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó. 4. Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N; E; F thẳng hàng ĐỀ SỐ 2 Bài 1.( 1,5điểm)1. Tính giá trị các biểu thức sau: 2 3 2 2− − 2. Chứng minh rằng 3 3 1 1 2 2 + + = Bài 2.(2điểm) Cho biểu thức : P = 4 4 4 2 2 a a a a a + + − + + − ( Với a ≥ 0 ; a ≠ 4 ) 1) Rút gọn biểu thức P. 2) Tính P tại a thoả mãn điều kiện a 2 – 7a + 12 = 0 3) Tìm giá trị của a sao cho P = a + 1. Bài 3. (2điểm) Cho hai đường thẳng : (d 1 ): y = 1 2 2 x + và (d 2 ): y = 2x − + 1. Vẽ (d 1 ) và (d 2 ) trên cùng một hệ trục tọa độ Oxy. 2. Gọi A và B lần lượt là giao điểm của (d 1 ) và (d 2 ) với trục Ox, C là giao điểm của (d 1 ) và (d 2 ) .Tính chu vi và diện tích của tam giác ABC (đơn vị trên hệ trục tọa độ là cm) Bài 4. (4,5điểm) Cho tam giác ABC nhọn . Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM. 1) Chứng minh AH ⊥ BC . 2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O) 3) Chứng minh MN. OE = 2ME. MO 4) Giả sử AH = BC. Tính tgBAC. ĐỀ SỐ 3 Bài 1. (2,5 điểm) 1. Trục căn thức ở mẫu của các biểu thức sau: a) 2009 2009 b) 1 2010 2009− 2. Rút gọn biểu thức: ( ) ( ) 2 3 . 4 12− + 3. Tìm điều kiện cho x để ( ) ( ) 3 1 3. 1x x x x− + = − + . Bài 2. (1,5 điểm) Cho hàm số y = ax + b . Xác định các hệ số a và b trong các trường hợp sau: 1. Đồ thị hàm số là đường thẳng cắt trục tung tại điểm có tung độ bằng 3 và đi qua điểm (2;1). 2. Đồ thị hàm số cắt trục hoành tại điểm có hoành độ có hoành độ bằng – 1 và song song với đường thẳng chứa tia phân giác góc vuông phần tư I và III. Tuyển tập các đề thi thử kì I To¸n 9 Bµi 3. (2 điểm) 1. Giải phương trình sau: ( ) 2 2 1 2 1x x − = − 2. Tìm các số nguyên x thỏa mãn: 1 2x − < Bài 4. (4 điểm) Cho tam giác ABC vuông ở A, đường cao AH. Gọi D và E lần lượt là hình chiếu của điểm H trên các cạnh AB và AC. 1. Chứng minh AD. AB = AE. AC 2. Gọi M, N lần lượt là trung điểm của BH và CH. Chứng minh DE là tiếp tuyến chung của hai đường tròn (M; MD) và (N; NE) 3. Gọi P là trung điểm MN, Q là giao điểm của DE và AH . Giả sử AB = 6 cm, AC = 8 cm . Tính độ dài PQ. ĐỀ SỐ 4 Bài 1. (1,5 điểm) Rút gọn các biểu thức sau: 1. M = ( ) 3 6 2 3 3 2+ − 2. P = 6 2 3 3 3 − − 3. Q = ( ) 3 3 3 16 128 : 2− Bài 2. (2 điểm) Cho biểu thức : B = 1 4 1 1 2 x x x x − − + + + − (với 0x ≥ ; 4x ≠ ) 1. Rút gọn biểu thức B. 2. Tìm các giá trị của x thỏa mãn B = 3 6x x− + Bài 3. (2 ®iểm) Cho hàm số y = (m + 2)x – 3 . (m ≠ 2 ) 1. Tìm m để hàm số đã cho nghịch biến trên R. 2. Vẽ đồ thị hàm số khi m = –3 3. Gọi (d) là đường thẳng vẽ được ở câu 2, khi x [ ] 2;5∈ − , tìm giá trị lớn nhất, bé nhất của hàm số. Bài 4. (4,5 điểm) Cho tam giác ABC vuông tại C, đường cao CH, I là trung điểm AB. 1/ Chứng minh CH 2 + AH 2 = 2AH. CI 2/ Kẻ hai tia Ax và By vuông góc với AB( tia Ax , By nằm cùng phía bờ AB chứa điểm C). Đường thẳng vuông góc với CI tại C cắt Ax và By lần lượt tại E và K, tia BC cắt tia Ax ở M. Cminh E là trung điểm AM. 3/ Gọi D là giao điểm của CH và EB. Chứng minh ba điểm A, D, K thẳng hàng. ĐỀ SỐ 5. Bài 1: ( 1,5điểm) Thu gọn các biểu thức sau: 1. A = 1 2 3 48 108 3 + − 2. B = 2 2 1x x x− + − ( với x 1≥ ) Bài 2: ( 1,0 điểm) Cho biểu thức P = 3 2 x y xy xy − ( với x > 0; y > 0) 1. Rút gọn bểu thức P. 2. Tính giá trị của P biết 4x = ; y = 9 Bài 3: (1,5 điểm) 1. Tìm x không âm thỏa mãn: 2x < 2. Giải phương trình: 2 9 3 3 0x x− − − = Bài 4: (2 điểm) Cho hàm số y = (m – 2)x + 3 (m ≠ 2) 1. Tìm m để hàm số đã cho nghịch biến. 2. Tìm m để đồ thị hàm số đi qua điểm M (2; 5). 3. Tìm m để đồ thị hàm số tạo với trục Ox một góc 45 0 . 4.Chứng tỏ rằng với mọi m , khi x = 0 đồ thị hàm số luôn đi qua một điểm cố định. Bài 5: (4 điểm) Từ điểm A ở ngoài đường tròn (O;R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm) . Gọi H là giao điểm của OA và BC. 1. Tính tích OH. OA theo R 2. Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA. 3. Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Cminh K là trung điểm CE. ĐỀ SỐ 6 Bài 1. (2 điểm) Rút gọn các biểu thức sau: 1. A = 1 6 2 9 1 3 3 3 1 + − + − . 2. ( ) ( ) 3 1 3 1 3 2 − + − . Tuyển tập các đề thi thử kì I To¸n 9 Bài 2. (1,5 điểm) Cho biểu thức : P = 2 2 1 3x x x− + − . 1. Rút gọn biểu thức P khi 1x ≤ . 2. Tính giá trị biểu thức P khi x = 1 4 . Bài 3. ( 2,5 điểm) Cho hai đường thẳng y = – x + 2 và y = x – 4 có đồ thị là đường thẳng (d 1 ) và (d 2 ) . 1. Vẽ (d 1 ) và (d 2 ) trên cùng một hệ trục tọa độ Oxy. 2. Gọi P là giao điểm của (d 1 ) và (d 2 ) . Tìm tọa độ điểm P. 3.(d 1 ) cắt và (d 2 ) lần lượt cắt Oy tại M và N. Tính độ dài MN, NP và MP rồi suy ra tam giác MNP vuông. Bài 4. (4 điểm) Cho đường tròn (O;R) đường kính AB. Đường tròn tâm A bán kính AO cắt đường tròn (O) tại hai điểm C và D. Gọi H là giao điểm của AB và CD. 1. Tứ giác ACOD là hình gì? Tại sao? 2. Tính độ dài AH, BH, CD theo R. 3.Gọi K là trung điểm của BC. Tia CA cắt đường tròn (A) tại điểm thứ hai E khác điểm C. Chứng minh DK đi qua trung điểm của EB . ĐỀ SỐ 7. Bài 1. ( 2,5 điểm). 1. Tìm điều kiện cho x để biểu thức 2x + 7 có căn bậc hai ? 2. Rút gọn các biểu thức sau: a) A = ( ) 4 27 2 48 5 75 : 2 3− − b. B = ( ) 2 3 5 1 5 1 5 1   + + −  ÷  ÷ −   Bài 2. (2 điểm). Cho biểu thức Q = 1 1 a b a b − − + ( với a ≥ 0, b ≥ 0 , a ≠ b) 1. Rút gọn biểu thức Q. 2. Cho Q = – 2 , Tìm a, b thỏa mãn 2a = b. Bài 3. (1, 5 điểm). Cho hàm số y = (2 – m)x + 4. 1.Tìm m biết đồ thị hàm số là đường thẳng song song với đường thẳng y = – 2x. 2. Vẽ đồ thị hàm số ứng với m tìm được. Bài 4. (4 điểm). Cho tam giác ABC vuông ở A đường cao AH. Kẻ HD ⊥ AB, HE ⊥ AC ( D ∈ AB , E ∈ AC). Vẽ các đường tròn tâm J đường kính AB và tâm I đường kính AC. 1. Chứng minh AD. AB = AE. AC. 2. Tia HD cắt đường tròn (J) ở M, tia HE cắt đường tròn (I) ở N. Chứng minh ba điểm M, A, N thẳng hàng. 3. Chứng minh MN là tiếp tuyến đường tròn ngoại tiếp tam giác ABC. 4. Giả sử M; J; I thẳng hàng. Tính sin ABC ? ĐỀ SỐ 8. Bài 1. (2 điểm) Rút gọn các biểu thức sau: 1. 3 3 1 3 + − 2. ( ) 2 8 32 3 18− + 3. ( ) ( ) 12 2 3 27+ − Bài 2.(2 điểm) Cho biểu thức: P = 4a b ab b b a a b a b − − − − + − . ( với a ≥ 0, b ≥ 0 , a ≠ b) 1. Rút gọn biểu thức P. 2. Tính giá trị của P khi a = 2 và b = 3 - 2 2 . Bài 3. (2 điểm) Cho hai đường thẳng ( ) 1 d : y = x + 2 và ( ) 2 d : y = 2x – 2 1. Vẽ ( ) 1 d và ( ) 2 d trên cùng một hệ trục tọa độ . 2.Gọi A là giao điểm của ( ) 1 d và ( ) 2 d . Tìm tọa độ điểm A và tính khoảng cách từ điểm A tới gốc tọa độ. Bài 4.(4 điểm) Cho nửa đường tròn (O;R) đường kính AB. Kẻ hai tiếp tuyến Ax và By nằm cùng phía với nửa đường tròn. M là điểm bất kỳ trên nửa đường tròn ( M khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax và By lần lượt tại E và N. 1. Chứng minh AE. BN = R 2 . 2. Kẻ MH vuông góc By. Đường thẳng MH cắt OE tại K. Chứng minh AK MN⊥ . 3. Xác định vị trí của điểm M trên nửa đường tròn (O) để K nằm trên đường tròn (O) . Trong trường hợp này hãy tính sinMAB ? Tuyển tập các đề thi thử kì I To¸n 9 Đề 9 Bài 1 : Rút gọn biểu thức: 3324 223)12( −+ +− 4 . 2 2 4 x x x x x x   − +  ÷  ÷ − +   với x > 0 và x ≠ 4 Bài 2 : Trong mặt phẳng toạ độ Oxy, cho đường thẳng (d): y = 2x – 4. 1). Vẽ đồ thò đường thẳng (d). 2). Viết phương trình đường thẳng ( ∆ ) đi qua A(2;-3) có hệ số góc bằng 3. Bài 3 : Cho ( 1 d ) : y = 1 2 2 x + ( 2 d ) : y = -x + 2 Vẽ đồ thò của ( 1 d ) và ( 2 d ) trên cùng một mặt phẳng tọa độ. b). Gọi giao điểm của hai đường thẳng ( 1 d ) và ( 2 d ) với trục hoành theo thứ tự là A, B và giao điểm của hai đường thẳng đó là C.Tìm tọa độ của A, B, C. Tính các góc của ABC∆ ( làm tròn đến độ) Bài 4 : Cho tam giác ABC có B ˆ = 600, C ˆ = 40, BC = 12cm. Tính AC. Bài 5 : Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Gọi BC là tiếp tuyến chung của hai đường tròn (B ∈ (O), C ∈ (O’)). Đường vuông góc với OO’ tại A cắt BC ở I. 1). Tính số đo góc BAC. 2). Chứng minh rằng BC là tiếp tuyến của đường tròn đường kính OO’. Đề 10 Câu 1 : a). Giải pt : 3482 =−+− xx b). Tìm đk xác đònh và rút gọn biểu thức P         − − aa 1 1 1 :         − + − − + 1 2 2 1 a a a a Câu 2: Cho hàm số y= nxm +− .3 (1) a/ Với giá trò nào của m thì (1) là hàm số bậc nhất b/ Với đk nào của câu a , tìm các giá trò của m và n dể đồ thò hàm số (1) trùng với đường thẳng y-2x +3 =0 Câu 3 : a/ Cho ví dụ về hai đường thẳng cắt nhau tại một điểm A trên trục hoành . Vẽ hai đường thẳng đó . b/ Giả sử giao điểm thứ hai của hai đường thẳng đó với trục tung là B,C. Tính AB , BC CA và SABC Câu 4 : Cho ∆ ABC vuông tại A , BC= 5, AB = 2 AC a/ Tính AC b/ Từ A kẻ AH ⊥ BC . Trên AH lấy một điểm I sao cho AI= 1/3 AH Từ C kẻ Cx // AH . Gọi giao điểm của BI với Cx là D. Tính SAHCD c/ Vẽ hai đường tròn (B, AB ) và (C , AC) . Gọi giao điểm khác A của hai đường tròn này là E . c/m : CE là tiếp tuyến của đường tròn (B) Câu 5 : Cho ∆ ABC vuông tại A . Đường cao AH chia cạnh huyền thành hai đoạn : BH= 4cm , CH= 9 cm. Gọi D,E theo thứ tự đó là chân đường vuông hạ từ H xuống AB và AC a/ tính DE b/ c/m : AE. AC = AD . AB Tuyển tập các đề thi thử kì I To¸n 9 BÀI GIẢI CHI TIẾT ĐỀ SỐ 01 Bài 1: (1,5 điểm) 1) Tìm x để biểu thức 1 1x x + có nghĩa: Biểu thức 1 1x x + có nghĩa 0 0 1 0 1 x x x x ≠ ≠   ⇔ ⇔   + ≥ ≥ −   2) Rút gọn biểu thức : A = ( ) 2 2 3 2 288+ + = ( ) 2 2 2 2.2.3 2 3 2+ + + 144.2 = 4 12 2 18 + + + 12 2 = 22 24 2 + Bài 2. (1,5 điểm) 1) Rút gọn biểu thức A. A = 2 1 x x x x x x − − − − với ( x >0 và x ≠ 1) = ( ) ( ) 2 1 1 1 x x x x x x − − − − = 2 1 1 1 x x x x − − − − = 2 1 1 x x x − + − = ( ) 2 1 1 x x − − = 1x − 2) Tính giá trị của biểu thức A tại 3 2 2x = + Tại 3 2 2x = + giá trị biểu A = ( ) 2 3 2 2 1 2 1 1 2 1 1 2+ − = + − = + − = 60 ° F E H O N M B A Tuyển tập các đề thi thử kì I To¸n 9 Bài 3. (2 điểm) 1) Tìm m để (d 1 ) và (d 2 ) cắt nhau: (d 1 ) cắt (d 2 ) ' a a ⇔ ≠ 2 1 2m m ⇔ + ≠ + 2 2 1m m ⇔ − ≠ − 1m ⇔ ≠ 2) Với m = – 1 , vẽ (d 1 ) và (d 2 ) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d 1 ) và (d 2 ) bằng phép tính. Với m = – 1 ta có: (d 1 ): y = x + 1 và (d 2 ): y = – x + 2 (d 1 ) là đường thẳng đi qua hai điểm: (0; 1) và (– 1; 0) (d 2 ) là đường thẳng đi qua hai điểm: (0; 2) và (2; 0) (các em tự vẽ đồ thị) Tìm tọa độ giao điểm của (d 1 ): y = x + 1 và (d 2 ): y = – x + 2 bằng phép tính: Phương trình hoành độ giao điểm của (d 1 ) và (d 2 ) là nghiệm phương trình: x + 1 = – x + 2 ⇔ x + x = 2 – 1 ⇔ 2x = 1 1 2 x ⇔ = Tung độ giao điểm của (d 1 ) và (d 2 ) là : y = 1 3 1 2 2 + = Tọa độ giao điểm của (d 1 ) và (d 2 ) là: 1 3 ; 2 2    ÷   Bài 4: (1 điểm) Giải phương trình: 1 9 27 3 4 12 7 2 x x x − + − − − = ( ) ( ) 1 9 3 3 4 3 7 2 x x x ⇔ − + − − − = 1 3 3 3 .2 3 7 2 x x x ⇔ − + − − − = 3 3 7x⇔ − = 7 3 3 x⇔ − = (đk : x ≥ 3) 49 3 9 x ⇔ − = 76 9 x ⇔ = (thỏa mãn điều kiện ) Vậy S = 76 9       Bài 5.(4 điểm) 1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM): ΔAMB nội tiếp đường tròn (O) có AB là đường kính nên ΔAMB vuông ở M. Điểm M ∈ (B;BM), AM MB ⊥ nên AM là tiếp tuyến của đường tròn (B; BM) Chứng minh tương tự ta được AN là tiếp tuyến của đường tròn (B; BM) 2. Chứng minh MN 2 = 4 AH .HB Ta có: AB ⊥ MN ở H ⇒ MH = NH = 1 2 MN (1) (tính chất đường kính và dây cung) ΔAMB vuông ở B, MH ⊥ AB nên: MH 2 = AH . HB ( hệ thức lượng trong tam giác vuông) Tuyển tập các đề thi thử kì I To¸n 9 Hay 2 2 MN   =  ÷   AH. HB 2 4 .MN AH HB ⇒ = (đpcm) 3) Chứng minh tam giác BMN là tam giác đều và O là trọng tâm tam giác BMN Từ (1) suy ra AB là là đường trung trực MN nên BM = BN. · · 0 60MAB NMB= = (cùng phụ với · MBA ). Suy ra tam giác BMN đều Tam giác OAM có OM = OA = R và · 0 60MAO = nên nó là tam giác đều . MH ⊥ AO nên HA = HO = 2 OA = 2 OB Tam giác MBN có BH là đường trung tuyến ( vì HM = HN) và OH = 1 2 OB nên O là trọng tâm của tam giác . 4) Chứng minh ba điểm N, E, F thẳng hàng. ΔMNE nội tiếp đường tròn (O) đường kính AB nên nó vuômg ở N MN EN ⇒ ⊥ ΔMNF nội tiếp đường tròn (B) đường kính MF nên nó vuômg ở N MN FN ⇒ ⊥ Do đó ba điểm N, E, F thẳng hàng. BÀI GIẢI CHI TIẾT ĐỀ SỐ 02 Bài 1.( 1,5điểm) 1. Tính giá trị các biểu thức sau: 2 3 2 2− − = ( ) 2 2 2 2 2 2.1 1− − + = ( ) 2 2 2 1− − = 2 2 1− − = ( ) 2 2 1− − = 2 2 1 1 − + = 2. Chứng minh rằng 3 3 1 1 2 2 + + = Biến đổi vế trái ta có: 3 2 3 1 2 2 + + = = ( ) 2 2 3 4 + = 4 2 3 4 + = ( ) 2 3 1 2 + = 3 1 2 + Vậy 3 3 1 1 2 2 + + = Bài 2.(2điểm) 1) Rút gọn biểu thức P. K _ _ = = H E O N M C B A Tuyển tập các đề thi thử kì I To¸n 9 P = 4 4 4 2 2 a a a a a + + − + + − ( Với a ≥ 0 ; a ≠ 4 ) = ( ) ( ) ( ) 2 2 2 2 2 2 a a a a a + + − + + − = 2 2a a+ + + = 2 4a + 2)Tính P tại a thoả mãn điều kiện a 2 – 7a + 12 = 0 Ta có: a 2 – 7a + 12 = 0 2 3 4 12 0a a a ⇔ − − + = ( ) ( ) 3 4 3 0a a a ⇔ − − − = ( ) ( ) 3 4 0a a ⇔ − − = 3a ⇔ = (thỏa mãn đk) ; a = 4( loại) Với a = 3 ( ) 2 2 3 4 3 1P⇒ = + = + = 3 1 + 3) Tìm giá trị của a sao cho P = a + 1 P = a + 1 ⇔ 2 4a + = a + 1 2 3 0a a⇔ − − = ( ) ( ) 3 1 0a a⇔ − + = . Vì 0 1 0a a≥ ⇒ + ≠ . Do đó: 3 0 9a a− = ⇔ = (thỏa mãn đk) Vậy : P = a + 1 9a ⇔ = Bài 3. (2điểm) (d 1 ): y = 1 2 2 x + và (d 2 ): y = 2x − + 1. Vẽ (d 1 ) và (d 2 ) trên cùng một hệ trục tọa độ Oxy. (d 1 ) là đường thẳng đi qua hai điểm (0; 2) và ( ) 4;0 − (d 2 ) là đường thẳng đi qua hai điểm (0; 2) và ( ) 2;0 ( các em tự vẽ hình để đối chiếu câu 2 ) 2. Tính chu vi và diện tích của tam giác ABC (d 1 ) và (d 2 ) cùng cắt nhau tại một điểm trên trục tung có tung độ bằng 2 Áp dụng định lý Pi ta go cho các tam giác AOC và BOC vuông ở O ta được: 2 2 4 2 20 2 5AC = + = = ; 2 2 2 2 8 2 2BC = + = = Chu vi tam giác ABC : AC + BC + AB = 2 5 2 2 6 13,30 + + ≈ (cm) Diện tích tam giác ABC : 2 1 1 . . .2.6 6 2 2 OC AB cm = = Bài 4. (4,5 điểm) 1) Chứng minh AH ⊥ BC . ΔBMC và ΔBNC nội tiếp đường tròn (O) đường kính BC Suy ra · · 0 90BMC BNC= = . Do đó: BN AC ⊥ , CM AB ⊥ , Tam giác ABC có hai đường cao BN , CM cắt nhau tại H Do đó H là trực tâm tam giác. Vậy AH ⊥ BC. 2) Gọi E là trung điểm AH. Chứng minh ME là tiếp tuyến của đường tròn (O) OB = OM (bk đường tròn (O)) ⇒ ΔBOM cân ở M. Do đó: · · OMB OBM= (1) ΔAMH vuông ở M , E là trung điểm AH nên AE = HE = 1 2 AH . Vậy ΔAME cân ở E. Do đó: · · AME MAE = (2) Tuyển tập các đề thi thử kì I To¸n 9 Từ (1) và (2) suy ra: · · · · OMB AME MBO MAH+ = + . Mà · · 0 90MBO MAH+ = (vì AH ⊥ BC ) Nên · · 0 90OMB AME+ = . Do đó · 0 90EMO = . Vậy ME là tiếp tuyến của đường tròn (O). 3) Chứng minh MN. OE = 2ME. MO OM = ON và EM = EN nên OE là đường trung trực MN. Do đó OE ⊥ MN tại K và MK = 2 MN . ΔEMO vuông ở M , MK ⊥ OE nên ME. MO = MK . OE = 2 MN .OE. Suy ra: MN. OE = 2ME. MO 4) Giả sử AH = BC. Tính tang BAC. ΔBNC và ΔANH vuông ở N có BC = AH và · · NBC NAH = (cùng phụ góc ACB) ΔBNC = ΔANH (cạnh huyền, góc nhọn) ⇒ BN = AN. ΔANB vuông ở N · 1 BN tg NAB AN ⇒ = = . Do đó: tang BAC =1. Tuyển tập các đề thi thử kì I To¸n 9 . đề thi thử kì I To¸n 9 Từ (1) và (2) suy ra: · · · · OMB AME MBO MAH+ = + . Mà · · 0 90 MBO MAH+ = (vì AH ⊥ BC ) Nên · · 0 90 OMB AME+ = . Do đó · 0 90 EMO. − − − = 3 3 7x⇔ − = 7 3 3 x⇔ − = (đk : x ≥ 3) 49 3 9 x ⇔ − = 76 9 x ⇔ = (thỏa mãn điều kiện ) Vậy S = 76 9       Bài 5.(4 điểm) 1. Chứng minh AM và

Ngày đăng: 30/10/2013, 21:11

HÌNH ẢNH LIÊN QUAN

(các em tự vẽ hình để đối chiếu câu 2) - Thi HKI Toan 9 Nam hoc: 2010 - 2011
c ác em tự vẽ hình để đối chiếu câu 2) (Trang 8)

TỪ KHÓA LIÊN QUAN

w