THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 83 |
Dung lượng | 2,09 MB |
Nội dung
Ngày đăng: 29/01/2021, 13:25
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết |
---|---|---|
[2] Tsukahara M, Yoshimoto Y. International Congress and Exposition. Detroit, Feb 24–28 1992. Warrendale, PA, USA: SAE; 1992. p. 71 | Khác | |
[3] Lawson A, Vergeer EC, Mitchell EW, Dainty ED. Heavy-Duty Diesel Emission Control: A Review of Technology, vol. 36. Montreal, Quebec, Canada: CIM; 1986. p. 238 | Khác | |
[5] Sjogren A. Proc of the 16th Symp (Int) on Combustion, MIT, Aug 15–20 1976. Pittsburgh, Pa: The Combustion Institute; 1977. p. 297 | Khác | |
[7] Holmberg K, Jửnsson B, Kronberg B, Lindman B. Surfactants and Polymers in Aqueous Solution. 2nd ed. Chichester: Wiley; 2003. p. 461 | Khác | |
[8] Rosen MJ. Surfactants and Interfacial Phenomena. New York:Wiley Interscience; 1989. p.326 | Khác | |
[9] P.R. Gogate, A.B. Pandit, A review and assessment of hydrodynamic cavitation as a technology for the future, Ultrason. Sonochem. 12 (2005) 21–27 | Khác | |
[10] M. Sivakumar, A.B. Pandit, Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique, Ultrason. Sonochem. 9 (2002) 123–131 | Khác | |
[11] P. Braeutigam, Z.L. Wu, A. Stark, B. Ondruschka, Degradation of BTEX in aqueous solution by hydrodynamic cavitation, Chem. Eng. Technol. 32 (2009) 745–753 | Khác | |
[12] Y.T. Didenko, W.B. McNamara, K.S. Suclick, Hot spot conditions during cavitation in water, J. Am. Chem. Soc. 121 (1999) 5817–5818 | Khác | |
[13] T.A. Bashir, A.G. Soni, A.V. Mahulkar, A.B. Pandit, The CFD driven optimization of a modified venturi for cavitation activity, Can. J. Chem. Eng. 89 (2011) 1366–1375 | Khác | |
[14] Phan Minh Tân, Nguyễn Vĩnh Khanh, Nghiên cứu công nghệ và chế tạo thiết bị sản xuất nhũ tương Diesel quy mô pilot, năng suất 3 m 3 /h, (2010) | Khác | |
[15] S. Arrojo, Y. Benito, A theoretical study of hydrodynamic cavitation, Ultrason. Sonochem 15 (2008) 203–211 | Khác | |
[16] Parag R. Gogate, Cavitational reactors for process intensification of chemical processing | Khác | |
[18] S.S. Save, A.B. Pandit, J.B. Joshi, Use of hydrodynamic cavitation for large scale microbial cell disruption, Chem. Eng. Res. Des. 75 (1997) 41 | Khác | |
[19] ZHANG Xiaodong, FU Yong, LI Zhiyi, ZHAO Zongchang, The Numerical Simulation of Collapse Pressure and Boundary of the Cavity Cloud in Venturi, J. Chem. Eng (China). 17(6) 896 - 903 (2009) | Khác | |
[20] M. Sivakumar, A.B. Pandit, Waste water treatment: a novel energy efficient hydrodynamic cavitation technique, Ultrason. Sonochem. 9 (2002) 123–131 | Khác | |
[21] V.S. Moholkar, A.B. Pandit, Bubble behavior in hydrodynamic cavitation: effect of turbulence, AIChE J. 43 (1997) 1641–1648 | Khác | |
[22] P. Senthilkumar, A.B. Pandit, Modeling hydrodynamic cavitation, Chem. Eng. Technol. 22 (1999) 1017–1026 | Khác | |
[23] P. Senthilkumar, M. Sivakumar, A.B. Pandit, Experimental quantification of chemical effects of hydrodynamic cavitation, Chem. Eng. Sci. 55 (2000) 1633–1639 | Khác | |
[24] P.R. Gogate, A.B. Pandit, Engineering design methods for cavitation reactors II: Hydrodynamic cavitation, American Institute of Chemical Engineering Journal 46/8 (2000) 1641-1649 | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN