Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 20 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
20
Dung lượng
1,7 MB
Nội dung
I HC S PHM H NI Phửụng phaựp giaỷi tớch phaõn --------------------------------------------------------------------------------------------------------------------------- TCH PHN CễNG THC Bng nguyờn hm Nguyờn hm ca nhng hm s s cp thng gp Nguyờn hm ca nhng hm s thng gp Nguyờn hm ca nhng hm s hp Cxdx += ( ) 1 1 1 + + = + C x dxx ( ) 0ln += xCx x dx Cedxe xx += ( ) 10 ln <+= aC a a dxa x x Cxxdx += sincos Cxxdx += cossin Cxdx x += tan cos 1 2 Cxdx x += cot sin 1 2 ( ) ( ) Cbax a baxd ++=+ 1 ( ) ( ) ( ) 1 1 1 1 + + + =+ + C bax a dxbax ( ) 0ln 1 ++= + xCbax abax dx Ce a dxe baxbax += ++ 1 ( ) ( ) Cbax a dxbax ++=+ sin 1 cos ( ) ( ) Cbax a dxbax ++=+ cos 1 sin ( ) ( ) Cbax a dx bax ++= + tan 1 cos 1 2 ( ) ( ) Cbax a dx bax ++= + cot 1 sin 1 2 Cudu += ( ) 1 1 1 + + = + C u duu ( ) 0ln += uCu u du Cedue uu += ( ) 10 ln <+= aC a a dxa u u Cuudu += sincos Cuudu += cossin Cudu u += tan cos 1 2 Cudu u += cot sin 1 2 I. I BIN S TểM TT GIO KHOA V PHNG PHP GII TON 1. i bin s dng 1 tớnh tớch phõn b / a f[u(x)]u (x)dx ũ ta thc hin cỏc bc sau: Bc 1. t t = u(x) v tớnh / dt u (x)dx= . Bc 2. i cn: x a t u(a) , x b t u(b)= ị = = a = ị = = b . Bc 3. b / a f[u(x)]u (x)dx f(t)dt b a = ũ ũ . Vớ d 7. Tớnh tớch phõn 2 e e dx I xlnx = ũ . Gii t dx t lnx dt x = ị = 2 x e t 1, x e t 2= ị = = ị = 2 2 1 1 dt I ln t ln2 t ị = = = ũ . Vy I ln2= . ------------------------------------------------------------------------------------------------------------------------------------- Gv: Trn Quang Thun Tel:0912.676.613-- 091.5657.952 1 I HC S PHM H NI Phửụng phaựp giaỷi tớch phaõn --------------------------------------------------------------------------------------------------------------------------- Vớ d 8. Tớnh tớch phõn 4 3 0 cosx I dx (sinx cosx) p = + ũ . Hng dn: 4 4 3 3 2 0 0 cosx 1 dx I dx . (sinx cosx) (tanx 1) cos x p p = = + + ũ ũ . t t tan x 1= + S: 3 I 8 = . Vớ d 9. Tớnh tớch phõn 3 1 2 dx I (1 x) 2x 3 = + + ũ . Hng dn: t t 2x 3= + S: 3 I ln 2 = . Vớ d 10. Tớnh tớch phõn 1 0 3 x I dx 1 x - = + ũ . Hng dn: t 3 2 2 2 1 3 x t dt t 8 1 x (t 1) - = ị + + ũ L ; t t tanu= L S: I 3 2 3 p = - + . Chỳ ý: Phõn tớch 1 0 3 x I dx 1 x - = + ũ , ri t t 1 x= + s tớnh nhanh hn. 2. i bin s dng 2 Cho hm s f(x) liờn tc trờn on [a;b], tớnh ( ) b a f x dx ta thc hin cỏc bc sau: Bc 1. t x = u(t) v tớnh / ( )dx u t dt= . Bc 2. i cn: , x a t x b t = = = = . Bc 3. / ( ) [ ( )] ( ) ( ) b a f x dx f u t u t dt g t dt = = . Vớ d 1. Tớnh tớch phõn 1 2 2 0 1 I dx 1 x = - ũ . Gii t x sin t, t ; dx costdt 2 2 p p ộ ự = ẻ - ị = ờ ỳ ở ỷ 1 x 0 t 0, x t 2 6 p = ị = = ị = ------------------------------------------------------------------------------------------------------------------------------------- Gv: Trn Quang Thun Tel:0912.676.613-- 091.5657.952 2 I HC S PHM H NI Phửụng phaựp giaỷi tớch phaõn --------------------------------------------------------------------------------------------------------------------------- 6 6 2 0 0 cost cost I dt dt cost 1 sin t p p ị = = - ũ ũ 6 6 0 0 dt t 0 6 6 p p p p = = = - = ũ . Vy I 6 p = . Vớ d 2. Tớnh tớch phõn 2 2 0 I 4 x dx= - ũ . Hng dn: t x 2sint= S: I = p . Vớ d 3. Tớnh tớch phõn 1 2 0 dx I 1 x = + ũ . Gii t 2 x tant, t ; dx (tan x 1)dt 2 2 ổ ử p p ữ ỗ = ẻ - ị = + ữ ỗ ữ ữ ỗ ố ứ x 0 t 0, x 1 t 4 p = ị = = ị = 4 4 2 2 0 0 tan t 1 I dt dt 4 1 tan t p p + p ị = = = + ũ ũ . Vy I 4 p = . Vớ d 4. Tớnh tớch phõn 3 1 2 0 dx I x 2x 2 - = + + ũ . Hng dn: 3 1 3 1 2 2 0 0 dx dx I x 2x 2 1 (x 1) - - = = + + + + ũ ũ . t x 1 tant+ = S: I 12 p = . Vớ d 5. Tớnh tớch phõn 2 2 0 dx I 4 x = - ũ . S: I 2 p = . Vớ d 6. Tớnh tớch phõn 3 1 2 0 dx I x 2x 2 - = + + ũ . S: I 12 p = . 3. Cỏc dng c bit 3.1. Dng lng giỏc Vớ d 11 (bc sin l). Tớnh tớch phõn 2 2 3 0 I cos x sin xdx p = ũ . Hng dn: t t cosx= ------------------------------------------------------------------------------------------------------------------------------------- Gv: Trn Quang Thun Tel:0912.676.613-- 091.5657.952 3 I HC S PHM H NI Phửụng phaựp giaỷi tớch phaõn --------------------------------------------------------------------------------------------------------------------------- S: 2 I 15 = . Vớ d 12 (bc cosin l). Tớnh tớch phõn 2 5 0 I cos xdx p = ũ . Hng dn: t t sinx= S: 8 I 15 = . Vớ d 13 (bc sin v cosin chn). Tớnh tớch phõn 2 4 2 0 I cos x sin xdx p = ũ . Gii 2 2 4 2 2 2 0 0 1 I cos x sin xdx cos x sin 2xdx 4 p p = = ũ ũ 2 2 2 0 0 1 1 (1 cos4x)dx cos2xsin 2xdx 16 4 p p = - + ũ ũ 2 2 2 0 0 1 1 (1 cos4x)dx sin 2xd(sin2x) 16 8 p p = - + ũ ũ 3 2 0 x 1 sin 2x sin4x 16 64 24 32 p ổ ử p ữ ỗ = - + = ữ ỗ ữ ỗ ố ứ . Vy I 32 p = . Vớ d 14. Tớnh tớch phõn 2 0 dx I cosx sin x 1 p = + + ũ . Hng dn: t x t tan 2 = . S: I ln2= . Biu din cỏc hm s LG theo tan 2 a t = : 2 2 2 2 2 1 2 sin ; cos ; tan . 1 1 1 t t t a a a t t t = = = + + 3.2. Dng liờn kt Vớ d 15. Tớnh tớch phõn 0 xdx I sinx 1 p = + ũ . Gii t x t dx dt= p - ị = - x 0 t , x t 0= ị = p = p ị = ( ) 0 0 ( t)dt t I dt sin( t) 1 sin t 1 sint 1 p p p - p ị = - = - p - + + + ũ ũ 0 0 dt dt I I sin t 1 2 sin t 1 p p p = p - ị = + + ũ ũ ( ) ( ) 2 2 0 0 dt dt t t t 2 4 cos sin cos 2 4 2 2 p p p p = = p - + ũ ũ 2 0 0 t d 2 4 t tan 2 t 2 2 4 cos 2 4 p p ổ ử p ữ ỗ - ữ ỗ ữ ữ ỗ ổ ử ố ứ p p p ữ ỗ = = - = p ữ ỗ ữ ữ ỗ ổ ử ố ứ p ữ ỗ - ữ ỗ ữ ữ ỗ ố ứ ũ . Vy I = p . ------------------------------------------------------------------------------------------------------------------------------------- Gv: Trn Quang Thun Tel:0912.676.613-- 091.5657.952 4 ĐẠI HỌC SƯ PHẠM HÀ NỘI Phöông phaùp giaûi tích phaân --------------------------------------------------------------------------------------------------------------------------- Tổng quát: 0 0 xf(sinx)dx f(sin x)dx 2 p p p = ò ò . Ví dụ 16. Tính tíchphân 2 2007 2007 2007 0 sin x I dx sin x cos x p = + ò . Giải Đặt x t dx dt 2 p = - Þ = - x 0 t , x t 0 2 2 p p = Þ = = Þ = ( ) ( ) ( ) 2007 0 2007 2007 2 sin t 2 I dx sin t cos t 2 2 p p - Þ = - p p - + - ò 2 2007 2007 2007 0 cos t dx J sin t cos t p = = + ò (1). Mặt khác 2 0 I J dx 2 p p + = = ò (2). Từ (1) và (2) suy ra I 4 p = . Tổng quát: 2 2 n n n n n n 0 0 sin x cos x dx dx ,n sin x cos x sin x cos x 4 p p + p = = Î + + ò ò Z . Ví dụ 17. Tính tíchphân 6 2 0 sin x I dx sin x 3cosx p = + ò và 6 2 0 cos x J dx sin x 3cosx p = + ò . Giải I 3J 1 3- = - (1). ( ) 6 6 0 0 dx 1 dx I J dx 2 sin x 3cosx sin x 3 p p + = = p + + ò ò Đặt t x dt dx 3 p = + Þ = ⇒ 1 I J ln3 4 + = (2). Từ (1) và (2)⇒ 3 1 3 1 1 3 I ln3 , J ln3 16 4 16 4 - - = + = - . Ví dụ 18. Tính tíchphân 1 2 0 ln(1 x) I dx 1 x + = + ò . Giải Đặt 2 x tant dx (1 tan t)dt= Þ = + x 0 t 0, x 1 t 4 p = Þ = = Þ = ( ) 4 4 2 2 0 0 ln(1 tant) I 1 tan t dt ln(1 tant)dt 1 tan t p p + Þ = + = + + ò ò . ------------------------------------------------------------------------------------------------------------------------------------- Gv: Trần Quang Thuận Tel:0912.676.613-- 091.5657.952 5 I HC S PHM H NI Phửụng phaựp giaỷi tớch phaõn --------------------------------------------------------------------------------------------------------------------------- t t u dt du 4 p = - ị = - t 0 u , t u 0 4 4 p p = ị = = ị = 0 4 0 4 I ln(1 tant)dt ln 1 tan u du 4 p p ộ ổ ửự p ữ ỗ ờ ỳ ị = + = - + - ữ ỗ ữ ữ ỗ ờ ỳ ố ứ ở ỷ ũ ũ 4 4 0 0 1 tanu 2 ln 1 du ln du 1 tanu 1 tanu p p ổ ử ổ ử - ữ ữ ỗ ỗ = + = ữ ữ ỗ ỗ ữ ữ ữ ữ ỗ ỗ ố ứ ố ứ + + ũ ũ ( ) 4 4 0 0 ln2du ln 1 tanu du ln2 I 4 p p p = - + = - ũ ũ . Vy I ln2 8 p = . Vớ d 19. Tớnh tớch phõn 4 x 4 cosx I dx 2007 1 p p - = + ũ . Hng dn: t x t= - S: 2 I 2 = . Tng quỏt: Vi a > 0 , 0a > , hm s f(x) chn v liờn tc trờn on [ ] ; - a a thỡ x 0 f(x) dx f(x)dx a 1 a a - a = + ũ ũ . Vớ d 20. Cho hm s f(x) liờn tc trờn Ă v tha f( x) 2f(x) cosx- + = . Tớnh tớch phõn 2 2 I f(x)dx p p - = ũ . Gii t 2 2 J f( x)dx p p - = - ũ , x t dx dt= - ị = - x t , x t 2 2 2 2 p p p p = - ị = = ị = - [ ] 2 2 2 2 I f( t)dt J 3I J 2I f( x) 2f(x) dx p p p p - - ị = - = ị = + = - + ũ ũ 2 2 0 2 cosxdx 2 cosxdx 2 p p p - = = = ũ ũ . ------------------------------------------------------------------------------------------------------------------------------------- Gv: Trn Quang Thun Tel:0912.676.613-- 091.5657.952 6 ĐẠI HỌC SƯ PHẠM HÀ NỘI Phương phápgiảitíchphân --------------------------------------------------------------------------------------------------------------------------- Vậy 2 I 3 = . 3.3. Các kết quả cần nhớ i/ Với a > 0 , hàm số f(x) lẻ và liên tục trên đoạn [–a; a] thì a a f(x)dx 0 - = ò . ii/ Với a > 0 , hàm số f(x) chẵn và liên tục trên đoạn [–a; a] thì a a a 0 f(x)dx 2 f(x)dx - = ò ò . iii/ Cơng thức Walliss (dùng cho trắc nghiệm) 2 2 n n 0 0 (n 1)!! , n!! cos xdx sin xdx (n 1)!! . , n!! 2 p p ì - ï ï ï ï ï = = í ï - p ï ï ï ï ỵ ò ò nếu n lẻ nếu n chẵn . Trong đó n!! đọc là n walliss và được định nghĩa dựa vào n lẻ hay chẵn. Chẳng hạn: 0!! 1; 1!! 1; 2!! 2; 3!! 1.3; 4!! 2.4; 5!! 1.3.5;= = = = = = 6!! 2.4.6; 7!! 1.3.5.7; 8!! 2.4.6.8; 9!! 1.3.5.7.9; 10!! 2.4.6.8.10= = = = = . Ví dụ 21. 2 11 0 10!! 2.4.6.8.10 256 cos xdx 11!! 1.3.5.7.9.11 693 p = = = ò . Ví dụ 22. 2 10 0 9!! 1.3.5.7.9 63 sin xdx . . 10!! 2 2.4.6.8.10 2 512 p p p p = = = ò . II. TÍCHPHÂN TỪNG PHẦN 1. Cơng thức Cho hai hàm số u(x), v(x) liên tục và có đạo hàm trên đoạn [a; b]. Ta có ( ) ( ) / / / / / / uv u v uv uv dx u vdx uv dx= + Þ = + ( ) b b b a a a d uv vdu udv d(uv) vdu udvÞ = + Þ = + ò ò ò b b b b b b a a a a a a uv vdu udv udv uv vd = + Þ = - ò ò ò ò . Cơng thức: b b b a a a udv uv vdu= - ò ò (1). Cơng thức (1) còn được viết dưới dạng: b b b / / a a a f(x)g (x)dx f(x)g(x) f (x)g(x)dx= - ò ò (2). 2. Phươngphápgiải tốn Giả sử cần tính tíchphân b a f(x)g(x)dx ò ta thực hiện Cách 1. ------------------------------------------------------------------------------------------------------------------------------------- Gv: Trần Quang Thuận Tel:0912.676.613-- 091.5657.952 7 I HC S PHM H NI Phửụng phaựp giaỷi tớch phaõn --------------------------------------------------------------------------------------------------------------------------- Bc 1. t u f(x), dv g(x)dx= = (hoc ngc li) sao cho d tỡm nguyờn hm v(x) v vi phõn / du u (x)dx= khụng quỏ phc tp. Hn na, tớch phõn b a vdu ũ phi tớnh c. Bc 2. Thay vo cụng thc (1) tớnh kt qu. c bit: i/ Nu gp b b b ax a a a P(x)sinaxdx, P(x)cosaxdx, e .P(x)dx ũ ũ ũ vi P(x) l a thc thỡ t u P(x)= . ii/ Nu gp b a P(x)ln xdx ũ thỡ t u lnx= . Cỏch 2. Vit li tớch phõn b b / a a f(x)g(x)dx f(x)G (x)dx= ũ ũ v s dng trc tip cụng thc (2). Vớ d 1. Tớnh tớch phõn 1 x 0 I xe dx= ũ . Gii t x x u x du dx dv e dx v e = = ỡ ỡ ù ù ù ù ị ớ ớ = ù ù = ù ùợ ợ (chn C 0= ) 1 1 1 1 x x x x 0 0 0 0 xe dx xe e dx (x 1)e 1ị = - = - = ũ ũ . Vớ d 2. Tớnh tớch phõn e 1 I x ln xdx= ũ . Gii t 2 dx du u lnx x dv xdx x v 2 ỡ ù = ù = ỡ ù ù ù ù ị ớ ớ ù ù = ù ù ợ = ù ù ợ e e e 2 2 1 1 1 x 1 e 1 xln xdx ln x xdx 2 2 4 + ị = - = ũ ũ . Vớ d 3. Tớnh tớch phõn 2 x 0 I e sin xdx p = ũ . Gii t x x u sinx du cosxdx dv e dx v e = = ỡ ỡ ùù ù ù ị ớ ớ ù ù = = ù ù ợ ợ 2 2 x x x 2 2 0 0 0 I e sinxdx e sin x e cosxdx e J p p p p ị = = - = - ũ ũ . t x x u cosx du sin xdx dv e dx v e = = - ỡ ỡ ù ù ù ù ị ớ ớ = ù ù = ù ùợ ợ ------------------------------------------------------------------------------------------------------------------------------------- Gv: Trn Quang Thun Tel:0912.676.613-- 091.5657.952 8 I HC S PHM H NI Phửụng phaựp giaỷi tớch phaõn --------------------------------------------------------------------------------------------------------------------------- 2 2 x x x 2 0 0 0 J e cosxdx e cosx e sin xdx 1 I p p p ị = = + = - + ũ ũ 2 2 e 1 I e ( 1 I) I 2 p p + ị = - - + ị = . Chỳ ý: ụi khi ta phi i bin s trc khi ly tớch phõn tng phn. Vớ d 7. Tớnh tớch phõn 2 4 0 I cos xdx p = ũ . Hng dn: t t x= 2 0 I 2 t costdt 2 p ị = = = p - ũ L L . Vớ d 8. Tớnh tớch phõn e 1 I sin(ln x)dx= ũ . S: (sin1 cos1)e 1 I 2 - + = . III. TCH PHN CHA GI TR TUYT I Phng phỏp gii toỏn 1. Dng 1 Gi s cn tớnh tớch phõn b a I f(x) dx= ũ , ta thc hin cỏc bc sau Bc 1. Lp bng xột du (BXD) ca hm s f(x) trờn on [a; b], gi s f(x) cú BXD: x a 1 x 2 x b f(x) + 0 - 0 + Bc 2. Tớnh 1 2 1 2 b x x b a a x x I f(x) dx f(x)dx f(x)dx f(x)dx= = - + ũ ũ ũ ũ . Vớ d 9. Tớnh tớch phõn 2 2 3 I x 3x 2 dx - = - + ũ . Gii Bng xột du x 3- 1 2 2 x 3x 2- + + 0 - 0 ( ) ( ) 1 2 2 2 3 1 59 I x 3x 2 dx x 3x 2 dx 2 - = - + - - + = ũ ũ . Vy 59 I 2 = . Vớ d 10. Tớnh tớch phõn 2 2 0 I 5 4cos x 4sin xdx p = - - ũ . ------------------------------------------------------------------------------------------------------------------------------------- Gv: Trn Quang Thun Tel:0912.676.613-- 091.5657.952 9 I HC S PHM H NI Phửụng phaựp giaỷi tớch phaõn --------------------------------------------------------------------------------------------------------------------------- S: I 2 3 2 6 p = - - . 2. Dng 2 Gi s cn tớnh tớch phõn [ ] b a I f(x) g(x) dx= ũ , ta thc hin Cỏch 1. Tỏch [ ] b b b a a a I f(x) g(x) dx f(x) dx g(x) dx= = ũ ũ ũ ri s dng dng 1 trờn. Cỏch 2. Bc 1. Lp bng xột du chung ca hm s f(x) v g(x) trờn on [a; b]. Bc 2. Da vo bng xột du ta b giỏ tr tuyt i ca f(x) v g(x). Vớ d 11. Tớnh tớch phõn ( ) 2 1 I x x 1 dx - = - - ũ . Gii Cỏch 1. ( ) 2 2 2 1 1 1 I x x 1 dx x dx x 1 dx - - - = - - = - - ũ ũ ũ 0 2 1 2 1 0 1 1 xdx xdx (x 1)dx (x 1)dx - - = - + + - - - ũ ũ ũ ũ 0 2 1 2 2 2 2 2 1 0 1 1 x x x x x x 0 2 2 2 2 - - ổ ử ổ ử ữ ữ ỗ ỗ = - + + - - - = ữ ữ ỗ ỗ ữ ữ ỗ ỗ ố ứ ố ứ . Cỏch 2. Bng xột du x 1 0 1 2 x 0 + + x 1 0 + ( ) ( ) ( ) 0 1 2 1 0 1 I x x 1 dx x x 1 dx x x 1 dx - = - + - + + - + - + ũ ũ ũ ( ) 1 2 0 2 1 1 0 x x x x 0 - = - + - + = . Vy I 0= . 3. Dng 3 tớnh cỏc tớch phõn { } b a I max f(x), g(x) dx= ũ v { } b a J min f(x), g(x) dx= ũ , ta thc hin cỏc bc sau: Bc 1. Lp bng xột du hm s h(x) f(x) g(x)= - trờn on [a; b]. Bc 2. + Nu h(x) 0> thỡ { } max f(x), g(x) f(x)= v { } min f(x), g(x) g(x)= . + Nu h(x) 0< thỡ { } max f(x), g(x) g(x)= v { } min f(x), g(x) f(x)= . Vớ d 12. Tớnh tớch phõn { } 4 2 0 I max x 1, 4x 2 dx= + - ũ . Gii t ( ) ( ) 2 2 h(x) x 1 4x 2 x 4x 3= + - - = - + . ------------------------------------------------------------------------------------------------------------------------------------- Gv: Trn Quang Thun Tel:0912.676.613-- 091.5657.952 10 . Quang Thun Tel:0912.676.613-- 091.5657.952 6 ĐẠI HỌC SƯ PHẠM HÀ NỘI Phương pháp giải tích phân ---------------------------------------------------------------------------------------------------------------------------. a a a f(x)g (x)dx f(x)g(x) f (x)g(x)dx= - ò ò (2). 2. Phương pháp giải tốn Giả sử cần tính tích phân b a f(x)g(x)dx ò ta thực hiện Cách 1. -------------------------------------------------------------------------------------------------------------------------------------