1. Trang chủ
  2. » Luận Văn - Báo Cáo

Giải quyết vấn đề mất cân bằng dữ liệu trong bài toán dự báo thuê bao rời bỏ nhà mạng

80 90 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 80
Dung lượng 2,4 MB

Nội dung

Ngày đăng: 26/01/2021, 00:04

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Y. Zhang, J. Qui, H. Shu, J. Cao, “A hybrid KNN-LR classifier and its application in customer churn prediction,” Proc. of IEEE International Conference on Systems,Man and Cybernetics, 7-12 Oct, pp. 3265-3269, 2007 Sách, tạp chí
Tiêu đề: A hybrid KNN-LR classifier and its application in customer churn prediction,” "Proc. of IEEE International Conference on Systems, "Man and Cybernetics
[2] P. Datta, B. Massand, D. Mani, B. Li, “Automated cellular modeling and prediction on a large scale,” Artificial Intelligence Review, vol. 14, pp. 485-502, 2000 Sách, tạp chí
Tiêu đề: Automated cellular modeling and prediction on a large scale,” "Artificial Intelligence Review
[3] Y. Wang, Z. Chen, “The application of classification algorithm combined with k- means in Customer churning of telecom”, Journal of Jiamusi University Sách, tạp chí
Tiêu đề: The application of classification algorithm combined with k-means in Customer churning of telecom”
[4] G. Li, X. Deng, “Customer churn prediction of China Telecom based on cluster analysis and decision tree algorithm,” Proc. of AICI 2012, CCIS 315, pp. 319-327, 2012 Sách, tạp chí
Tiêu đề: Customer churn prediction of China Telecom based on cluster analysis and decision tree algorithm,” "Proc. of AICI 2012, CCIS 315
[5] E. Lima, C. Mues, B. Baesens,”Domain knowledge integration in data mining using decision tables: Case studies in churn prediction,” Journal of the OperationalResearch Society, vol. 60, no. 8, pp. 1096-1106, 2009 Sách, tạp chí
Tiêu đề: Journal of the Operational "Research Society
[6] S. Hung, D. Yen, H. Wang, “Applying data mining to telecom churn management”, Expert Systems with Applications, vol. 31, pp.515-524, 2006 Sách, tạp chí
Tiêu đề: Applying data mining to telecom churn management”, "Expert Systems with Applications
[7] C.F. Tsai, Y. H. Lu, “Customer churn prediction by hybrid neural networks”, Expert Systems with Applications, vol.36, pp. 12547-12553, 2009 Sách, tạp chí
Tiêu đề: Customer churn prediction by hybrid neural networks”, "Expert Systems with Applications
[8] Y. Zhao, B. Li, X. Li, W. Liu, and S. Ren, “Customer churn prediction with improved one-class support vector machine,” Proc. of ADMA 2005, LNAI 3584, pp.300-306, 2005 Sách, tạp chí
Tiêu đề: Customer churn prediction with improved one-class support vector machine,” "Proc. of ADMA 2005, LNAI 3584
[9] B. Lariviere and D. Van, “Predicting customer retention and profitability by using random forests and regression forests techniques,” Expert Systems with Applications, vol. 29, pp. 277-285, 2005 Sách, tạp chí
Tiêu đề: Predicting customer retention and profitability by using random forests and regression forests techniques,” "Expert Systems with Applications
[10] Y. Xie, X. Li, E. W. T. Ngai, W. Ying, “Customer churn prediction using improved balanced random forests,” Expert Systems with Applications, vol. 36, pp.5445-5449, 2009 Sách, tạp chí
Tiêu đề: Customer churn prediction using improved balanced random forests,” "Expert Systems with Applications
[11] P. Spanoudes, T. Nguyen, “Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company Independent Feature Vectors,” 2017 Sách, tạp chí
Tiêu đề: Deep Learning in Customer Churn Prediction: Unsupervised Feature Learning on Abstract Company Independent Feature Vectors
[12] Wangperawong, C. Brun, O. Olav, P. Rujikorn, “Churn analysis using deep convolutional neural networks and autoencoders,” arXiv:1604.05377, 2016 Sách, tạp chí
Tiêu đề: Churn analysis using deep convolutional neural networks and autoencoders,” "arXiv:1604.05377
[13] A. Uzair, A. K. Hussain, S. H. Khan, A. Basit, I. U. Haq, Y. S. Lee, Y. Soo, “Transfer Learning and Meta Classification Based Deep Churn Prediction System for Telecom Industry,” arXiv:1901.06091, 2019 Sách, tạp chí
Tiêu đề: Transfer Learning and Meta Classification Based Deep Churn Prediction System for Telecom Industry",” arXiv:1901.06091
[14] Y.Xiao, J. Xiao, Y. Huang, A. Liu, D. Wang, “Feature-selection-based dynamic transfer ensemble model for customer churn prediction,” Knowledge andInformation Systems 1(43):pp.29-51, 2014 Sách, tạp chí
Tiêu đề: Feature-selection-based dynamic transfer ensemble model for customer churn prediction,” "Knowledge and "Information Systems 1
[15] W. Bi, Y. Shi, Z. Lan, “Transferred feature selection, ” Proceedings of IEEE international conference on data mining workshops, pp.416–421, 2009 Sách, tạp chí
Tiêu đề: Transferred feature selection, ” "Proceedings of IEEE international conference on data mining workshops
[16] T. Kamishima, M. Hamasaki, S. Akaho, “TrBagg: a simple transfer learning method and its application to personalization in collaborative tagging,” Proceedings of ninth IEEE international conference on data mining, Miami, FL, USA, pp.219–228, 2009 Sách, tạp chí
Tiêu đề: TrBagg: a simple transfer learning method and its application to personalization in collaborative tagging,” "Proceedings of ninth IEEE international conference on data mining
[17] W. Dai , Q. Yang, G. R. Xue, Y. Yu, “Boosting for transfer learning,” Proceedings of the 24th international conference on machine learning, pp.193–200, 2007 Sách, tạp chí
Tiêu đề: Boosting for transfer learning,” "Proceedings of the 24th international conference on machine learning
[18] Z. H. Zhou and X. Y. Liu, “Training cost-sensitive neural networks with methods addressing the class imbalance problem,” IEEE Trans Knowledge and Data Engineering 18(1):pp.63–77, 2006 Sách, tạp chí
Tiêu đề: Training cost-sensitive neural networks with methods addressing the class imbalance problem,” "IEEE Trans Knowledge and Data Engineering 18
[19] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, "SMOTE: Synthetic Minority Over-sampling Technique," Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, 2002 Sách, tạp chí
Tiêu đề: SMOTE: Synthetic Minority Over-sampling Technique
[43] C.L. Blake and C. J. Merz, Churn Data Set, UCI Repository of Machine Learning Databases, University of California, Department of Information and Computer Science, Irvine, CA, 2019. http://www.ics.uci.edu/~mlearn/MLRepository.html[44] CRM data in Teradata Center of Duke Universityhttp://www.fuqua.duke.edu/centers/ccrm/index.html Link

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w