ôn thi đại học môn toán
TUYỂN TẬP ĐỀ THI ĐẠI HỌC MƠN TỐN KHỐI A 2002 - 2013 (ĐÁP ÁN CHI TIẾT) BIÊN SOẠN: LƯU HUY THƯỞNG HỌ VÀ TÊN: ………………………………………………………………… LỚP :………………………………………………………………… TRƯỜNG :………………………………………………………………… HÀ NỘI, 8/2013 GV LƯU HUY THƯỞNG - 0968.393.899 - huythuong2801@gmail.com BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 −−−−−−−−−− Môn: TOÁN; Khối A khối A1 ĐỀ CHÍNH THỨC Thời gian làm bài: 180 phút, không kể thời gian phát đề −−−−−−−−−−−−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu (2,0 điểm) Cho hàm số y = −x3 + 3x2 + 3mx − (1), với m tham số thực a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = b) Tìm m để hàm số (1) nghịch biến khoảng (0; + ∞) √ π Câu (1,0 điểm) Giải phương trình + tan x = 2 sin x + ( √ p √ x + + x − − y4 + = y Câu (1,0 điểm) Giải hệ phương trình x2 + 2x(y − 1) + y − 6y + = Câu (1,0 điểm) Tính tích phân I= Z2 (x, y ∈ R) x2 − ln x dx x2 [ = 30◦ , SBC Câu (1,0 điểm) Cho hình chóp S.ABC có đáy tam giác vuông A, ABC tam giác cạnh a mặt bên SBC vuông góc với đáy Tính theo a thể tích khối chóp S.ABC khoảng cách từ điểm C đến mặt phẳng (SAB) Câu (1,0 điểm) Cho số thực dương a, b, c thỏa mã√ n điều kiện (a + c)(b + c) = 4c2 Tìm giá trị 32a3 32b3 a + b2 nhỏ biểu thức P = + − (b + 3c)3 (a + 3c)3 c II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộc đường thẳng d : 2x + y + = vaø A(−4; 8) Gọi M điểm đối xứng B qua C, N hình chiếu vuông góc B đường thẳng MD Tìm tọa độ điểm B C, biết N(5; −4) x−6 y+1 z+2 Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : = = −3 −2 điểm A(1; 7; 3) Viết phương trình mặ t phẳ n g (P ) qua A vuô n g gó c vớ i ∆ Tìm tọ a độ điể m √ M thuộc ∆ cho AM = 30 Câu 9.a (1,0 điểm) Gọi S tập hợp tất số tự nhiên gồm ba chữ số phân biệt chọn từ chữ số 1; 2; 3; 4; 5; 6; Xác định số phần tử S Chọn ngẫu nhiên số từ S, tính xác suất để số chọn số chẵn B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong √ mặt phẳng với hệ tọa độ Oxy, cho đường thẳng√∆ : x − y = Đường tròn (C) có bán kính R = 10 cắt ∆ hai điểm A B cho AB = Tiếp tuyến (C) A B cắt điểm thuộc tia Oy Viết phương trình đường tròn (C) Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P ) : 2x + 3y + z − 11 = mặt cầu (S) : x2 + y + z − 2x + 4y − 2z − = Chứng minh (P ) tiếp xúc với (S) Tìm tọa độ tiếp điểm (P ) (S) √ Câu 9.b (1,0 điểm) Cho số phức z = + i Viết dạng lượng giác z Tìm phần thực phần ảo số phức w = (1 + i)z5 −−−−−−Hết−−−−−− Thí sinh không sử dụng tài liệu Cán coi thi không giải thích thêm Họ tên thí sinh: ; Số báo danh: BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN GV LƯU HUY THƯỞNG - 0968.393.899 - huythuong2801@gmail.com ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Mơn: TỐN; Khối A khối A1 (Đáp án - thang điểm gồm 04 trang) BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC Câu (2,0 điểm) Đáp án Điểm a (1,0 điểm) Khi m = ta có y = − x3 + x − • Tập xác định: D = \ • Sự biến thiên: 0,25 - Chiều biến thiên: y ' = −3x + x; y ' = ⇔ x = x = Khoảng đồng biến: (0; 2); khoảng nghịch biến: (−∞; 0) (2; + ∞) - Cực trị: Hàm số đạt cực tiểu x = 0, yCT = −1; đạt cực đại x = 2, yCĐ = - Giới hạn: lim y = +∞; lim y = −∞ x→−∞ 0,25 x→+∞ - Bảng biến thiên: x −∞ y' − +∞ 0 + +∞ y − 0,25 −1 • Đồ thị: −∞ y 0,25 O x −1 b (1,0 điểm) Ta có y ' = −3x + x + 3m Hàm số (1) nghịch biến khoảng (0; + ∞) y ' ≤ 0, ∀x > ⇔ m ≤ x − x, ∀x > Xét f ( x) = x − x với x > Ta có f '( x) = x − 2; f '( x) = ⇔ x = 0,25 0,25 Bảng biến thiên: x − f '( x) f ( x) +∞ + +∞ 0,25 −1 Dựa vào bảng biến thiên ta giá trị m thỏa mãn yêu cầu toán m ≤ −1 Trang 1/4 CẦN SẼ ĐẾN BẾN BỂ HỌC VÔ BỜ - CHUYÊN 0,25 GV LƯU HUY THƯỞNG - 0968.393.899 - huythuong2801@gmail.com Câu (1,0 điểm) Đáp án Điểm Điều kiện: cos x ≠ Phương trình cho tương đương với + sin x = 2(sin x + cos x) cos x ⇔ (sin x + cos x)(2cos x − 1) = • sin x + cos x = ⇔ x = − • 2cos x − = ⇔ x = ± 0,25 π + kπ ( k ∈ ]) 0,25 π + k 2π (k ∈ ]) Đối chiếu điều kiện ta nghiệm: x = − (1,0 điểm) 0,25 π π + kπ x = ± + k 2π (k ∈ ]) ⎧⎪ x + + x − − y + = y (1) ⎨ ⎪⎩ x + x( y − 1) + y − y + = (2) 0,25 0,25 Điều kiện: x ≥ Từ (2) ta y = ( x + y − 1) , suy y ≥ Đặt u = x − 1, suy u ≥ Phương trình (1) trở thành: Xét f (t ) = t + + t , với t ≥ Ta có f '(t ) = 2t t +2 u4 + + u = y + + y (3) + > 0, ∀t ≥ 0,25 Do phương trình (3) tương đương với y = u, nghĩa x = y + Thay vào phương trình (2) ta y ( y + y + y − 4) = (4) Hàm g ( y ) = y + y + y − có g '( y ) = y + y + > với y ≥ Mà g (1) = 0, nên (4) có hai nghiệm khơng âm y = y = Với y = ta nghiệm ( x; y ) = (1; 0); với y = ta nghiệm ( x; y ) = (2; 1) Vậy nghiệm ( x; y ) hệ cho (1; 0) (2; 1) (1,0 điểm) Đặt u = ln x, dv = x2 − x dx ⇒ du = dx , v= x+ x x 0,25 0,25 0,25 2 1 Ta có I = ⎛⎜ x + ⎞⎟ ln x − ∫ ⎛⎜ x + ⎞⎟ dx x⎠ x⎠x ⎝ 1⎝ 0,25 1 = ⎛⎜ x + ⎞⎟ ln x − ⎛⎜ x − ⎞⎟ x⎠ x ⎠1 ⎝ ⎝ = ln − 2 (1,0 điểm) 0,25 0,25 Gọi H trung điểm BC, suy SH ⊥ BC Mà (SBC) vng góc với (ABC) theo giao tuyến BC, nên SH ⊥ (ABC) Ta có BC = a, suy SH = S AB = BC cos30o = Do VS ABC = I B H C A 0,25 a a ; AC = BC sin 30o = ; 2 a 0,25 a3 SH AB AC = 16 Tam giác ABC vuông A H trung điểm BC nên HA = HB Mà SH ⊥ (ABC), suy SA = SB = a Gọi I trung điểm AB, suy SI ⊥ AB 0,25 AB a 13 = 4 3V 6V a 39 Suy d (C ,( SAB )) = S ABC = S ABC = S ΔSAB SI AB 13 0,25 Do SI = SB − Trang 2/4 CẦN SẼ ĐẾN BẾN BỂ HỌC VÔ BỜ - CHUYÊN GV LƯU HUY THƯỞNG - 0968.393.899 - huythuong2801@gmail.com Câu (1,0 điểm) Đáp án Đặt x = Điểm a b , y = Ta x > 0, y > Điều kiện toán trở thành xy + x + y = c c 3 32 y Khi P = 32 x + − x2 + y2 3 ( y + 3) ( x + 3) (u + v)3 Với u > 0, v > ta có u + v = (u + v) − 3uv(u + v) ≥ (u + v) − (u + v)3 = 4 3 3 0,25 3 32 x3 + 32 y ≥ ⎛ x + y ⎞ = ⎛ ( x + y ) − xy + x + y ⎞ ⎜ ⎟⎟ ⎜ ⎟ ⎜ xy + x + y + ⎝ y +3 x+3⎠ ( y + 3)3 ( x + 3)3 ⎝ ⎠ Thay xy = − x − y vào biểu thức ta Do 3 32 x3 + 32 y ≥ ⎛ ( x + y − 1)( x + y + 6) ⎞ = ( x + y − 1)3 Do ⎜ ⎟ 2( x + y + 6) ⎝ ⎠ ( y + 3)3 ( x + 3)3 0,25 P ≥ ( x + y −1)3 − x + y = ( x + y −1)3 − ( x + y ) − xy = ( x + y −1)3 − ( x + y ) + 2( x + y ) − Đặt t = x + y Suy t > P ≥ (t − 1)3 − t + 2t − ( x + y)2 t2 nên (t − 2)(t + 6) ≥ Do t ≥ =t+ 4 t +1 Xét f (t ) = (t − 1)3 − t + 2t − 6, với t ≥ Ta có f '(t ) = 3(t − 1) − t + 2t − Ta có = x + y + xy ≤ ( x + y ) + Với t ≥ ta có 3(t − 1) ≥ t +1 t + 2t − = 1+ 0,25 ≤ + = , nên 2 (t + 1) − > Suy f (t ) ≥ f (2) = − Do P ≥ − Khi a = b = c P = − Do giá trị nhỏ P − Do C ∈ d nên C (t ; −2t − 5) Gọi I tâm hình chữ nhật ABCD, suy I trung điểm AC Do I t − ; −2t + 2 Tam giác BDN vuông N nên IN = IB Suy IN = IA A D Do ta có phương trình f '(t ) ≥ − 7.a (1,0 điểm) ) ( ( I N B 8.a (1,0 điểm) C M ) ( ) 2 ⎛ − t − ⎞ + − − −2t + = − − t − + ⎛8 − − 2t + ⎞ ⎜ ⎟ ⎜ ⎟ ⎠ 2 ⎠ ⎝ ⎝ ⇔ t = Suy C (1; −7) Do M đối xứng với B qua C nên CM = CB Mà CB = AD CM||AD nên tứ giác ACMD hình bình hành Suy AC||DM Theo giả thiết, BN ⊥ DM, suy BN ⊥ AC CB = CN Vậy B điểm đối xứng N qua AC Đường thẳng AC có phương trình: x + y + = Đường thẳng BN qua N vng góc với AC nên có phương trình x − y − 17 = Do B(3a + 17; a ) Trung điểm BN thuộc AC nên 3a + 17 + ⎞ a − 3⎛⎜ + = ⇔ a = −7 Vậy B ( −4; −7) ⎟+ 2 ⎝ ⎠ JG Δ có véctơ phương u = (−3; −2;1) JG (P) qua A nhận u làm véctơ pháp tuyến, nên (P) có phương trình −3( x − 1) − 2( y − 7) + ( z − 3) = ⇔ 3x + y − z − 14 = 0,25 0,25 0,25 0,25 0,25 0,25 0,25 M thuộc Δ nên M (6 − 3t ; −1 − 2t ; −2 + t ) 0,25 AM = 30 ⇔ (6 − 3t − 1) + (−1 − 2t − 7) + (−2 + t − 3)2 = 120 ⇔ 7t − 4t − = 51 ; − ; − 17 ⇔ t = t = − Suy M (3; −3; −1) M 7 7 Trang 3/4 CẦN SẼ ĐẾN BẾN BỂ HỌC VÔ BỜ - CHUYÊN ( ) 0,25 GV LƯU HUY THƯỞNG - 0968.393.899 - huythuong2801@gmail.com Câu Đáp án Điểm 9.a (1,0 điểm) Số phần tử S A37 = 210 Số cách chọn số chẵn từ S 3.6.5 = 90 (cách) 90 = Xác suất cần tính 210 Gọi M giao điểm tiếp tuyến A B (C), H giao điểm AB IM Khi M (0; t ), với t ≥ 0; H trung điểm AB = 2 AB Suy AH = M 1 = + , suy AM = 10 2 AH AM AI B Do MH = AM − AH = |t | , nên t = Do M (0; 8) Mà MH = d ( M , Δ ) = H Đường thẳng IM qua M vng góc với Δ nên có phương I x + y − = Do tọa độ điểm H thỏa mãn hệ trình A ⎧x − y = Δ ⇒ H (4;4) ⎨ ⎩x + y − = JJJG JJJJG Ta có IH = IA2 − AH = = HM , nên IH = HM 4 Do I (5;3) 0,25 7.b (1,0 điểm) 0,25 0,25 0,25 0,25 0,25 0,25 0,25 Vậy đường trịn (C) có phương trình ( x − 5) + ( y − 3) = 10 8.b (1,0 điểm) (S) có tâm I (1; −2;1) bán kính R = 14 d ( I ,( P)) = | 2.1 + 3(−2) + 1.1 − 11| = 14 = R Do (P) tiếp xúc với (S) 14 22 + 32 + 12 Gọi M tiếp điểm (P) (S) Suy M thuộc đường thẳng qua I vng góc với (P) Do M (1 + 2t ; −2 + 3t ;1 + t ) Do M thuộc (P) nên 2(1 + 2t ) + 3(−2 + 3t ) + (1 + t ) − 11 = ⇔ t = Vậy M (3;1; 2) 9.b (1,0 điểm) ⎛1 3⎞ z = + 3i = ⎜ + i ⎟ ⎠ ⎝2 π π = ⎛⎜ cos + i sin ⎞⎟ 3⎠ ⎝ 5π 5π Suy z = 25 ⎛⎜ cos + i sin ⎞⎟ = 16(1 − 3i ) 3 ⎠ ⎝ Do w = 16( + 1) + 16(1 − 3)i Vậy w có phần thực 16( + 1) phần ảo 16(1 − 3) - Hết - Trang 4/4 CẦN SẼ ĐẾN BẾN BỂ HỌC VÔ BỜ - CHUYÊN 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 GV LƯU HUY THƯỞNG - 0968.393.899 - huythuong2801@gmail.com ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối A khối A1 Thời gian làm bài: 180 phút, không kể thời gian phát đề BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu (2,0 điểm) Cho hàm số y = x − 2( m + 1) x + m (1), với m tham số thực a) Khảo sát biến thiên vẽ đồ thị hàm số (1) m = b) Tìm m để đồ thị hàm số (1) có ba điểm cực trị tạo thành ba đỉnh tam giác vuông Câu (1,0 điểm) Giải phương trình sin x + cos x = cos x − ⎧ x3 − x − x + 22 = y + y − y ⎪ ( x, y ∈ \) Câu (1,0 điểm) Giải hệ phương trình ⎨ 2 x + y − x + y = ⎪ ⎩ + ln( x + 1) dx x Câu (1,0 điểm) Cho hình chóp S ABC có đáy tam giác cạnh a Hình chiếu vng góc S mặt phẳng (ABC) điểm H thuộc cạnh AB cho HA = HB Góc đường thẳng SC mặt phẳng (ABC) 60o Tính thể tích khối chóp S.ABC tính khoảng cách hai đường thẳng SA BC theo a Câu (1,0 điểm) Cho số thực x, y , z thỏa mãn điều kiện x + y + z = Tìm giá trị nhỏ biểu thức Câu (1,0 điểm) Tính tích phân I = ∫ P = | x− y | + | y − z | + | z − x | − x + y + z II PHẦN RIÊNG (3,0 điểm): Thí sinh làm hai phần riêng (phần A phần B) A Theo chương trình Chuẩn Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình vng ABCD Gọi M trung điểm 11 cạnh BC, N điểm cạnh CD cho CN = ND Giả sử M đường thẳng AN có ; 2 phương trình x − y − = Tìm tọa độ điểm A x +1 y z − Câu 8.a (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = điểm I (0; 0;3) Viết phương trình mặt cầu (S) có tâm I cắt d hai điểm A, B cho tam giác IAB vuông I Câu 9.a (1,0 điểm) Cho n số nguyên dương thỏa mãn 5Cnn −1 = Cn3 Tìm số hạng chứa x khai ( ( ) ) n nx − , x ≠ triển nhị thức Niu-tơn 14 x B Theo chương trình Nâng cao Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C ): x + y = Viết phương trình tắc elip (E), biết (E) có độ dài trục lớn (E) cắt (C) bốn điểm tạo thành bốn đỉnh hình vng x +1 y z − Câu 8.b (1,0 điểm) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : , mặt = = 1 phẳng ( P ): x + y − z + = điểm A(1; −1; 2) Viết phương trình đường thẳng ∆ cắt d (P) M N cho A trung điểm đoạn thẳng MN 5( z + i ) Câu 9.b (1,0 điểm) Cho số phức z thỏa mãn = − i Tính mơđun số phức w = + z + z z +1 HẾT -Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm Họ tên thí sinh: ; Số báo danh: BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN GV LƯU HUY THƯỞNG - 0968.393.899 - huythuong2801@gmail.com BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối A khối A1 (Đáp án – thang điểm gồm 04 trang) Câu Đáp án Điểm a) (1,0 điểm) (2,0 điểm) Khi m = 0, ta có: y = x − x • Tập xác định: D = \ • Sự biến thiên: 0,25 − Chiều biến thiên: y ' = x3 − x; y ' = ⇔ x = x = ±1 Các khoảng nghịch biến: (− ∞; −1) (0; 1); khoảng đồng biến: (−1; 0) (1; + ∞) − Cực trị: Hàm số đạt cực tiểu x = ±1, yCT = −1; đạt cực đại x = 0, yCĐ = − Giới hạn: lim y = lim y = + ∞ x→−∞ − Bảng biến thiên: 0,25 x→+∞ x −∞ y' –1 – 0 + +∞ +∞ – + +∞ 0,25 y –1 –1 • Đồ thị: y 0,25 –1 O –2 x –1 b) (1,0 điểm) Ta có y ' = x − 4( m + 1) x = x ( x − m − 1) Đồ thị hàm số có điểm cực trị m + > ⇔ m > −1 (*) Các điểm cực trị đồ thị A(0; m ), B(− m + 1; − 2m − 1) C ( m + 1; − 2m − 1) JJJG JJJG Suy ra: AB = ( − m + 1; − ( m + 1) ) AC = ( m + 1; − ( m + 1) ) JJJG JJJG Ta có AB = AC nên tam giác ABC vuông AB AC = ⇔ ( m + 1) − ( m + 1) = Kết hợp (*), ta giá trị m cần tìm m = Trang 1/4 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN 0,25 0,25 0,25 0,25 GV LƯU HUY THƯỞNG - 0968.393.899 - huythuong2801@gmail.com Câu Đáp án Điểm Phương trình cho tương đương với ( sin x + cos x − 1) cos x = (1,0 điểm) π • cos x = ⇔ x = + kπ (k ∈ ]) π π • sin x + cos x − = ⇔ cos x − = cos 3 2π + k 2π (k ∈ ]) ⇔ x = k 2π x = π 2π + k 2π (k ∈ ]) Vậy nghiệm phương trình cho x = + kπ, x = k 2π x = 3 3 ⎧( x − 1) − 12( x − 1) = ( y + 1) − 12( y + 1) (1) ⎪ (1,0 điểm) Hệ cho tương đương với: ⎨ 12 12 + y+ = (2) ⎪⎩ x − 2 1 1 Từ (2), suy −1 ≤ x − ≤ −1 ≤ y + ≤ ⇔ − ≤ x − ≤ − ≤ y + ≤ 2 2 2 3 Xét hàm số f (t ) = t − 12t ⎡⎢− ; ⎤⎥ , ta có f '(t ) = 3(t − 4) < , suy f(t) nghịch biến ⎣ 2⎦ Do (1) ⇔ x – = y + ⇔ y = x – (3) 2 3 + x− = ⇔ x − x + = ⇔ x = x = Thay vào (2), ta x − 2 2 3 Thay vào (3), ta nghiệm hệ ( x; y ) = ; − ( x; y ) = ; − 2 2 dx dx Đặt u = + ln( x + 1) dv = , suy du = v = − (1,0 điểm) x +1 x x ( ) ( ) ( ) ( ) ( ) ) ( + ln( x + 1) I=− + x = + ln + 3 ∫( ( ) dx ∫ x( x + 1) 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 ) + ln x 1 + ln dx = − x +1 x x +1 0,25 2 = + ln − ln 3 (1,0 điểm) 0,25 0,25 S n góc SC (ABC), suy SCH n = 60o Ta có SCH a a Gọi D trung điểm cạnh AB Ta có: HD= , CD = , a a 21 HC = HD + CD = , SH = HC.tan60o = 3 0,25 1 a 21 a a = VS ABC = SH S ∆ABC = 3 12 0,25 Kẻ Ax//BC Gọi N K hình chiếu vng góc H Ax SN Ta có BC//(SAN) BA = HA nên d ( SA, BC ) = d ( B,( SAN )) = d ( H ,( SAN )) Ta có Ax ⊥ ( SHN ) nên Ax ⊥ HK Do HK ⊥ ( SAN ) Suy d ( H ,( SAN )) = HK 0,25 K A x N D C H B AH = 2a a , HN = AH sin 60o = , HK = 3 SH HN SH + HN Trang 2/4 = a 42 a 42 Vậy d ( SA, BC ) = 12 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN 0,25 GV LƯU HUY THƯỞNG - 0968.393.899 - huythuong2801@gmail.com Câu Đáp án Điểm Ta chứng minh 3t ≥ t + 1, ∀t ≥ (*) (1,0 điểm) Xét hàm f (t ) = 3t − t − , có f '(t ) = 3t ln − > 0, ∀t ≥ f (0) = , suy (*) 0,25 Áp dụng (*), ta có | x− y | + | y− z | + | z− x | ≥ 3+ | x − y | + | y − z | + | z − x | Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | , ta có: (| x − y | + | y − z | + | z − x |) = | x − y |2 + | y − z |2 + | z − x |2 + | x − y |(| y − z | + | z − x |) + | y − z |(| z − x | + | x − y |) ( 2 ) 0,25 + | z − x |(| x − y | + | y − z |) ≥ | x − y | + | y − z | + | z − x | ( ) Do | x − y | + | y − z | + | z − x | ≥ | x − y |2 + | y − z |2 + | z − x |2 = x + y + z − ( x + y + z ) 2 0,25 Mà x + y + z = 0, suy | x − y | + | y − z | + | z − x | ≥ x + y + z Suy P = | x− y | + | y−z | + | z−x | − x + y + z ≥3 Khi x = y = z = dấu xảy Vậy giá trị nhỏ P Gọi H giao điểm AN BD Kẻ đường thẳng qua H 7.a song song với AB, cắt AD BC P Q (1,0 điểm) Đặt HP = x Suy PD = x, AP = 3x HQ = 3x A B Ta có QC = x, nên MQ = x Do ∆AHP = ∆HMQ, suy AH ⊥ HM Hơn nữa, ta có AH = HM M 10 Do AM = MH = 2d ( M ,( AN )) = H Q P A∈AN, suy A(t; 2t – 3) C D 11 45 10 N + 2t − = MA = ⇔ t− 2 2 ) ( ( ) ⇔ t − 5t + = ⇔ t = t = Vậy: A(1; −1) A(4;5) ) JJJG JJJG JJG 2 IH ⊥ AB ⇔ IH a = ⇔ t − + 4t + t − = ⇔ t = ⇒ IH = − ; ; − 3 3 Tam giác IAH vuông cân H, suy bán kính mặt cầu (S) R = IA = IH = Do phương trình mặt cầu cần tìm ( S ): x + y + ( z − 3)2 = 0,25 0,25 0,25 0,25 0,25 0,25 9.a n(n − 1)(n − 2) n −1 (1,0 điểm) 5Cn = Cn ⇔ 5n = 0,25 ⇔ n = (vì n nguyên dương) n 0,25 0,25 JJG 8.a Véc tơ phương d a = (1; 2; 1) Gọi H trung điểm AB, suy IH ⊥ AB JJJG (1,0 điểm) Ta có H ∈d nên tọa độ H có dạng H (t −1; 2t ; t + 2) ⇒ IH = (t −1; 2t ; t −1) ( 0,25 0,25 7 2 ⎞ ⎛ x2 ⎞ ⎛ nx ⎛x ⎞ Khi ⎜ − ⎟ =⎜ − ⎟ = C7k ⎜ ⎟ x⎠ ⎝ x ⎠ k =0 ⎝ ⎠ ⎝ 14 ∑ 7−k (− 1x ) = ∑ (−21)7−kC7 x14−3k k k k 0,25 k=0 Số hạng chứa x5 tương ứng với 14 − 3k = ⇔ k = Do số hạng cần tìm (−1)3 C73 35 x = − x5 16 Trang 3/4 BỂ HỌC VÔ BỜ - CHUYÊN CẦN SẼ ĐẾN BẾN 0,25 ... 0968.393.899 - huythuong2801@gmail.com ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 Mơn: TỐN; Khối A khối A1 (Đáp án - thang điểm gồm 04 trang) BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH...GV LƯU HUY THƯỞNG - 0968.393.899 - huythuong2801@gmail.com BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2013 −−−−−−−−−− Môn: TOÁN; Khối A khối A1 ĐỀ CHÍNH THỨC Thời gian làm bài: 180 phút,... THƯỞNG - 0968.393.899 - huythuong2801@gmail.com BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối A khối A1 (Đáp án – thang điểm