1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Bài giải phần giải mạch P17

59 232 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 59
Dung lượng 1,78 MB

Nội dung

Chapter 17, Solution 1. (a) This is periodic with ω = π which leads to T = 2π/ω = 2. (b) y(t) is not periodic although sin t and 4 cos 2πt are independently periodic. (c) Since sin A cos B = 0.5[sin(A + B) + sin(A – B)], g(t) = sin 3t cos 4t = 0.5[sin 7t + sin(–t)] = –0.5 sin t + 0.5 sin7t which is harmonic or periodic with the fundamental frequency ω = 1 or T = 2π/ω = 2π. (d) h(t) = cos 2 t = 0.5(1 + cos 2t). Since the sum of a periodic function and a constant is also periodic , h(t) is periodic. ω = 2 or T = 2π/ω = π. (e) The frequency ratio 0.6|0.4 = 1.5 makes z(t) periodic. ω = 0.2π or T = 2π/ω = 10. (f) p(t) = 10 is not periodic. (g) g(t) is not periodic . Chapter 17, Solution 2. (a) The frequency ratio is 6/5 = 1.2. The highest common factor is 1. ω = 1 = 2 π /T or T = 2 π . (b) ω = 2 or T = 2 π / ω = π . (c) f 3 (t) = 4 sin 2 600 π t = (4/2)(1 – cos 1200 π t) ω = 1200 π or T = 2 π / ω = 2 π /(1200 π ) = 1/600. (d) f 4 (t) = e j10t = cos 10t + jsin 10t. ω = 10 or T = 2 π / ω = 0.2 π . Chapter 17, Solution 3. T = 4, ω o = 2π/T = π/2 g(t) = 5, 0 < t < 1 10, 1 < t < 2 0, 2 < t < 4 a o = (1/T) = 0.25[ + ] = ∫ T 0 dt)t(g ∫ 1 0 dt5 ∫ 2 1 dt10 3.75 a n = (2/T) = (2/4)[ ∫ ω T 0 o dt)tncos()t(g ∫ π 1 0 dt)t 2 n cos(5+ ∫ π 2 1 dt)t 2 n cos(10 ] = 0.5[ 1 0 t 2 n sin n 2 5 π π + 2 1 t 2 n sin n 2 π π 10 ] = (–1/(nπ))5 sin(nπ/2) a n = (5/(n π ))(–1) (n+1)/2 , n = odd 0, n = even b n = (2/T) = (2/4)[ ∫ ω T 0 o dt)tnsin()t(g ∫ π 1 0 dt)t 2 n sin(5+ ∫ π 2 1 dt)t 2 n sin(10 ] = 0.5[ 1 0 t 2 n cos n 5x2 π π − – 2 1 t 2 n cos n 10x2 π π ] = (5/(n π ))[3 – 2 cos n π + cos(n π /2)] Chapter 17, Solution 4. f(t) = 10 – 5t, 0 < t < 2, T = 2, ω o = 2π/T = π a o = (1/T) = (1/2) = ∫ T 0 dt)t(f ∫ − 2 0 dt)t510( 2 0 2 )]2/t5(t10[5.0 − = 5 a n = (2/T) = (2/2) ∫ ω T 0 o dt)tncos()t(f ∫ π− 2 0 dt)tncos()t510( = – ∫ π 2 0 dt)tncos()10( ∫ π 2 0 dt)tncos()t5( = 2 0 22 tncos n 5 π π − + 2 0 tnsin n t5 π π = [–5/(n 2 π 2 )](cos 2nπ – 1) = 0 b n = (2/2) ∫ π− 2 0 dt)tnsin()t510( = – ∫ π 2 0 dt)tnsin()10( ∫ π 2 0 dt)tnsin()t5( = 2 0 22 tnsin n 5 π π − + 2 0 tncos n t5 π π = 0 + [10/(nπ)](cos 2nπ) = 10/(nπ) Hence f(t) = )tnsin( n 110 1n π π + ∑ ∞ = 5 Chapter 17, Solution 5. 1T/2,2T =π=ωπ= 5.0]x2x1[ 2 1 dt)t(z T 1 a T 0 o −=π−π π == ∫ ∫∫∫ π π π π π π = π − π = π − π =ω= 2 2 0 0 T 0 on 0ntsin n 2 nt sin n 1 ntdtcos2 1 ntdtcos1 1 dtncos)t(z T 2 a ∫∫∫ π π π π π π      = = π = π + π −= π − π =ω= 2 2 0 0 T 0 on evenn 0, oddn, n 6 ntcos n 2 ntcos n 1 ntdtsin2 1 ntdtsin1 1 dtncos)t(z T 2 b Thus, ntsin n 6 5.0)t(z oddn 1n ∑ ∞ = = π +−= Chapter 17, Solution 6. .0a,functionoddanisthisSince 3 2 6 )1x21x4( 2 1 dt)t(y 2 1 a 2 2 ,2T n 2 0 o o = ==+== π= π =ω= ∫ ∑ ∫∫∫ ∞ = = = = π π π += =π− π =π− π −π− π = π−π π −−π π − =π π −π π − = π+π=ω= oddn 1n evenn,0 oddn, n 4 2 1 1 0 2 1 1 0 2 0 on )tnsin( n 14 3)t(y ))ncos(1( n 2 ))ncos(1( n 2 ))ncos(1( n 4 ))ncos()n2(cos( n 2 )1)n(cos( n 4 )tncos( n 2 )tncos( n 4 dt)tnsin(2dt)tnsin(4dt)tnsin()t(y 2 2 b Chapter 17, Solution 7. 0a, 6 T/2,12T 0 = π =π=ω= ∫∫∫ π−+π=ω= − 10 4 4 2 T 0 on ]dt6/tncos)10(dt6/tncos10[ 6 1 dtncos)t(f T 2 a [] 3/n5sin3/nsin3/n2sin2 n 10 6/tnsin n 10 6/tnsin n 10 10 4 4 2 π−π+π π =π π −π π = − ∫∫∫ π−+π=ω= − 10 4 4 2 T 0 on ]dt6/tnsin)10(dt6/tnsin10[ 6 1 dtnsin)t(f T 2 b [] 3/n2sin23/ncos3/n5cos n 10 6/ntncos n 10 6/tncos n 10 10 4 4 2 π−π+π π =π π +π π −= − () ∑ ∞ = π+π= 1n nn 6/tnsinb6/tncosa)t(f where a n and b n are defined above. Chapter 17, Solution 8. π=π=ω=<<+= T/22,T1, t 1- ),t1(2)t(f o 2ttdt)1t(2 2 1 dt)t(f T 1 a 1 1 1 1 2 T 0 o =+=+== − − ∫∫ 0tnsin n 1 tnsin n t tncos n 1 2tdtncos)1t(2 2 2 dtncos)t(f T 2 a 1 1 22 1 1 T 0 on =         π π +π π +π π =π+=ω= − − ∫∫ π π −=         π π −π π −π π −=π+=ω= − − ∫∫ ncos n 4 tncos n 1 tncos n t tnsin n 1 2tdtnsin)1t(2 2 2 dtnsin)t(f T 2 b 1 1 22 1 1 T 0 on ∑ ∞ = π − π −= 1n n tncos n )1(4 2)t(f Chapter 17, Solution 9. f(t) is an even function, b n =0. 4//2,8 ππω === TT 183.3 10 4/sin) 4 ( 4 10 04/cos10 8 2 )( 1 2 0 2 00 ===       +== ∫∫ π π π π tdttdttf T a T o [] dtntntdttntdtntf T a T on ∫∫∫ −++=+== 2 0 2 0 2/ 0 4/)1(cos4/)1(cos5]04/cos4/cos10[ 8 40 cos)( 4 ππππω For n = 1, 102/sin 2 5]12/[cos5 2 0 2 0 1 =       +=+= ∫ tdttdtta π π π For n>1, 2 )1( sin )1( 20 2 )1( sin )1( 20 4 )1( sin )1( 20 4 )1( sin )1( 20 2 0 − − + + + = − − + + + = n n n n n n tn n a n π π π π π π π π 0sin 10 2sin 4 20 ,3662.62/sin 20 sin 10 32 =+==+= π π π π π π π π aa Thus, 3213210 0,0,362.6,10,183.3 bbbaaaa ======= Chapter 17, Solution 10. π=π=ω= T/2,2T o         π− − π− =       −+== π−π− π−π− ω− ∫∫∫ 2 1 tjn 1 0 tjn T 0 1 0 2 1 tjntjn t o jn n jn e2 jn e4 2 1 dte)2(dte4 2 1 dte)t(h T 1 c [] , even n ,0 oddn , n j6 ]6ncos6[ n2 j e2e24e4 n2 j c jnn2jnj n      = = π − =−π π =+−− π = π−π−π− Thus, tjn oddn n e n 6j )t(f π ∞ = −∞= ∑       π − = Chapter 17, Solution 11. 2/T/2,4T o π=π=ω= ∫∫ ∫       ++== − π−π− ω− T 0 0 1 1 0 2/tjn2/tjn t o jn n dte)1(dte)1t( 4 1 dte)t(y T 1 c         π − π −−π− π− = π− − π− π− 1 0 2/tjn 0 1 2/tjn 22 2/tjn n e jn 2 e jn 2 )12/tjn( 4/n e 4 1 c       π + π − π +−π π + π − π π−ππ jn 2 e jn 2 e jn 2 )12/jn(e n 4 jn 2 n 4 4 1 2/jn2/jn2/jn 2222 = But 2/nsinj2/nsinj2/ncose,2/nsinj2/nsinj2/ncose 2/jn2/jn π−=π−π=π=π+π= π−π [] 2/nsinn2/nsin)12/jn(j1 n 1 c 22 n ππ+π−π+ π = [] 2/tjn 22 n e2/nsinn2/nsin)12/jn(j1 n 1 )t(y π ∞ −∞= ππ+π−π+ π = ∑ Chapter 17, Solution 12. A voltage source has a periodic waveform defined over its period as v ( t ) = t (2 π - t ) V, for all 0 < t < 2 π Find the Fourier series for this voltage. v ( t ) = 2 π t – t 2 , 0 < t < 2 π , T = 2 π , ω o = 2 π / T = 1 a o = (1/T) dt)tt2( 2 1 dt)t(f 2 0 2 T 0 ∫∫ π −π π = 3 2 )3/21( 2 4 )3/tt( 2 1 23 2 0 32 π =− π π =−π π = π a n = π       π + π π =−π ∫ 2 0 2 T 0 2 )ntsin( n t2 )ntcos( n 21 dt)ntcos()tt2( T 2 [] π +− π − 2 0 22 3 )ntsin(tn)ntsin(2)ntcos(nt2 n 1 232 n 4 )n2cos(n4 n 1 )11( n 2 − =ππ π −−= b n = ∫∫ − π =− dt)ntsin()tnt2( 1 dt)ntsin()tnt2( T 2 2 T 0 2 π π −+ π −− π = 2 0 22 3 0 2 ))ntcos(tn)ntcos(2)ntsin(nt2( n 1 ))ntcos(nt)nt(sin( n 1n2 0 n 4 n 4 = π + π− = Hence, f(t) = ∑ ∞ = − π 1n 2 2 )ntcos( n 4 3 2 Chapter 17, Solution 13. T = 2π, ω o = 1 a o = (1/T) dttsin10[ 2 1 dt)t(h 0 T 0 ∫∫ π π = + ]dt)tsin(20 2 ∫ π π π− [] π =π−−− π = π π π 30 )tcos(20tcos10 2 1 2 0 a n = (2/T) ∫ ω T 0 o dt)tncos()t(h = [2/(2π)]       π−+ ∫∫ ππ π0 2 dt)ntcos()tsin(20dt)ntcos(tsin10 Since sin A cos B = 0.5[sin(A + B) + sin(A – B)] sin t cos nt = 0.5[sin((n + 1)t) + sin((1 – n))t] sin(t – π) = sin t cos π – cost sin π = –sin t sin(t – π)cos(nt) = –sin(t)cos(nt) a n =       −++−−++ π ∫∫ ππ π0 2 dt)]t]n1sin([)t]n1[sin([20dt)]t]n1sin([)t]n1[sin([10 2 1 =               − − + + + +       − − − + + − π π π π 2 0 n1 )t]n1cos([2 n1 )t]n1cos([2 n1 )t]n1cos([ n1 )t]n1cos([5 a n =       − π− − + π+ − − + +π n1 )]n1cos([3 n1 )]n1cos([3 n1 3 n1 35 But, [1/(1+n)] + [1/(1-n)] = 1/(1–n 2 ) cos([n–1]π) = cos([n+1]π) = cos π cos nπ – sin π sin nπ = –cos nπ a n = (5/π)[(6/(1–n 2 )) + (6 cos(nπ)/(1–n 2 ))] = [30/(π(1–n 2 ))](1 + cos nπ) = [–60/(π(n–1))], n = even = 0, n = odd b n = (2/T) ∫ ω T 0 o dttnsin)t(h = [2/(2π)][ + ∫ π 0 dtntsintsin10 ∫ π π − 2 dtntsin)tsin(20 But, sin A sin B = 0.5[cos(A–B) – cos(A+B)] sin t sin nt = 0.5[cos([1–n]t) – cos([1+n]t)] b n = (5/π){[(sin([1–n]t)/(1–n)) – (sin([1+n]t)/ π + 0 )]n1( + [(2sin([1-n]t)/(1-n)) – (2sin([1+n]t)/ π π + 2 )]n1(} =       + π+ + − π− − π n1 )]n1sin([ n1 )]n1sin([5 = 0 Thus, h(t) = ∑ ∞ = − π − π 1k 2 )1k4( )kt2cos(6030 Chapter 17, Solution 14. Since cos(A + B) = cos A cos B – sin A sin B. f(t) = ∑ ∞ =       π + −π + + 1n 33 )nt2sin()4/nsin( 1n 10 )nt2cos()4/ncos( 1n 10 2 Chapter 17, Solution 15. (a) Dcos ωt + Esin ωt = A cos(ωt - θ) where A = 22 ED + , θ = tan -1 (E/D) A = 622 n 1 )1n( + + 16 , θ = tan -1 ((n 2 +1)/(4n 3 )) f(t) = ∑ + 10 ∞ = −         + −+ + 1n 3 2 1 622 n4 1n tannt10cos n 1 )1n( 16 (b) Dcos ωt + Esin ωt = A sin(ωt + θ) where A = 22 ED + , θ = tan -1 (D/E) f(t) = ∑ + 10 ∞ = −         + ++ + 1n 2 3 1 622 1n n4 tannt10sin n 1 )1n( 16 Chapter 17, Solution 16. If v 2 (t) is shifted by 1 along the vertical axis, we obtain v 2 * (t) shown below, i.e. v 2 * (t) = v 2 (t) + 1. 1 v 2 * (t) 2 t -2 -1 0 1 2 3 4 5

Ngày đăng: 27/10/2013, 23:15

TỪ KHÓA LIÊN QUAN

w