I thay đổi cách BC một khoảng bằng AH/2 không đổi nên I nằm trên đường thẳng song song với BC, cách BC một khoảng bằng AH/2.. Khi M trùng với điểm B thì I trùng với điểm P là trung điểm [r]
(1)Giải SBT Toán 10: Đường thẳng song song với một đường thẳng cho trước
Câu 1: Cho đoạn thẳng AB, kẻ tia Ax bất kỳ, lấy điểm C, D, E cho AC
= CD = DE Qua C, D kẻ đường thẳng song song với BE Chứng minh đoạn thẳng AB bị chia ba phân
Lời giải:
Gọi giao điểm đường thẳng kẻ từ C D song song với BE cắt AB M N
Ta có: AC = CD = DE (gt)
CM // DN // BE
Theo tính chất đường thẳng song song cách đều, ta có: AM = MN = NB
Câu 2: Cho góc vng xOy, điểm A nằm tia Oy, điểm B di chuyển tia
Ox Gọi C điểm đối xứng với A qua B Điểm C di chuyển đường nào? Lời giải:
Vì điểm C đối xứng với điểm A qua điểm B nên BA = BC
Kẻ CH Ox⊥ Xét hai tam giác vng AOB CHB, ta có: ∠(AOB) =
(CHB ) = 90
∠ o
BA = BC (chứng minh trên) ∠(ABO) = (CBH) (đối đỉnh)∠
Suy ΔAOB = Δ CHB (cạnh huyền, góc nhọn) ⇒ CH = AO
Vì A, O cố định nên OA khơng đổi suy CH khơng đổi
Vì C thay đổi cách Ox khoảng OA không đổi nên C chuyển động đường thẳng song song với Ox, cách Ox khoảng OA
Khi B trung O C trung với điểm K đối xứng với A qua điểm O
Vậy C chuyển động tia Kz // Ox, cách Ox khoảng không đổi OA
Câu 3: Cho tam giác ABC, điểm M di chuyển cạnh BC Gọi I trung
(2)Kẻ AH ⊥ BC,IK BC AH // IK
⊥ ⇒
Trong = ΔAHM, ta có:
AI = IM (gt)
IK // AH (chứng minh trên)
Suy IK đường trung bình ΔAHM ⇒ IK = 1/2 AH
ΔABC cố định nên AH không thay đổi IK = 1/2 AH không đổi.⇒
I thay đổi cách BC khoảng AH/2 không đổi nên I nằm đường thẳng song song với BC, cách BC khoảng AH/2
Khi M trùng với điểm B I trùng với điểm P trung điểm AB Khi M trùng với điểm C I trùng với điểm Q trung điểm AC
Vậy M di chuyển cạnh BC ΔABC trung điểm I AM chuyển động đường trung bình PQ ΔABC
Câu 4: Cho tam giác ABC vuông A, điểm M thuộc cạnh BC GỌi D,E theo
thứ tự chân đường vng góc kẻ từ M đến AB, AC a, So sánh độ dài AM, DE
b, Tìm vị trí điểm M cạnh BC để DE có độ dài nhỏ Lời giải:
a, Xét tứ giác ADME, ta có: ∠A = 90o (gt)
MD AB (gt)⊥ ⇒ ∠(MDA) = 90o
ME AC (gt)⊥ ⇒ ∠(MEA) = 90o
Suy tứ giác
ADME hình chữ nhật (vì có ba góc vng) ⇒ AM = DE (tính chất hình chữ nhật)
b, Ta có: AH BC nên AM ≥ AH⊥ Dấu “=” xảy M trùng với H Mà DE = AM (chứng minh trên)
Vậy DE có độ dài nhỏ AH M chân đường vng góc kẻ từ A đến BC
Câu 5: Cho điểm A nằm đường thẳng d Điểm M di chuyển đường
thẳng d Gọi B điểm đối xứng với A qua M Điểm B di chuyển đường nào?
Lời giải:
Kẻ AK ⊥ d,BH d
(3)Vì M thay đổi d, B đối xứng với A qua M nên AM = MB
Xét tam giác vuông AKM BHM Ta có: (AKM) = (BHM) = 90o∠ ∠ AM = MB (chứng minh trên)
∠(AMK) = (BMH) (đối đỉnh)∠
Do ΔAKM = ΔAHM (cạnh huyền,góc nhọn) AK = BH⇒ Điểm A cố định, đường thẳng d cố định nên AK không đổi
M thay đổi, B thay đổi cách đường thẳng d cố định khoảng AK không thay đổi nên B chuyển động đường thẳng xy song song với d cách d khoảng AK
Câu 6: Cho đoạn thẳng AB, điểm M di chuyển đoạn thẳng Vẽ một
phía AB tam giác AMD, BME Trung điểm I DE di chuyển đường nào?
Lời giải:
Gọi C giao điểm AD BE
Tam giác ABC có:
∠A = 60o (vì
ΔADM đều) B = 60∠ o
(vì ΔBEM đều)
Suy ra: ΔABC hay AB = AC = BC Suy điểm C cố định
Lại có: A = (EMB) = 60∠ ∠ o
ME // AC (vì có cặp góc đồng vị nhau) hay MD // EC
suy tứ giác CDME hình bình hành
I trung điểm DE nên I trung điểm CM Kẻ CH AB,IK AB IK // CH⊥ ⊥ ⇒
Trong ΔCHM,ta có: CI = IM IK // CH
Suy IK đường trung bình ΔCHM IK = 1/2 CH⇒
Vì C cố định nên CH không đổi IK = 1/2 CH không đổi nên I chuyển động⇒ đường thẳng song óng với AB, cách AB khoảng 1/2 CH
Khi M trùng với A I trùng với trung điểm P AC Khi M trùng với B I trùng với trung điểm Q BC
Vậy M chuyển động đoạn thẳng AB I chuyển động đoạn PQ (P trung điểm AC, Q trung điểm BC)
Câu 7: Hình chữ nhật ABCD có cạnh AD nửa đường chéo AC Tính góc
nhọn tạo bới hai đường chéo Lời giải:
(4)Ta có: AC = BD ( tính chất hình chữ nhật) OA = OD = 1/2 AC⇒ Lại có: AD = 1/2 AC (gt)
Suy ra: OA = OD = AD
⇒ ΔOAD ⇒∠(AOD ) = 60o
Câu 8: Dựng hình chữ nhật ABCD biết đường chéo AC = 4cm, góc tạo hai
đường chéo 1000 Lời giải:
* Cách dựng:
- Dựng ΔOAB biết OA = OB = 2cm,
(AOB ) = 100o ∠
- Trên tia đối tia OA dựng điểm C cho OC = OA = 2cm - Trên tia đối tia OB dựng điểm D cho OD = OB = 2cm
Nối AD, BC, CD ta có hình chữ nhật ABCD cần dựng * Chứng minh:
Ta có: OA = OC, OB = OD
Suy tứ giác ABCD hình bình hành