Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 145 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
145
Dung lượng
6,92 MB
Nội dung
ĐẠI HỌC HUẾ TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ THANH TÚ TỔNG HỢP, BIẾN TÍNH VÀ ỨNG DỤNG VẬT LIỆU KHUNG HỮU CƠ - KIM LOẠI ZIF-67 LUẬN ÁN TIẾN SĨ HÓA HỌC HUẾ - NĂM 2019 ĐẠI HỌC HUẾ TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ THANH TÚ TỔNG HỢP, BIẾN TÍNH VÀ ỨNG DỤNG VẬT LIỆU KHUNG HỮU CƠ - KIM LOẠI ZIF-67 Chuyên ngành: Hóa lý thuyết Hóa lý Mã số: 9440119 LUẬN ÁN TIẾN SĨ HÓA HỌC Người hướng dẫn khoa học: GS.TS Đinh Quang Khiếu TS Trần Vĩnh Thiện HUẾ - NĂM 2019 LỜI CAM ĐOAN Tôi xin cam đoan luận án cơng trình nghiên cứu riêng tơi hướng dẫn GS.TS Đinh Quang Khiếu, Khoa Hóa, Trường Đại học Khoa Học, Đại học Huế TS.Trần Vĩnh Thiện, Trường Đại học Tài nguyên Môi trường Các số liệu kết nghiên cứu luận án trung thực, đồng tác giả cho phép sử dụng chưa công bố cơng trình khác Tác giả Nguyễn Thị Thanh Tú LỜI CẢM ƠN Lời xin chân thành cảm ơn sâu sắc đến GS.TS Đinh Quang Khiếu, PGS.TS Nguyễn Hải Phong, TS Trần Vĩnh Thiện, người thầy tận tình giúp đỡ hướng dẫn suốt thời gian làm luận án Tơi xin chân thành cảm ơn Khoa Hóa học, Phịng đào tạo sau đại học, Trường Đại học Khoa học – Đại học Huế, Ban đào tạo – Đại học Huế tạo điều kiện cho tơi q trình học tập hồn thành luận án Tơi xin cảm ơn q Thầy/Cơ Bộ mơn Hóa lý, Hóa Phân tích, Khoa Hóa, Trường Đại học Khoa học – Đại học Huế giúp đỡ suốt thời gian làm luận án Tôi xin chân thành cảm ơn Khoa Hóa học Trường đại học Bách Khoa Đà Nẵng, Trường Đại học Khoa học Tự nhiên Hà Nội, Viện Khoa học Vật liệu Hà Nội hỗ trợ phân tích mẫu thí nghiệm luận án Tơi xin bày bỏ lòng biết ơn sâu sắc đến PGS.TS Phùng Chí Sỹ, Giám đốc Trung tâm Cơng nghệ Mơi trường, Viện trưởng Viện Khoa học Môi trường, Trường Đại học Nguyễn Tất thành tạo điều kiện giúp đỡ tơi suốt q trình thực luận án Cuối xin cảm ơn sâu sắc đến gia đình, Thầy/Cơ đồng nghiệp bạn bè động viên, giúp đỡ tơi suốt q trình học tập nghiên cứu Huế, tháng 12 năm 2019 Tác giả Nguyễn Thị Thanh Tú DANH MỤC CÁC CHỮ VIẾT TẮT, KÍ HIỆU AAS Phổ hấp thụ nguyên tử (Atomic Absorption Spectrophotometry) Abs Hấp thụ (Absorption) Ads Hấp phụ (adsorption) AIC Chuẩn số thông tin (Akaike’s Information Criterion) AICc Chuẩn số thông tin hiệu chỉnh (Akaike’s Information Criterion corrected) ASV Volt-ampere hòa tan anot (Anodic Stripping Voltammetry) BET Brunauer-Emmett-Teller B-RBS Dung dịch đệm Britton-Robinson (Britton-Robinson buffer solution) CB Vùng dẫn (conduction band) CGR Congo red CS Cộng CV Volt-ampere vòng (Cyclic Voltammetry) DPA DP Dopamine Xung vi phân (Differential Pulse) Eg Năng lượng vùng cấm (band gap energy) GCE Điện cực than thủy tinh (Glassy Carbon Electrode) Hmin IM LOD MB 2-methylimidazole Imidazole Giới hạn phát (Limit of detection) Methylene blue MO Methyl orange MOFs Vật liệu khung hữu kim loại (Metal-Organic Frameworks) Me Kim loại MW Vi sóng (microwave) Org Hợp chất hữu (organic) PRA Paracetamol p Giá trị xác suất ý nghĩa thống kê pHPZC pH điểm đẳng điện ( point zero charge) RSD Độ lệch chuẩn tương đối (Relative Standard Deviation) RhB Rhodamine B RT Nhiệt độ phòng (Room temperature) SBU Đơn vị xây dựng thứ cấp (Secondary Building Unit) SEM Hiển vi điện tử quét (Scanning Electron Microscopy) SOD Cấu trúc sodalide SV Volt-ampere hịa tan (Stripping Voltammetry) SSEs Tổng bình phương sai số ( Sum of the square Errors) ST Dung nhiệt (solvethermal) TG Biến đổi trọng lượng theo nhiệt độ (Thermogravimetry) UV-Vis DRS Phổ phản xạ khuếch tán tử ngoại khả kiến (UV-Visible diffuse reflectance spectroscopy) VB Vùng hóa trị (valence band) WE Điện cực làm việc (Working Electrode) XPS Phổ quang điện tử tia X (X-ray Photoelectron Spectroscopy) XRD Nhiễu xạ tia X (X-Ray Diffraction) ZIFs Khung imidazolate zeolite (Zeolitic Imidazolate Frameworks) MỤC LỤC Trang DANH MỤC BẢNG BIỂU DANH MỤC HÌNH VẼ, BIỂU ĐỒ, SƠ ĐỒ MỞ ĐẦU Chương TỔNG QUAN TÀI LIỆU 1.1 GIỚI THIỆU CHUNG VẬT LIỆU KHUNG HỮU CƠ KIM LOẠI (MOFs) 1.2 VẬT LIỆU KHUNG HỮU CƠ KIM LOẠI ZIF-67 1.3 PHƯƠNG PHÁP TỔNG HỢP ZIF-67 1.4 CÁC HƯỚNG BIẾN TÍNH VẬT LIỆU ZIF-67 VÀ CÁC ỨNG DỤNG .13 1.4.1 Ứng dụng vật liệu ZIF-67 làm chất xúc tác điện hóa .13 1.4.2 Ứng dụng quang xúc tác phân hủy chất nhiễm hữu khó phân hủy .16 1.4.3 Ứng dụng vật liệu ZIF-67 làm chất hấp phụ loại bỏ màu phẩm nhuộm dung dịch nước 23 1.5 MỘT SỐ VẤN ĐỀ TRONG PHÂN TÍCH CÁC THƠNG SỐ ĐỘNG HỌC VÀ ĐẲNG NHIỆT HẤP PHỤ 25 1.5.1 Một số vấn đề nghiên cứu trình hấp phụ 25 1.5.2 Biến thiên lượng tự Gibbs 29 Chương NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 36 2.1 NỘI DUNG NGHIÊN CỨU 36 2.1.1 Nghiên cứu tổng hợp ZIF-67 phương pháp vi sóng phương pháp dung môi nhiệt .36 2.1.2 Nghiên cứu khả hấp phụ phẩm nhuộm congo red nước ZIF-67 .36 2.1.3 Nghiên cứu biến tính điện cực GCE ZIF-67 để xác định dopamine paracetamol phương pháp volt-ampere hòa tan 36 2.1.4 Nghiên cứu tổng hợp (Zn/Co)ZIFs có hoạt tính xúc tác quang hóa 36 2.1.5 Nghiên cứu khả quang xúc tác (Zn/Co)ZIFs phân hủy màu thuốc nhuộm điều kiện ánh sáng khả kiến 36 2.2 PHƯƠNG PHÁP NGHIÊN CỨU 36 2.2.1 Các phương pháp nghiên cứu đặc trưng vật liệu .36 2.2.2 Phương pháp volt-ampere hòa tan (Stripping Voltammetry) 42 2.3 THỰC NGHIỆM 44 2.3.1 Hóa chất 44 2.3.2 Tổng hợp vật liệu .44 2.3.3 Xác định điểm đẳng điện vật liệu ZIF-67 (Zn/Co)ZIFs .46 2.3.4 Kiểm tra độ bền vật liệu ZIF-67 (Zn/Co)ZIFs 47 2.3.5 Hấp phụ phẩm nhuộm vật liệu ZIF-67 47 2.3.6 Biến tính điện cực than thủy tinh vật liệu ZIF-67 để xác định dopamine paracetamol 48 2.3.7 Nghiên cứu hoạt tính quang xúc tác phân hủy CGR vật liệu (Zn/Co)ZIFs .50 Chương KẾT QUẢ VÀ THẢO LUẬN .52 3.1 TỔNG HỢP ZIF-67 BẰNG PHƯƠNG PHÁP VI SÓNG VÀ PHƯƠNG PHÁP DUNG MÔI NHIỆT 52 3.1.1 Đặc trưng vật liệu ZIF-67 52 3.1.2 Độ bền vật liệu ZIF-67 60 3.2 NGHIÊN CỨU HẤP PHỤ CONGO RED (CGR) BẰNG ZIF-67 61 3.2.1 Nghiên cứu động học hấp phụ 61 3.2.2 Nghiên cứu cân hấp phụ 68 3.2.3 Nghiên cứu nhiệt động học hấp phụ 72 3.2.4 Ảnh hưởng pH đề xuất chế hấp phụ 76 3.2.5 Tái sử dụng chất hấp phụ ZIF-67 .77 3.3 NGHIÊN CỨU PHÁT TRIỂN PHƯƠNG PHÁP PHÂN TÍCH PRACETAMOL (PRA) VÀ DOPAMINE (DPM) BẰNG PHƯƠNG PHÁP ĐIỆN HÓA SỬ DỤNG ĐIỆN CỰC BIẾN TÍNH ZIF-67 78 3.3.1 Khảo sát ảnh hưởng loại điện cực khác lên đặc tính điện hóa PRA DPM 78 3.3.2 Khảo sát ảnh hưởng dung môi lượng ZIF-67 .80 3.3.3 Khảo sát ảnh hưởng pH .82 3.3.4 Khảo sát ảnh hưởng tốc độ quét (ν) .84 3.3.5 Những ảnh hưởng thông số máy hoạt động 87 3.3.6 Ảnh hưởng số chất cản trở 88 3.3.7 Độ lặp lại giới hạn phát .91 3.3.8 Phân tích mẫu thực 95 3.4 NGHIÊN CỨU TỔNG HỢP (Zn/Co)ZIFs 96 3.5 NGHIÊN CỨU PHÂN HỦY CGR CỦA XÚC TÁC QUANG (Zn/Co)ZIFs 103 3.5.1 Khử màu CGR xúc tác khác 103 3.5.2 Ảnh hưởng pH chất bắt gốc tự 104 3.5.3 Phân hủy quang hóa CGR vật liệu (2Zn/8Co)ZIFs điều kiện ánh sáng khả kiến .106 3.5.4 Khả tái sử dụng (2Zn/8Co)ZIFs 110 KẾT LUẬN 113 DANH MỤC CÁC CƠNG TRÌNH CƠNG BỐ KẾT QUẢ NGHIÊN CỨU CỦA LUẬN ÁN TÀI LIỆU THAM KHẢO PHỤ LỤC DANH MỤC BẢNG BIỂU Bảng 1.1 Mơ tả cấu trúc hình học số SBU điển hình Bảng 1.2 Kích thước hình thái ZIF-67 thu điều kiện phản ứng khác .10 Bảng 1.3 SBET, Vmicro Dmicro tinh thể ZIF-67 thu với tỉ lệ mol Hmin/Co2+ = 20 điều kiện thủy nhiệt 120 °C nhiệt độ phòng 11 Bảng 1.4 So sánh hiệu quang xúc tác MOFs chất hữu khó phân hủy môi trường nước 22 Bảng 1.5 Sự chuyển đổi K0 K 34 Bảng 2.1 Các loại hóa chất sử dụng thực nghiệm 44 Bảng 2.2 Các mẫu ZIF-67 biến tính kẽm theo tỷ lệ khác 46 Bảng 3.1 Đặc tính cấu trúc kích thước hạt/tinh thể ZIF-67 tổng hợp nhiều cách tiếp cận khác .58 Bảng 3.2 Các thông số động học mơ hình biểu kiến bậc mơ hình biểu kiến bậc .63 Bảng 3.3 So sánh hồi quy tuyến tính đa đoạn cho một, hai, ba bốn đoạn sử dụng chuẩn số thông tin AIC 66 Bảng 3.4 Kết phân tích hồi quy tuyến tính ba đoạn theo mơ hình Weber ZIF-67 (giá trị ngoặc đơn hoảng tin cậy 95%) .66 Bảng 3.5 Các thơng số mơ hình khuếch tán màng Boyd hấp phụ CGR vật liệu ZIF-67 .67 Bảng 3.6 Các thơng số mơ hình đẳng nhiệt Langmuir Freundlich nhiệt độ khác 69 Bảng 3.7 Dung lượng hấp phụ chất hấp phụ khác CGR, MB, RhB nhiệt độ môi trường xung quanh 71 Bảng 3.8 Hằng số tốc độ hấp phụ CGR ZIF-67 nhiệt độ khác 72 Bảng 3.9 Các thông số nhiệt động học tính tốn số cân khác .75 Bảng 3.10 Cường độ dòng đỉnh PRA DPM dung môi khác 81 [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] films obtained from a novel cobalt (II) precursor by chemical vapor deposition, Chemistry of Materials, 13 (2), pp 588-593 Baytak A.K., Duzmen S., Teker T., Aslanoglu M (2016), A novel modified electrode based on terbium oxide and carbon nanotubes for the simultaneous determination of methyldopa and paracetamol, Analytical Methods, (23), pp 4711-4719 Bindell J (1992) SEM: scanning electron microscopy, u Encyclopedia of materials characterization: surfaces, interfaces, thin films, Ur: CR Brundle, CA Evans Jr., S Wilson, Butterworth-Heinemann, Stoneham Boyd G., Adamson A., Myers Jr L (1947), The exchange adsorption of ions from aqueous solutions by organic zeolites II Kinetics1, Journal of the American Chemical Society, 69 (11), pp 2836-2848 Bradshaw D., El-Hankari S., Lupica-Spagnolo L (2014), Supramolecular templating of hierarchically porous metal–organic frameworks, Chemical Society Reviews, 43 (16), pp 5431-5443 Butler K.T., Hendon C.H., Walsh A (2017), Designing porous electronic thin-film devices: band offsets and heteroepitaxy, Faraday discussions, 201, pp 207-219 Chatterjee S., Lee D.S., Lee M.W., Woo S.H (2009), Congo red adsorption from aqueous solutions by using chitosan hydrogel beads impregnated with nonionic or anionic surfactant, Bioresource technology, 100 (17), pp 38623868 Chatterjee S., Lee D.S., Lee M.W., Woo S.H (2009), Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide, Bioresource Technology, 100 (11), pp 2803-2809 Chatterjee S., Lee M.W., Woo S.H (2010), Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes, Bioresource technology, 101 (6), pp 1800-1806 Cheemalapati S., Palanisamy S., Mani V., Chen S.-M (2013), Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode, Talanta, 117, pp 297-304 Chen E.-X., Yang H., Zhang J (2014), Zeolitic imidazolate framework as formaldehyde gas sensor, Inorganic chemistry, 53 (11), pp 5411-5413 Cheng B., Le Y., Cai W., Yu J (2011), Synthesis of hierarchical Ni (OH) and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water, Journal of hazardous materials, 185 (2-3), pp 889-897 Cheon Y.E., Park J., Suh M.P (2009), Selective gas adsorption in a magnesium-based metal–organic framework, Chemical Communications (36), pp 5436-5438 Chung K.T (2000), Mutagenicity and carcinogenicity of aromatic amines metabolically produced from azo dyes, Journal of Environmental Science & Health Part C, 18 (1), pp 51-74 117 [28] Criado A., Cárdenas S., Gallego M., Valcárcel M (2000), Continuous flow spectrophotometric determination of paracetamol in pharmaceuticals following continuous microwave assisted alkaline hydrolysis, Talanta, 53 (2), pp 417-423 [29] Curtius H.C., Wolfensberger M., Steinmann B., Redweik U., Siegfried J (1974), Mass fragmentography of dopamine and 6-hydroxydopamine: application to the determination of dopamine in human brain biopsies from the caudate nucleus, Journal of Chromatography A, 99, pp 529-540 [30] da Silva C.T.P., Safadi B.N., Moisés M.P., Meneguin J.G., Arroyo P.A., Fávaro S.L., Girotto E.M., Radovanovic E., Rinaldi A.W (2016), Synthesis of Zn-BTC metal organic framework assisted by a home microwave oven and their unusual morphologies, Materials Letters, 182, pp 231-234 [31] Devaraj M., Saravanan R., Deivasigamani R., Gupta V.K., Gracia F., Jayadevan S (2016), Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol, Journal of molecular liquids, 221, pp 930-941 [32] Dhakshinamoorthy A., Opanasenko M., Čejka J., Garcia H (2013), Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals, Catalysis Science & Technology, (10), pp 2509-2540 [33] Dias E.M., Petit C (2015), Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field, Journal of Materials Chemistry A, (45), pp 22484-22506 [34] Du J.-J., Yuan Y.-P., Sun J.-X., Peng F.-M., Jiang X., Qiu L.-G., Xie A.-J., Shen Y.-H., Zhu J.-F (2011), New photocatalysts based on MIL-53 metal– organic frameworks for the decolorization of methylene blue dye, Journal of hazardous materials, 190 (1-3), pp 945-951 [35] Du X.-D., Wang C.-C., Liu J.-G., Zhao X.-D., Zhong J., Li Y.-X., Li J., Wang P (2017), Extensive and selective adsorption of ZIF-67 towards organic dyes: performance and mechanism, Journal of colloid and interface science, 506, pp 437-441 [36] Dutt V.E., Mottola H (1974), Determination of uric acid at the microgram level by a kinetic procedure based on a pseudo-induction period, Analytical chemistry, 46 (12), pp 1777-1781 [37] Easwaramoorthy D., Yu Y.-C., Huang H.-J (2001), Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction, Analytica chimica acta, 439 (1), pp 95-100 [38] Eftekhari S., Habibi-Yangjeh A., Sohrabnezhad S (2010), Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: thermodynamic and kinetic studies, Journal of Hazardous Materials, 178 (13), pp 349-355 [39] El-Gohary F., Tawfik A (2009), Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed 118 [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] by sequential batch reactor (SBR) process, Desalination, 249 (3), pp 11591164 Fathi M., Asfaram A., Farhangi A (2015), Removal of Direct Red 23 from aqueous solution using corn stalks: isotherms, kinetics and thermodynamic studies, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, pp 364-372 Filik H., Avan A.A (2017), Simultaneous Electrochemical Determination of Vitamin K1 and Vitamin D3 by using Poly (Alizarin Red S)/Multi-walled Carbon Nanotubes Modified Glassy Electrode, Current Analytical Chemistry, 13 (5), pp 350-360 Filik H., Avan A.A., Mümin Y (2017), Simultaneous electrochemical determination of caffeine and vanillin by using poly (alizarin red S) modified glassy carbon electrode, Food analytical methods, 10 (1), pp 31-40 Freundlich H (1906), Over the adsorption in solution, J Phys Chem, 57 (385471), pp 1100-1107 Fujishima A., Honda K (1972), Electrochemical photolysis of water at a semiconductor electrode, nature, 238 (5358), pp 37 Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M (2013), The chemistry and applications of metal-organic frameworks, Science, 341 (6149), pp 1230444 Furukawa H., Ko N., Go Y.B., Aratani N., Choi S.B., Choi E., Yazaydin A.Ö., Snurr R.Q., O’Keeffe M., Kim J (2010), Ultrahigh porosity in metalorganic frameworks, Science, 329 (5990), pp 424-428 Garg V.K., Amita M., Kumar R., Gupta R (2004), Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste, Dyes and pigments, 63 (3), pp 243-250 Ghoreishi S., Haghighi R (2003), Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent, Chemical engineering journal, 95 (1-3), pp 163-169 Golka K., Kopps S., Myslak Z.W (2004), Carcinogenicity of azo colorants: influence of solubility and bioavailability, Toxicology letters, 151 (1), pp 203-210 Gross A.F., Sherman E., Vajo J.J (2012), Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks, Dalton transactions, 41 (18), pp 5458-5460 Guo H.-c., Shi F., Ma Z.-f., Liu X.-q (2010), Molecular simulation for adsorption and separation of CH4/H2 in zeolitic imidazolate frameworks, The Journal of Physical Chemistry C, 114 (28), pp 12158-12165 Guo X., Xing T., Lou Y., Chen J (2016), Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution, Journal of Solid State Chemistry, 235, pp 107-112 119 [53] Han R., Li H., Li Y., Zhang J., Xiao H., Shi J (2006), Biosorption of copper and lead ions by waste beer yeast, Journal of hazardous materials, 137 (3), pp 1569-1576 [54] Hanaee J (1997), Simultaneous determination of acetaminophen and codeine in pharmaceutical preparations by derivative spectrophotometry, Pharmaceutica Acta Helvetiae, 72 (4), pp 239-241 [55] Heyrovský J., Kůta J (2013), Principles of polarography, Elsevier [56] Hillman F., Zimmerman J.M., Paek S.-M., Hamid M.R., Lim W.T., Jeong H.-K (2017), Rapid microwave-assisted synthesis of hybrid zeolitic– imidazolate frameworks with mixed metals and mixed linkers, Journal of Materials Chemistry A, (13), pp 6090-6099 [57] Ho Y., McKay G (1998), A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process safety and environmental protection, 76 (4), pp 332-340 [58] Holford N.H (2005), Fitting models to biological data using linear and non‐linear regression: a practical guide to curve fitting Harvey Motulsky and Arthur Christopoulos, Oxford University Press, Oxford, 2004 No of pages: 352 Price:£ 19.99, 29.29(paperback);£40.00, 65.00 (hardcover) ISBN: 0‐19‐ 517180‐2 (paperback), 0‐19‐517179‐9 (hardcover), Statistics in Medicine, 24 (17), pp 2745-2746 [59] Horwitz W., Albert R (1997), Quality IssuesThe Concept of Uncertainty as Applied to ChemicalMeasurements, Analyst, 122 (6), pp 615-617 [60] Hosseinian A., Amjad A., Hosseinzadeh-Khanmiri R., Ghorbani-Kalhor E., Babazadeh M., Vessally E (2017), Nanocomposite of ZIF-67 metal–organic framework with reduced graphene oxide nanosheets for high-performance supercapacitor applications, Journal of Materials Science: Materials in Electronics, 28 (23), pp 18040-18048 [61] Howarth A.J., Liu Y., Li P., Li Z., Wang T.C., Hupp J.T., Farha O.K (2016), Chemical, thermal and mechanical stabilities of metal–organic frameworks, Nature Reviews Materials, (3), pp 15018 [62] Hu Y., Liu Z., Xu J., Huang Y., Song Y (2013), Evidence of pressure enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy, Journal of the American Chemical Society, 135 (25), pp 9287-9290 [63] Jeong S.H., Park K (2008), Drug loading and release properties of ionexchange resin complexes as a drug delivery matrix, International journal of Pharmaceutics, 361 (1-2), pp 26-32 [64] Jing H., Song X., Ren S., Shi Y., An Y., Yang Y., Feng M., Ma S., Hao C (2016), ZIF-67 derived nanostructures of Co/CoO and Co@ N-doped graphitic carbon as counter electrode for highly efficient dye-sensitized solar cells, Electrochimica Acta, 213, pp 252-259 [65] Jung B.K., Jun J.W., Hasan Z., Jhung S.H (2015), Adsorptive removal of parsanilic acid from water using mesoporous zeolitic imidazolate framework8, Chemical Engineering Journal, 267, pp 9-15 120 [66] Kachoosangi R.T., Banks C.E., Compton R.G (2006), Simultaneous determination of uric acid and ascorbic acid using edge plane pyrolytic graphite electrodes, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 18 (8), pp 741-747 [67] Kachoosangi R.T., Compton R.G (2007), A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode, Analytical and bioanalytical chemistry, 387 (8), pp 2793-2800 [68] Kan C.-C., Aganon M.C., Futalan C.M., Dalida M.L.P (2013), Adsorption of Mn2+ from aqueous solution using Fe and Mn oxide-coated sand, Journal of Environmental Sciences, 25 (7), pp 1483-1491 [69] Kang X.-z., Song Z.-W., Shi Q., Dong J.-X (2013), Utilization of Zeolite Imidazolate Framework as an Adsorbent for the Removal of Dye from Aqueous Solution, Asian Journal of Chemistry, 25 (15) [70] Kaur G., Rai R.K., Tyagi D., Yao X., Li P.-Z., Yang X.-C., Zhao Y., Xu Q., Singh S.K (2016), Room-temperature synthesis of bimetallic Co–Zn based zeolitic imidazolate frameworks in water for enhanced CO and H uptakes, Journal of Materials Chemistry A, (39), pp 14932-14938 [71] Keeley G.P., McEvoy N., Nolan H., Kumar S., Rezvani E., Holzinger M., Cosnier S., Duesberg G.S (2012), Simultaneous electrochemical determination of dopamine and paracetamol based on thin pyrolytic carbon films, Analytical Methods, (7), pp 2048-2053 [72] Kennedy J., Garaita M (1984), Analytical chemistry, Bioseparation, (6) [73] Khan N.A., Jung B.K., Hasan Z., Jhung S.H (2015), Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks, Journal of hazardous materials, 282, pp 194-200 [74] Kitagawa S (2014), Metal–organic frameworks (MOFs), Chemical Society Reviews, 43 (16), pp 5415-5418 [75] Kong D., Han L., Wang Z., Jiang L., Zhang Q., Wu Q., Su J., Lu C., Chen G (2019), An electrochemical sensor based on poly (procaterol hydrochloride)/carboxyl multi-walled carbon nanotube for the determination of bromhexine hydrochloride, RSC advances, (21), pp 11901-11911 [76] Kumar A., Prasad B., Mishra I (2008), Adsorptive removal of acrylonitrile by commercial grade activated carbon: kinetics, equilibrium and thermodynamics, Journal of Hazardous Materials, 152 (2), pp 589-600 [77] Kumar K.V., Porkodi K., Rocha F (2008), Langmuir–Hinshelwood kinetics– a theoretical study, Catalysis Communications, (1), pp 82-84 [78] Kumar S.A., Tang C.-F., Chen S.-M (2008), Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine, Talanta, 76 (5), pp 997-1005 [79] Kutluay A., Aslanoglu M (2012), Multi-walled carbon nanotubes/electrocopolymerized cobalt nanoparticles-poly (pivalic acid) composite film coated 121 [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] glassy carbon electrode for the determination of methimazole, Sensors and Actuators B: Chemical, 171, pp 1216-1221 Kutluay A., Aslanoglu M (2014), An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine, Analytica chimica acta, 839, pp 59-66 Lachheb H., Puzenat E., Houas A., Ksibi M., Elaloui E., Guillard C., Herrmann J.-M (2002), Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania, Applied Catalysis B: Environmental, 39 (1), pp 75-90 Lanchas M., Arcediano S., Aguayo A.T., Beobide G., Castillo O., Cepeda J., Vallejo-Sánchez D., Luque A (2014), Two appealing alternatives for MOFs synthesis: solvent-free oven heating vs microwave heating, RSC Advances, (104), pp 60409-60412 Langmuir I (1916), The constitution and fundamental properties of solids and liquids Part I Solids, Journal of the American chemical society, 38 (11), pp 2221-2295 Laviron E (1979), General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101 (1), pp 19-28 Lee Y.-R., Jang M.-S., Cho H.-Y., Kwon H.-J., Kim S., Ahn W.-S (2015), ZIF-8: A comparison of synthesis methods, Chemical Engineering Journal, 271, pp 276-280 Lei C., Zhu X., Zhu B., Jiang C., Le Y., Yu J (2017), Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr (VI) ions, Journal of hazardous materials, 321, pp 801811 Li C (2007), Electrochemical determination of dipyridamole at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing element, Colloids and Surfaces B: Biointerfaces, 55 (1), pp 77-83 Li J.-R., Kuppler R.J., Zhou H.-C (2009), Selective gas adsorption and separation in metal–organic frameworks, Chemical Society Reviews, 38 (5), pp 1477-1504 Li J., Ng D.H., Song P., Kong C., Song Y., Yang P (2015), Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption, Biomass and Bioenergy, 75, pp 189200 Li L., Liu S., Zhu T (2010), Application of activated carbon derived from scrap tires for adsorption of Rhodamine B, Journal of Environmental Sciences, 22 (8), pp 1273-1280 122 [91] Li M., Jing L (2007), Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode, Electrochimica Acta, 52 (9), pp 3250-3257 [92] Li X., Gao X., Ai L., Jiang J (2015), Mechanistic insight into the interaction and adsorption of Cr (VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution, Chemical Engineering Journal, 274, pp 238-246 [93] Li Y., Zhou K., He M., Yao J (2016), Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption, Microporous and Mesoporous Materials, 234, pp 287-292 [94] Liang R., Jing F., Shen L., Qin N., Wu L (2015), M@ MIL-100 (Fe)(M= Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water, Nano Research, (10), pp 3237-3249 [95] Liang Y., Wang H., Diao P., Chang W., Hong G., Li Y., Gong M., Xie L., Zhou J., Wang J (2012), Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes, Journal of the American Chemical Society, 134 (38), pp 15849-15857 [96] Lin K.-Y.A., Chang H.-A (2015), Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water, Chemosphere, 139, pp 624-631 [97] Lin K.-Y.A., Chang H.-A (2015), Zeolitic Imidazole Framework-67 (ZIF67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water, Journal of the Taiwan Institute of Chemical Engineers, 53, pp 40-45 [98] Liu C.-H., Wu J.-S., Chiu H.-C., Suen S.-Y., Chu K.H (2007), Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers, Water Research, 41 (7), pp 1491-1500 [99] Liu S.-Q., Sun W.-H., Hu F.-T (2012), Graphene nano sheet-fabricated electrochemical sensor for the determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as the discriminating agent, Sensors and Actuators B: Chemical, 173, pp 497-504 [100] Liu S., Ding Y., Li P., Diao K., Tan X., Lei F., Zhan Y., Li Q., Huang B., Huang Z (2014), Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N, N-dimethyl dehydroabietylamine oxide, Chemical Engineering Journal, 248, pp 135144 [101] Liu Y (2009), Is the free energy change of adsorption correctly calculated?, Journal of Chemical & Engineering Data, 54 (7), pp 1981-1985 [102] Llabrés i Xamena F.X., Corma A., Garcia H (2007), Applications for metal− organic frameworks (MOFs) as quantum dot semiconductors, The Journal of Physical Chemistry C, 111 (1), pp 80-85 123 [103] Locke C.J., Fox S.A., Caldwell G.A., Caldwell K.A (2008), Acetaminophen attenuates dopamine neuron degeneration in animal models of Parkinson's disease, Neuroscience letters, 439 (2), pp 129-133 [104] Lorenc-Grabowska E., Gryglewicz G (2007), Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon, Dyes and pigments, 74 (1), pp 34-40 [105] Low Z.-X., Yao J., Liu Q., He M., Wang Z., Suresh A.K., Bellare J., Wang H (2014), Crystal transformation in zeolitic-imidazolate framework, Crystal Growth & Design, 14 (12), pp 6589-6598 [106] Ma S.-C., Zhang J.-L., Sun D.-H., Liu G.-X (2015), Surface complexation modeling calculation of Pb (II) adsorption onto the calcined diatomite, Applied Surface Science, 359, pp 48-54 [107] Ma T.Y., Dai S., Jaroniec M., Qiao S.Z (2014), Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes, Journal of the American Chemical Society, 136 (39), pp 13925-13931 [108] Madhavan J., Kumar P.S.S., Anandan S., Zhou M., Grieser F., Ashokkumar M (2010), Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment, Chemosphere, 80 (7), pp 747-752 [109] Malash G.F., El-Khaiary M.I (2010), Piecewise linear regression: A statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models, Chemical Engineering Journal, 163 (3), pp 256-263 [110] Mall I.D., Srivastava V.C., Agarwal N.K., Mishra I.M (2005), Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses, Chemosphere, 61 (4), pp 492-501 [111] Mamiński M., Olejniczak M., Chudy M., Dybko A., Brzózka Z (2005), Spectrophotometric determination of dopamine in microliter scale using microfluidic system based on polymeric technology, Analytica chimica acta, 540 (1), pp 153-157 [112] Manjunatha R., Nagaraju D.H., Suresh G.S., Melo J.S., D'Souza S.F., Venkatesha T.V (2011), Electrochemical detection of acetaminophen on the functionalized MWCNTs modified electrode using layer-by-layer technique, Electrochimica Acta, 56 (19), pp 6619-6627 [113] Milonjić S.K (2007), A consideration of the correct calculation of thermodynamic parameters of adsorption, Journal of the Serbian chemical society, 72 (12), pp 1363-1367 [114] Nandasiri M.I., Jambovane S.R., McGrail B.P., Schaef H.T., Nune S.K (2016), Adsorption, separation, and catalytic properties of densified metalorganic frameworks, Coordination Chemistry Reviews, 311, pp 38-52 [115] Niu X., Xiong Q., Pan J., Li X., Zhang W., Qiu F., Yan Y (2017), Highly active and durable methanol electro-oxidation catalyzed by small palladium 124 [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] nanoparticles inside sulfur-doped carbon microsphere, Fuel, 190, pp 174181 Ordonez M.J.C., Balkus Jr K.J., Ferraris J.P., Musselman I.H (2010), Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes, Journal of Membrane Science, 361 (1-2), pp 28-37 Pan J., Mao Y., Gao H., Xiong Q., Qiu F., Zhang T., Niu X (2016), Fabrication of hydrophobic polymer foams with double acid sites on surface of macropore for conversion of carbohydrate, Carbohydrate polymers, 143, pp 212-222 Panda G.C., Das S.K., Guha A.K (2009), Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution, Journal of Hazardous Materials, 164 (1), pp 374-379 Park K.S., Ni Z., Côté A.P., Choi J.Y., Huang R., Uribe-Romo F.J., Chae H.K., O’Keeffe M., Yaghi O.M (2006), Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 103 (27), pp 10186-10191 Pattar V.P., Nandibewoor S.T (2015), Electroanalytical method for the determination of 5-fluorouracil using a reduced graphene oxide/chitosan modified sensor, RSC Advances, (43), pp 34292-34301 Phan A., Doonan C.J., Uribe-Romo F.J., Knobler C.B., O’keeffe M., Yaghi O.M (2009), Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks Pi Y., Li X., Xia Q., Wu J., Li Y., Xiao J., Li Z (2018), Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs), Chemical Engineering Journal, 337, pp 351-371 Qadeer R (2005), Adsorption of ruthenium ions on activated charcoal: influence of temperature on the kinetics of the adsorption process, Journal of Zhejiang University Science B, (5), pp 353 Qian J., Sun F., Qin L (2012), Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals, Materials Letters, 82, pp 220-223 Qin J., Wang S., Wang X (2017), Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient cocatalyst, Applied Catalysis B: Environmental, 209, pp 476-482 Rafatullah M., Sulaiman O., Hashim R., Ahmad A (2010), Adsorption of methylene blue on low-cost adsorbents: a review, Journal of hazardous materials, 177 (1-3), pp 70-80 Rajeshwar K., Osugi M., Chanmanee W., Chenthamarakshan C., Zanoni M.V.B., Kajitvichyanukul P., Krishnan-Ayer R (2008), Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media, Journal of photochemistry and photobiology C: photochemistry reviews, (4), pp 171192 125 [128] Ramesh A., Lee D., Wong J (2005), Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewater with lowcost adsorbents, Journal of Colloid and Interface Science, 291 (2), pp 588592 [129] Ravisankar S., Vasudevan M., Gandhimathi M., Suresh B (1998), Reversedphase HPLC method for the estimation of acetaminophen, ibuprofen and chlorzoxazone in formulations, Talanta, 46 (6), pp 1577-1581 [130] Recommendations I (1985), Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl Chem, 57 (4), pp 603-619 [131] Rezaei B., Damiri S (2008), Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate (II) electrocatalyst system as a sensor for determination of captopril, Sensors and Actuators B: Chemical, 134 (1), pp 324-331 [132] Rodenas V., Garcıa M., Sanchez-Pedreno C., Albero M (2000), Simultaneous determination of propacetamol and paracetamol by derivative spectrophotometry, Talanta, 52 (3), pp 517-523 [133] Rodenberg A., Orazietti M., Probst B., Bachmann C., Alberto R., Baldridge K.K., Hamm P (2014), Mechanism of photocatalytic hydrogen generation by a polypyridyl-based cobalt catalyst in aqueous solution, Inorganic chemistry, 54 (2), pp 646-657 [134] Rodriguez-Mozaz S., Chamorro S., Marti E., Huerta B., Gros M., SànchezMelsió A., Borrego C.M., Barceló D., Balcázar J.L (2015), Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river, Water research, 69, pp 234-242 [135] Sanghavi B.J., Srivastava A.K (2010), Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode, Electrochimica Acta, 55 (28), pp 8638-8648 [136] Sawalha M.F., Peralta-Videa J.R., Romero-González J., Gardea-Torresdey J.L (2006), Biosorption of Cd (II), Cr (III), and Cr (VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies, Journal of Colloid and Interface Science, 300 (1), pp 100-104 [137] Scherb C (2009), Controlling the Surface Growth of Metal-Organic Frameworks, Munich Ludwig Maximilians University, Munich [138] Scherb C (2009) Controlling the Surface Growth of Metal-Organic Frameworks, lmu [139] Seo Y.-K., Hundal G., Jang I.T., Hwang Y.K., Jun C.-H., Chang J.-S (2009), Microwave synthesis of hybrid inorganic–organic materials including porous Cu3 (BTC) from Cu (II)-trimesate mixture, Microporous and Mesoporous Materials, 119 (1-3), pp 331-337 [140] Shao J., Wan Z., Liu H., Zheng H., Gao T., Shen M., Qu Q., Zheng H (2014), Metal organic frameworks-derived Co O hollow dodecahedrons 126 [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] with controllable interiors as outstanding anodes for Li storage, Journal of Materials Chemistry A, (31), pp 12194-12200 Sheha R., El-Zahhar A (2008), Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions, Journal of Hazardous Materials, 150 (3), pp 795-803 Shi Q., Chen Z., Song Z., Li J., Dong J (2011), Synthesis of ZIF‐8 and ZIF‐ 67 by steam‐assisted conversion and an investigation of their tribological behaviors, Angewandte Chemie International Edition, 50 (3), pp 672-675 Soleymani J., Hasanzadeh M., Shadjou N., Jafari M.K., Gharamaleki J.V., Yadollahi M., Jouyban A (2016), A new kinetic–mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode, Materials science and engineering: C, 61, pp 638-650 Tauc J (1968), Optical properties and electronic structure of amorphous Ge and Si, Materials Research Bulletin, (1), pp 37-46 Tian Y.Q., Zhao Y.M., Chen Z.X., Zhang G.N., Weng L.H., Zhao D.Y (2007), Design and generation of extended zeolitic metal–organic frameworks (ZMOFs): synthesis and crystal structures of zinc (II) imidazolate polymers with zeolitic topologies, Chemistry–A European Journal, 13 (15), pp 4146-4154 Torad N.L., Hu M., Ishihara S., Sukegawa H., Belik A.A., Imura M., Ariga K., Sakka Y., Yamauchi Y (2014), Direct synthesis of MOF‐derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment, Small, 10 (10), pp 2096-2107 Tran H.N., You S.-J., Chao H.-P (2016), Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study, Journal of Environmental Chemical Engineering, (3), pp 2671-2682 Tran U.P., Le K.K., Phan N.T (2011), Expanding applications of metal− organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction, Acs Catalysis, (2), pp 120-127 Tranchemontagne D.J., Mendoza-Cortés J.L., O’Keeffe M., Yaghi O.M (2009), Secondary building units, nets and bonding in the chemistry of metal–organic frameworks, Chemical Society Reviews, 38 (5), pp 12571283 Tseng R.-L., Wu F.-C., Juang R.-S (2010), Characteristics and applications of the Lagergren's first-order equation for adsorption kinetics, Journal of the Taiwan Institute of Chemical Engineers, 41 (6), pp 661-669 Tsuboy M., Angeli J., Mantovani M., Knasmüller S., Umbuzeiro G., Ribeiro L (2007), Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2, Toxicology in vitro, 21 (8), pp 1650-1655 127 [152] Valvekens P., Vermoortele F., De Vos D (2013), Metal–organic frameworks as catalysts: the role of metal active sites, Catalysis Science & Technology, (6), pp 1435-1445 [153] Verma A.K., Dash R.R., Bhunia P (2012), A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters, Journal of environmental management, 93 (1), pp 154-168 [154] Vilian A.E., Rajkumar M., Chen S.-M (2014), In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid, Colloids and Surfaces B: Biointerfaces, 115, pp 295-301 [155] Wang F., Dong C., Wang C., Yu Z., Guo S., Wang Z., Zhao Y., Li G (2015), Fluorescence detection of aromatic amines and photocatalytic degradation of rhodamine B under UV light irradiation by luminescent metal–organic frameworks, New Journal of Chemistry, 39 (6), pp 44374444 [156] Wang H., Yuan X., Wu Y., Zeng G., Dong H., Chen X., Leng L., Wu Z., Peng L (2016), In situ synthesis of In2S3@ MIL-125 (Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis, Applied Catalysis B: Environmental, 186, pp 19-29 [157] Wang H.Y., Sun Y., Tang B (2002), Study on fluorescence property of dopamine and determination of dopamine by fluorimetry, Talanta, 57 (5), pp 899-907 [158] Wang J.L., Xu L.J (2012), Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application, Critical reviews in environmental science and technology, 42 (3), pp 251-325 [159] Wang L., Li J., Wang Y., Zhao L., Jiang Q (2012), Adsorption capability for Congo red on nanocrystalline MFe2O4 (M= Mn, Fe, Co, Ni) spinel ferrites, Chemical Engineering Journal, 181, pp 72-79 [160] Wang M., Jiang X., Liu J., Guo H., Liu C (2015), Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template-free method, Electrochimica Acta, 182, pp 613-620 [161] Weber W.J., Morris J.C (1963), Kinetics of adsorption on carbon from solution, Journal of the Sanitary Engineering Division, 89 (2), pp 31-60 [162] Wightman R.M., May L.J., Michael A.C (1988), Detection of dopamine dynamics in the brain, Analytical chemistry, 60 (13), pp 769A-793A [163] Wilson J.M., Slattery J.T., Forte A.J., Nelson S.D (1982), Analysis of acetaminophen metabolites in urine by high-performance liquid chromatography with UV and amperometric detection, Journal of Chromatography B: Biomedical Sciences and Applications, 227 (2), pp 453462 128 [164] Wu J.-S., Liu C.-H., Chu K.H., Suen S.-Y (2008), Removal of cationic dye methyl violet 2B from water by cation exchange membranes, Journal of membrane science, 309 (1-2), pp 239-245 [165] Wu Z.-S., Yang S., Sun Y., Parvez K., Feng X., Müllen K (2012), 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134 (22), pp 9082-9085 [166] Xiao L., Xu H., Zhou S., Song T., Wang H., Li S., Gan W., Yuan Q (2014), Simultaneous detection of Cd (II) and Pb (II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode, Electrochimica Acta, 143, pp 143151 [167] Xu Z., Qi B., Di L., Zhang X (2014), Partially crystallized Pd nanoparticles decorated TiO2 prepared by atmospheric-pressure cold plasma and its enhanced photocatalytic performance, Journal of Energy Chemistry, 23 (6), pp 679-683 [168] Yaghi O.M., O'Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., Kim J (2003), Reticular synthesis and the design of new materials, Nature, 423 (6941), pp 705-714 [169] Yang C.-L., McGarrahan J (2005), Electrochemical coagulation for textile effluent decolorization, Journal of hazardous materials, 127 (1-3), pp 40-47 [170] Yang C., You X., Cheng J., Zheng H., Chen Y (2017), A novel visible-lightdriven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin, Applied Catalysis B: Environmental, 200, pp 673-680 [171] Yang H., He X.-W., Wang F., Kang Y., Zhang J (2012), Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye, Journal of Materials Chemistry, 22 (41), pp 21849-21851 [172] Yang L., Lu H (2012), Microwave‐assisted Ionothermal Synthesis and Characterization of Zeolitic Imidazolate Framework‐8, Chinese Journal of Chemistry, 30 (5), pp 1040-1044 [173] Yang L., Yu L., Diao G., Sun M., Cheng G., Chen S (2014), Zeolitic imidazolate framework-68 as an efficient heterogeneous catalyst for chemical fixation of carbon dioxide, Journal of Molecular Catalysis A: Chemical, 392, pp 278-283 [174] Yao J., He M., Wang H (2015), Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks, CrystEngComm, 17 (27), pp 4970-4976 [175] You B., Jiang N., Sheng M., Gul S., Yano J., Sun Y (2015), Highperformance overall water splitting electrocatalysts derived from cobaltbased metal–organic frameworks, Chemistry of Materials, 27 (22), pp 76367642 129 [176] Yu G., Sun J., Muhammad F., Wang P., Zhu G (2014), Cobalt-based metal organic framework as precursor to achieve superior catalytic activity for aerobic epoxidation of styrene, Rsc Advances, (73), pp 38804-38811 [177] Zen J.-M., Ting Y.-S (1997), Simultaneous determination of caffeine and acetaminophen in drug formulations by square-wave voltammetry using a chemically modified electrode, Analytica chimica acta, 342 (2-3), pp 175180 [178] Zeng L., Guo X., He C., Duan C (2016), Metal–organic frameworks: versatile materials for heterogeneous photocatalysis, ACS Catalysis, (11), pp 7935-7947 [179] Zhang C., Ai L., Jiang J (2014), Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of rhodamine B under visible light, Industrial & Engineering Chemistry Research, 54 (1), pp 153-163 [180] Zhang C., Xiao Y., Liu D., Yang Q., Zhong C (2013), A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO capture, Chemical Communications, 49 (6), pp 600-602 [181] Zhang H., Zhong J., Zhou G., Wu J., Yang Z., Shi X (2016), MicrowaveAssisted solvent-free synthesis of zeolitic imidazolate framework-67, Journal of Nanomaterials, 2016 [182] Zhang Y., Shen Y., Chen Y., Yan Y., Pan J., Xiong Q., Shi W., Yu L (2016), Hierarchically carbonaceous catalyst with Brønsted–Lewis acid sites prepared through Pickering HIPEs templating for biomass energy conversation, Chemical Engineering Journal, 294, pp 222-235 [183] Zhao H., Li X., Li W., Wang P., Chen S., Quan X (2014), A ZIF-8-based platform for the rapid and highly sensitive detection of indoor formaldehyde, RSC Advances, (69), pp 36444-36450 [184] Zhao J., Wei C., Pang H (2015), Zeolitic Imidazolate Framework‐67 Rhombic Dodecahedral Microcrystals with Porous {110} Facets As a New Electrocatalyst for Sensing Glutathione, Particle & Particle Systems Characterization, 32 (4), pp 429-433 [185] Zhao S., Bai W., Yuan H., Xiao D (2006), Detection of paracetamol by capillary electrophoresis with chemiluminescence detection, Analytica Chimica Acta, 559 (2), pp 195-199 [186] Zheng H., Zhang Y., Liu L., Wan W., Guo P., Nyström A.M., Zou X (2016), One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery, Journal of the American chemical society, 138 (3), pp 962-968 [187] Zheng J., Cheng C., Fang W.-J., Chen C., Yan R.-W., Huai H.-X., Wang C.C (2014), Surfactant-free synthesis of a Fe O 4@ ZIF-8 core–shell heterostructure for adsorption of methylene blue, CrystEngComm, 16 (19), pp 3960-3964 130 [188] Zhong G., Liu D., Zhang J (2018), The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts, Journal of Materials Chemistry A, (5), pp 1887-1899 [189] Zhou H.-C., Long J.R., Yaghi O.M (2012) Introduction to metal–organic frameworks, ACS Publications [190] Zhou K., Mousavi B., Luo Z., Phatanasri S., Chaemchuen S., Verpoort F (2017), Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs ZIF-8 and ZIF-67, Journal of Materials Chemistry A, (3), pp 952-957 [191] Zhou X., Zhou X (2014), The unit problem in the thermodynamic calculation of adsorption using the Langmuir equation, Chemical Engineering Communications, 201 (11), pp 1459-1467 [192] Zhu H., Jiang R., Xiao L., Chang Y., Guan Y., Li X., Zeng G (2009), Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation, Journal of Hazardous Materials, 169 (1-3), pp 933-940 [193] Zodi S., Merzouk B., Potier O., Lapicque F., Leclerc J.-P (2013), Direct red 81 dye removal by a continuous flow electrocoagulation/flotation reactor, Separation and Purification Technology, 108, pp 215-222 [194] Zuyi T., Taiwei C (2000), On the applicability of the Langmuir equation to estimation of adsorption equilibrium constants on a powdered solid from aqueous solution, Journal of colloid and interface science, 231 (1), pp 8-12 131 ... TÀI LIỆU 1.1 GIỚI THIỆU CHUNG VẬT LIỆU KHUNG HỮU CƠ KIM LOẠI (MOFs) 1.2 VẬT LIỆU KHUNG HỮU CƠ KIM LOẠI ZIF-67 1.3 PHƯƠNG PHÁP TỔNG HỢP ZIF-67 1.4 CÁC HƯỚNG BIẾN TÍNH VẬT LIỆU... pháp tổng hợp để cải thiện đặc tính cấu trúc vật liệu ZIF-67 đóng vai trị quan trọng ứng dụng chưa đề cập đến nhiều Dựa lý chọn đề tài luận án ? ?Tổng hợp, biến tính ứng dụng vật liệu khung hữu - kim. .. - kim loại ZIF-67? ?? Mục tiêu nghiên cứu: Tổng hợp biến tính vật liệu khung hữu – kim loại ZIF-67 có hoạt tính xúc tác, hấp phụ cảm biến điện hóa Nội dung luận án: - Nghiên cứu tổng hợp ZIF-67 phương