1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Sử dụng điều kiện xảy ra của đẳng thức để chứng minh một số dạng bất đẳng thức

156 30 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 156
Dung lượng 0,91 MB

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THỊ NHƢ TUYẾT “SỬ DỤNG ĐIỀU KIỆN XẢY RA CỦA ĐẲNG THỨC ĐỂ CHỨNG MINH MỘT SỐ DẠNG BẤT ĐẲNG THỨC” LUẬN VĂN THẠC SỸ KHOA HỌC HÀ NỘI , NĂM 2014 Page of 90 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THỊ NHƢ TUYẾT “SỬ DỤNG ĐIỀU KIỆN XẢY RA CỦA ĐẲNG THỨC ĐỂ CHỨNG MINH MỘT SỐ DẠNG BẤT ĐẲNG THỨC” CHUYÊN NGÀNH: PHƢƠNG PHÁP TOÁN SƠ CẤP MÃ SỐ: 60 46 40 LUẬN VĂN THẠC SỸ KHOA HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC PGS TS NGUYỄN VŨ LƢƠNG HÀ NỘI , NĂM 2014 Page of 90 LỜI CẢM ƠN Sau thời gian nghiên cứu học tập trường Đại học Khoa học Tự nhiên – Đại học Quốc gia Hà Nội, tác giả hồn thành khóa luận với đề tài: “Sử dụng điều kiện xảy đẳng thức chứng minh số dạng bất đẳng thức” Để hoàn thành luận văn này, tác giả xin gửi lời cảm ơn sâu sắc tới PGS.TS Nguyễn Vũ Lƣơng, thầy dành thời gian hướng dẫn, bảo tận tình giúp đỡ trình xây dựng đề tài, giúp tác giả giải vấn đề nảy sinh q trình làm luận văn hồn thành luận văn định hướng ban đầu Qua tác giả xin gửi lời cảm ơn chân thành tới thầy, cô giáo đọc, kiểm tra, đánh giá cho ý kiến quý báu để luận văn hoàn thiện, phong phú Tác giả xin gửi lời cảm ơn tới Ban giám hiệu, phòng Sau Đại học, khoa Toán – Cơ – Tin trường Đại học Khoa học Tự nhiên tạo điều kiện thuận lợi suốt trình học tập trường Cuối biết ơn sâu sắc tới gia đình, lời cảm ơn tới bạn bè thơng cảm, động viên giúp đỡ cho tác giả có đủ nghị lực để hồn thành luận văn Tuy có nhiều cố gắng thời gian trình độ cịn hạn chế nên vấn đề khóa luận chưa trình bày sâu sắc khơng tránh khỏi thiếu sót, kính mong nhận bảo thầy cô bạn Một lần tác giả xin chân thành cảm ơn tất người Chúc tất người sức khỏe thành đạt Page of 90 MỤC LỤC Lời cảm ơn……………… ……………… ………………………………….3 Chƣơng I Giới thiệu số bất đẳng thức có điều kiện kỳ thi quốc gia, quốc tế…………………………………… ……………………… I Bất đẳng thức trung bình cộng trung bình nhân ( AM – GM)……5 II Bất đẳng thức CAUCHY – SCHWARZ… …… ………………… III Một số tốn bất đẳng thức có điều kiện kỳ thi quốc gia quốc tế ……………………………………………………………….11 Chƣơng II Sử dụng điều kiện xảy đẳng thức để chứng minh số dạng bất đẳng thức……………… ……………………………… ……… 32 §1 Sử dụng điều kiện xảy đẳng thức để chứng minh số bất đẳng thức có điều kiện chứa thức……………………………………… 32 §2 Sử dụng điều kiện xảy đẳng thức để chứng minh số bất đẳng thức có điều kiện dạng phân thức…………………………………….…41 §3 Sử dụng điều kiện xảy đẳng thức để chứng minh số bất đẳng thức dạng trung bình…………………………………………………….51 §4 Sử dụng điều kiện xảy đẳng thức để chứng minh số bất đẳng thức với điều kiện đẳng thức……………………………………………64 §5 Sử dụng điều kiện xảy đẳng thức để chứng minh số bất đẳng thức với điều kiện chứa thứ tự.……………………………………… 75 §6 Phép tốn nhóm abel bất đẳng thức với điều kiện…………………… 84 Tài liệu tham khảo……………………………………………………89&90 Page of 90 CHƢƠNG I GIỚI THIỆU MỘT SỐ BẤT ĐẲNG THỨC CÓ ĐIỀU KIỆN TRONG CÁC ĐỀ THI QUỐC GIA, QUỐC TẾ I BẤT ĐẲNG THỨC TRUNG BÌNH CỘNG VÀ TRUNG BÌNH NHÂN.(BẤT ĐẲNG THỨC AM – GM) Trong luận văn này, tác giả hay sử dụng bất đẳng thức quen thuộc AM-GM (bất đẳng thức trung bình cộng trung bình nhân) sau: “ Với số thực khơng âm, ta ln có: n Ở ta ký hiệu ai  a1a2 an ” i0 Chứng minh Có nhiều cách chứng minh bất đẳng thức AM – GM, cách chứng minh quen thuộc sau: Cách 1: Trước hết ta chứng minh bất đẳng thức với n số khơng âm với 2n số không âm 2n i 1 2n  a i Page of 90  2n i1 1 2n n     2n 2n    i1  i  1  Từ suy bất đẳng thức với n  2k Bất đẳng thức AM – GM chứng minh chứng minh khẳng định sau đây: Nếu bất đẳng thức với n  k với n  k 1 Thật vậy:  ai Áp dụng giả thiết quy nạp suy ra: k 1 a  i1 i  k 1  i 1 k 1  a  i1 i  k 1  i 1 Cách 2: Page of 90 Nếu n = 1, n = hiển nhiên bất đẳng thức Giả sử bất đẳng thức với n  k  , ta chứng minh bất đẳng thức với n  k 1 Ta có: Theo giả thiết quy nạp ta thu được: S k 1  Để chứng minh bất đẳng thức n  k 1 ta cần chứng minh:  Ký hiệu: Ta thu được: k 1     k k ,  k 1  ak 1  i 1 k k 1   k 1   k 1 k   k k         k   k        k k 0     k 1   k  2   k 3    k 1        k   k   k   k 1     k  k 1   Page of 90 Page 81 of 90 Gi¶ sư 0

Ngày đăng: 20/11/2020, 09:38

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w