1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Một số bài toán về tính bền vững của hệ động lực tuyến tính chịu nhiễu

193 26 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 193
Dung lượng 358,35 KB

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ĐỖ ĐỨC THUẬN MỘT SỐ BÀI TỐN VỀ TÍNH BỀN VỮNG CỦA HỆ ĐỘNG LỰC TUYẾN TÍNH CHỊU NHIỄU Chun ngành: Tốn Giải tích Mã số TĨM TẮT LUẬN ÁN TIẾN SĨ TỐN HỌC HÀ NỘI - 2012 Cơng trình hồn thành tại: Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà nội Người hướng dẫn khoa học: GS TSKH Nguyễn Khoa Sơn Phản biện 1: GS TSKH Phạm Kỳ Anh Phản biện 2: GS TSKH Vũ Ngọc Phát Phản biện 3: PGS TS Nguyễn Sinh Bảy Luận án bảo vệ trước hội đồng chấm luận án Tiến sĩ cấp nhà nước họp …………………………………………………………………………… …………………………………………………………………………… …………… Vào hồi ……… giờ…… ngày……… tháng……… năm……… Có thể tìm hiểu luận án tại: - Thư viện Quốc gia Việt Nam - Trung tâm Thông tin - Thư viện, Đại học Quốc gia Hà nội L˝I CAM OAN Tæi xin cam oan Ơy l cổng trnh nghiản cứu ca riảng tổi C¡c k‚t qu£, sŁ li»u lu“n ¡n l trung thỹc v chữa tng ữổc cổng b bĐt cø cæng tr…nh n o T¡c gi£ lu“n ¡n Ø i ức Thun LIC MèN Du dt trản ữớng to¡n håc, ln t⁄o nhœng thß th¡ch gióp tỉi tü håc häi, t…m tỈi v s¡ng t⁄o, â l nhœng g… tỉi may m›n ÷ỉc ti‚p nh“n tł ng÷íi thƒy ¡ng k‰nh cıa m…nh, GS TSKH Nguy„n Khoa Sìn Thy Sỡn khổng nhng  hữợng dÔn tn tnh m cặn truyãn cho tổi nhiãu kinh nghiằm quỵ bĂu nghiản cứu khoa hồc cụng nhữ cuc sng Tổi xin gòi n Thy lặng bit ỡn sƠu sc nhĐt Tỉi cơng b y tä lỈng bi‚t ìn ‚n GS TS Nguyn Hu Dữ Thy cõ nhng ch dÔn quỵ b¡u chuy¶n mỉn v nghi¶n cøu khoa håc ÷ỉc l m vi»c vỵi Thƒy gióp tỉi mð rºng vŁn ki‚n thøc cıa m…nh v thu ÷ỉc mºt sŁ k‚t qu£ âng gâp v o lu“n ¡n Tæi xin gòi tợi GS TSKH Phm Ký Anh, PGS TS Vơ Ho ng Linh v c¡c Thƒy Cỉ gi¡o Khoa To¡n - Cì - Tin håc tr÷íng ⁄i håc Khoa hồc Tỹ nhiản - HQGHN lặng bit ỡn sƠu sc, nhng ngữới  dy dỉ v ch bÊo tn tnh tổi,  giúp ù rĐt nhiãu tổi n ÷ỉc ÷íng to¡n håc nh÷ b¥y gií Tỉi xin ch¥n th nh c£m ìn c¡c Thƒy Cỉ Hºi çng ph£n bi»n v c¡c Thƒy Cỉ tr¶n Vi»n To¡n hồc, nhng ngữới  ồc v cho nhng nhn xt, gõp ỵ quỵ giĂ lun Ăn ữổc tt hỡn ii Tổi cụng xin gòi lới cÊm ỡn tợi PGS TS Nguy„n Thà B⁄ch Kim, c¡c Thƒy Cæ gi¡o Khoa To¡n - Tin øng dưng tr÷íng ⁄i håc B¡ch Khoa H Nºi, nhœng ng÷íi ln ıng hº nhi»t t…nh, t⁄o i•u ki»n thu“n lỉi v sfin s ng gióp ï tỉi thíi gian n y Lu“n ¡n n y ữổc ho n th nh dữợi sỹ ng viản, chia sÃ, giúp ù lợn lao ca B, Mà, ngữới thƠn v bn b Tổi xin gòi lới cÊm ỡn v d nh mân qu n y cho t§t c£! H Nºi, ng y 24 th¡ng n«m 2011 T¡c giÊ iii Mửc lửc Danh mửc cĂc kỵ hiằu v chœ vi‚t t›t Líi nâi ƒu KI N THÙC CHU N BÀ 1.1 To¡n tß a trà tuy‚n t‰n 1.2 Tnh iãu khin ữổc c 1.3 Tnh iãu khin ÷ỉc c 1.4 Sü Œn ành mơ cıa h» H C´ R NG BU¸C V˛I MI N THAM Să I UKHI NBNHI U 2.1 KhoÊng cĂch gia cĂc nân 2.2 BĂn knh iãu khin ữổc 2.3 V‰ dö H I UKHI NTUY NT NHCHÀUNHI U C U TRểC 3.1 BĂn knh iãu khin ữổc dữợi nhiu cĐu trú 3.2 BĂn knh iãu khin ữổc dữợi a nhi„u c§u t 3.3 V‰ dư iv 3.4 Thu“t to¡n t‰nh to¡n 71 B NK NHTO N NHV C CÙNGDÖNG CÕA N´ 4.1 B¡n k‰nh to n ¡nh 4.2 B¡n k‰nh Œn ành hâa 4.3 B¡n k‰nh Œn ành cıa 4.4 C¡c b¡n k‰nh i•u khi”n K‚t lu“n Danh mưc cỉng tr…nh khoa håc cıa t¡c gi£ li¶n quan lu“n ¡n T ILI UTHAMKH O v ‚n DANHMệCC CKịHI UV CHVI TT T Trữớng C hoc R K Kn m gr F ker F Im F dom F (A) ^(A) min[A] Gi¡ trà k… dà nhä nh§t cıa A A A y ? M P; Q Pb; Qb f Thang thíi gian Delta ⁄o h m cıa f S Mi•n Œn ành mơ •u cıa thang thíi gian T vi M— U Trong thüc ti„n, câ nhi•u vĐn ã ca k thut, cỡ hồc, vt lỵ, sinh håc, kinh t‚ ÷ỉc mỉ t£ bði c¡c h» ºng lüc H» ºng lüc câ th¶m c¡c bi‚n iãu khin th s ữổc gồi l hằ iãu khin Lỵ thuyt iãu khin ữổc phĂt trin t khoÊng 150 nôm trữợc Ơy cĂc iãu khin cỡ hồc cn v câ th” ÷ỉc mỉ t£ mºt c¡ch to¡n håc CĂc tnh chĐt nh tnh ca hằ iãu khin ữổc quan tƠm nhiãu nhĐt l tnh iãu khin ữổc, tnh Œn ành v t‰nh Œn ành hâa ÷ỉc Nâi mºt cĂch ỡn giÊn, hằ ữổc gồi l iãu khin ữổc nu tỗn ti mt iãu khin chuyn hằ t mt trng thĂi ban u cho trữợc sang mt trng th¡i mong muŁn cuŁi cịng H» ÷ỉc gåi l Œn ành ti»m c“n n‚u måi quÿ ⁄o cıa nâ chuy”n dƒn v• tr⁄ng th¡i dłng thíi gian ti‚n vỉ cịng v h» ÷ỉc gåi l Œn ành hâa ữổc nu tỗn ti mt iãu khin ngữổc ( iãu khi”n phö thuºc v o bi‚n tr⁄ng th¡i) ” bi‚n nâ th nh mºt h» Œn ành ti»m c“n Hi»n nay, vĐn ã ang ữổc quan tƠm l tnh chĐt cıa c¡c h» ºng lüc chàu £nh h÷ðng cıa nhi„u Phn lợn cĂc tnh chĐt "tt" ca cĂc hằ ng lüc cơng nh÷ c¡c Łi t÷ỉng to¡n håc nâi chung ãu bÊo to n cĂc tham s cĐu tróc cıa h» ho°c Łi t÷ỉng chàu nhi„u b† V‰ dử: tnh iãu khin ữổc ca mt hằ iãu khin tuyn tnh lỵ thuyt iãu khin; tnh n nh tiằm cn ca nghiằm phữỡng trnh vi phƠn; tnh °t ch¿nh (well-posedness) cıa mºt h» ph÷ìng tr…nh tuy‚n t‰nh, t‰nh hºi tö cıa mºt thu“t to¡n gi£i t‰ch sŁ; t‰nh kh£ nghàch cıa mºt ma tr“n vuæng ⁄i sŁ tuy‚n t‰nh; t‰nh ch‰nh qui metric cıa mºt ¡nh x⁄ gi£i t‰ch Sü b£o to n cĂc tnh chĐt nh tnh n y dữợi Ênh hững ca nhiu ữổc gồi l sỹ bãn vng CĂc nh to¡n håc mong muŁn t…m ÷ỉc mºt ành l÷ỉng nh‹m ¡nh gi¡ kh£ n«ng b£o to n c¡c t‰nh chĐt nh tnh ca hằ thng dữợi Ênh hững ca nhi„u, ÷ỉc gåi l c¡c b¡n k‰nh b£o to n Łi vỵi t‰nh Œn ành ti»m c“n cıa h» tuy‚n tnh, xuĐt phĂt t hai b i bĂo ông trản t⁄p ch‰ Systems & Control Letters [45, 46], c¡c t¡c gi£ D Hinrichsen v A.J Pritchard ¢ ph¡t tri”n mºt hữợng nghiản cứu mợi l hữợng nghiản cứu n nh vœng cıa c¡c h» ºng lüc düa tr¶n bi”u di„n cıa h» khỉng gian tr⁄ng th¡i v sß dưng khĂi niằm bĂn knh n nh Hữợng nghiản cứu n y  thu hút ữổc sỹ quan tƠm ca nhiãu nh to¡n håc v… t‰nh hi»u qu£ cıa nâ công nhữ cĂc ứng dửng kắ thut (xem [7, 13, 25, 26, 47, 49, 50, 52, 53, 55, 68, 74, 76, 84, 97]) Dữợi dng ỡn giÊn nhĐt, bĂn knh n nh cõ cĐu trúc ca mt hằ phữỡng trnh vi ph¥n tuy‚n t‰nh Œn ành ti»m c“n x = Ax ữổc nh nghắa l s lợn nhĐt cho måi h» chàu nhi„u x = (A + D E)x vÔn cặn n nh tiằm cn mt k k < ; ð ¥y l ma tr“n nhi„u, D v E l c¡c ma tr“n c§u tróc nhi„u v k k l mt chu'n ma trn cho trữợc Mt cĂch t÷ìng ÷ìng, b¡n k‰nh Œn ành câ th” ÷ỉc ành ngh¾a bði rK(A; D; E) = inffk k : l q 2K ; A + D E khæng Œn ành ti»m c“ng: Khi K = C ta câ ành ngh¾a cıa b¡n k‰nh Œn ành phøc r C(A; D; E) v K = R ta câ ành ngh¾a cıa b¡n k‰nh Œn ành thüc r R(A; D; E) Tł nh nghắa ta thĐy rng rC(A; D; E) rR(A; D; E): Cỉng thøc b¡n k‰nh Œn ành phøc ÷ỉc D Hinrichsen v A.J Pritchard [46] ữa nôm 1986 DANH MÖC C˘NG TR NH KHOA H¯C CÕA T CGI LI NQUAN NLU N N Nguyen Khoa Son and Do Duc Thuan (2008), "Controllability radius of linear systems with perturbed control sets", Vietnam J Math., 36(2), pp 239-251 Nguyen Khoa Son and Do Duc Thuan (2008), "Controllability radius of linear systems under structured perturbations", Vietnam J Math., 36(4), pp 473-479 Nguyen Khoa Son, Do Duc Thuan (2010), "Structured distance to uncontrollability under multi-perturbations: an approach using multi-valued linear operators", Systems & Control Letters, 59, pp 476-483 (SCI) Nguyen Khoa Son and Do Duc Thuan (2010), "The structured con-trollability radii of higher order descriptor systems", Vietnam J Math., 38(3), pp 373-380 Nguyen Khoa Son, Do Duc Thuan (2011), "On the radius of surjectivity for rectangular matrices and its applications to measuring stabilizability of linear systems under structured perturbations", J Nonlinear and Convex Anal., 12(3), pp 441-453 (SCIE) 118 Nguyen Khoa Son, Do Duc Thuan (2012), "The structured distance to non-surjectivity and its applications to calculating the controlla-bility radius of descriptor systems", J Math Anal Appl., 388, pp 272-281 (SCI) Nguyen Huu Du, Do Duc Thuan and Nguyen Chi Liem (2011), "Stability radius of implicit dynamic equations with constant coefficients on time scales", Systems & Control Letters, 60, pp 596-603 (SCI) 119 T ILI UTHAMKH O Ti‚ng Vi»t [1] Ph⁄m Hœu Anh Ngåc (2000), Mºt sŁ b i to¡n v• t‰nh Œn ành vœng cıa c¡c h» ºng lüc, Lu“n ¡n ti‚n s¾, Vi»n To¡n hồc [2] Vụ Ngồc PhĂt (2001), Nhp mổn lỵ thuyt i•u khi”n to¡n håc, ⁄i Håc QuŁc Gia H Nºi [3] Dữỡng ng XuƠn Th nh (2009), Tnh n nh v bãn vng ca mt s tnh chĐt hằ ng lüc tuy‚n t‰nh, Lu“n ¡n ti‚n s¾, ⁄i Håc QuŁc Gia Th nh Ph Hỗ Ch Minh Ting Anh [4] P.K Anh, D.S Hoang (2006), "Stability of class of singular difference equations", Int J Difference Eq., 1(2), pp 181-193 [5] B.T Anh, D.C Khanh and D.D.X Thanh (2009), "Eising-like formulae for structured controllability radii", Systems & Control Letters, submitted 120 [6] B.T Anh, N.K Son, D.D.X Thanh (2008), "Stability radii of delay difference systems under affine parameter perturbations in infinite dimensional spaces", Appl Math Comp., 202, pp 562-570 [7] B.T Anh, N.K Son, D.D.X Thanh (2009), "Stability radii of positive linear time-delay systems under fractional perturbations", Sys-tems & Control Letters, 58, pp 155-159 [8] B.T Anh, N.K Son (2010), "Robust stability of positive linear systems in Banach spaces", J Difference Eq Appl., 16, pp 1447-1461 [9] A Berman and R.J Plemmons (1979), Nonnegative Matrices in Mathematical Sciences, Acad Press, New York [10] M Bohner and A Peterson (2001), Dynamic equations on time scales: An Introduction with Applications, Birkhauser, Boston [11] M Bohner and A Peterson (2003), Advances in dynamic equations on time scales, Birkhauser, Boston [12] S Boyd and V Balakrishnan (1990), "A regularity result for the singular values of a transfer matrix and a quadratically convergence algorithm for computing its L -norm", Systems & Control Letters, 15, pp 1-7 [13] M Bracke (2000), On stability radii of parametrized linear differential-algebraic systems, Ph.D thesis, University of Kaiserslautern [14] R Brammer (1972), "Controllability of linear autonomous systems with positive controllers", SIAM J Control Optim., 10, pp 339-353 121 [15] A Bunse-Gerstner, R Byers, V Mehrmann, and N.K Nichols (1999), "Feedback design for regularizing descriptor systems", Lin-ear Algebra and its Applications, 299, pp 119-151 [16] J.V Burke, A.S "Pseudospectral Lewis and components M.L and Overton the (2004), distance to uncontrollability", SIAM J Matrix Anal Appl., 26, pp 350-361 [17] R Byers (1994), "The descriptor controllability radius", in: U Helmke, R Mennicken, J Saurer (Eds.), Proceedings of the Con-ference on the Mathematical Theory of Networks and Systems, MTNS’93, Akademie Verlag, Berlin, pp 85-88 [18] S Clark, Y Latushkin, S Montgomery-Smith, and T Randolph (2000), "Stability radius and internal versus external stability in Banach spaces: An evolution semigroup approach", SIAM J Control Optim., 38, pp 1757-1793 [19] R Cross (1998), Multivalued Linear Operators, Marcel Dekker, New York [20] J.J DaCunha (2005), "Stability for time varying linear dynamic systems on time scales", J Comput Appl Math., 176(2), pp 381-410 [21] L Dai (1989), Singular Control Systems, Springer, BerlinHeidelberg [22] R.A DeCarlo and M Wicks (1991), "Computing the distance to an uncontrollable system", IEEE Trans Automat Control, 36(1), pp 39-49 122 [23] T.S Doan, A Kalauch and S Siegmund (2009), "Exponential Sta-bility of Linear-Time Invariant Systems on Time Scales", Nonlinear Dynamics and Systems Theory, 9, pp 37-50 [24] T.S Doan, A Kalauch, S Siegmund and F Wirth (2010), "Stabil-ity radii for positive linear time-invariant systems on time scales", Systems & Control Letters, 59, pp 173-179 [25] N.H Du (1999), "Stability radii for differential-algebraic equations", Vietnam J Math., 27, pp 379-382 [26] N.H Du, V.H Linh (2005), "Implicit-system approach to the robust stability for a class of singularly perturbed linear systems", Systems & Control Letters, 54, pp 33-41 [27] N.H Du, V.H Linh (2006), "Stability radii for linear timeinvarying differential-equations with respect to dynamic perturbations", J Differential Equations, 230, pp 579-599 [28] N.H Du (2008), "Stability radii of differential-algebraic equations with structured perturbations", Systems & Control Letters, 57, pp 546-553 [29] N.H Du, D.D Thuan and N.C Liem (2011), "Stability radius of im-plicit dynamic equations with constant coefficients on time scales", Systems & Control Letters, 60, pp 596-603 [30] C Eckart, G Young (1936), "The approximation of one matrix by another of lower rank", Psychometrika, 1, pp 211-218 123 [31] R Eising (1984), "Between controllable and uncontrollable", Sys-tems & Control Letters, 5, pp 263-264 [32] A Fischer (1997), "Stability radii of infinite-dimensional positive systems", Math Control Signals Sys., 10, pp 223-236 [33] A Fischer, D Hinrichsen and N.K Son (1998), "Stability radii of Metzler operators", Vietnam J Math., 26, pp 147-163 [34] A Fisher and J M A M van Neerven (1998), "Robust stability of C0-semigroups and application to stability of delay equations", Journal of Mathematical Analysis and Applications, 226, pp 82-100 [35] P Gahinet, A.J Laub (1992), "Algebraic Riccati equations and the distance to the nearest uncontrollable pair", SIAM J Control Op-tim., 4, pp 765-786 [36] M Gao, M Neumann (1993), "A global minimum search algorithm for estimating the distance to uncontrollability", Linear Algebra and its Applications, 188-189, pp 305-350 [37] M Gu (2000), "New methods for estimating the distance to uncon-trollability", SIAM J Matrix Anal Appl., 21, pp 989-1003 [38] M Gu, E Mengi et al (2006), "Fast methods for estimating the distance to uncontrollability", SIAM J Matrix Anal Appl., 28, pp 447-502 [39] M.L.J Hautus (1969), "Controllability and observability conditions of linear autonomous systems", Nederl Acad Wetensch Proc Ser A, 72, pp 443-448 124 [40] N.T Ha, B Rejanadit, N.V Sanh and N.H Du (2009), "Stability radii for implicit difference equations", Asia-Europian J of Mathe-matics, 2(1) [41] C He (1995), "Estimating the distance to uncontrollability: A fast method and a slow one", Systems & Control Letters, 26, pp 275-281 [42] C He, G.A Watson (1999), "An algorithm for computing the distance to instability", SIAM J Matrix Anal Appl., 20(1), pp 101116 [43] S Hilger (1990), "Analysis on measure chains - a unified approach to continuous and discrete calculus", Results Math., 18, pp 18-56 [44] S Hilger (1988), Ein Ma kettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D thesis, Universitat Wurzburg [45] D Hinrichsen, A.J Pritchard (1986), "Stability radii of linear systems", Systems & Control Letters, 7, pp 1-10 [46] D Hinrichsen, A.J Pritchard (1986), "Stability radius for structured perturbations and the algebraic Riccati equation", Systems & Control Letters, 8, pp 105-113 [47] D Hinrichsen, A.J Pritchard (1990), "Real and Complex stability radii: A survey", In: D Hinrichsen, B Martensson eds Control of Uncertain systems, Progress in System and Control Theory, Basel, Birkhauser, pp 119-162 125 [48] D Hinrichsen, A.J Pritchard (1994), "Robust stability of linear evolution operators on Banach spaces", SIAM J Control Optim., 32(6), pp 1503-1541 [49] D Hinrichsen, B Kelb, and A Linnemann (1989), "An algorithm for the computation of the structured complex stability radius", Automatica, 25, pp 771-775 [50] D Hinrichsen, A Ilchmann, A.J Pritchard (1989), "Robustness of stability of time-varying linear systems", J Differential Equations, 82, pp 219-250 [51] D Hinrichsen, N.K Son (1989), "The complex stability radius of discrete-time systems and symplectic pencils", Proceedings of the 28th IEEE Conference on Decision and Control, 1-3, pp 2265-2270 [52] D Hinrichsen, N.K Son (1991), "Stability radii of linear discretetime systems and symplectic pencils", Int J Robust Nonlinear Con-trol, 1, pp 79-97 [53] D Hinrichsen, N.K Son (1998), "Stability radii of positive discrete-time systems under affine parameter perturbations", Int J Robust Nonlinear Control, 8, pp 1969-1988 [54] D Hinrichsen, N.K Son (1998), " -analysis and robust stability of positive linear systems", Appl Math and Comp Sci., 8(2), pp 253-268 [55] D Hinrichsen, N.K Son and P.H.A Ngoc (2003), "Stability radii of higher order positive difference systems", Systems & Control Letters, 49, pp 377-388 126 [56] R Horn and C Johnson (1985), Matrix Analysis, Cambridge Uni-versity Press, London [57] G Hu and E.J Davison (2004), "Real controllability/stabilizability radius of LTI systems", IEEE Trans Automat Control, 49(2), pp 254.257 [58] B Jacob (1998), "A formula for the stability radius of timevarying systems", J Differential Equations, 142, pp 167-187 [59] R.E Kalman (1960),"Contributions to the theory of optimal control", Bul Soc Math Mexicana, 5, pp 102-119 [60] M Karow, D Kressner (2009), "On the structured distance to un-controllability", Systems & Control Letters, 58, pp 128-132 [61] T Kato (1976), Perturbation Theory for Linear Operator, Springer Verlag, Berlin-Heidelberg-New York [62] D.C Khanh, D.D.X Thanh (2006), "Controllability radii and stabi-lizability radii of time-invariant linear systems", Vietnam J Math., 34, pp 495-499 [63] V I Korobov et al (1975), "Controllability of linear autonomous systems with restraints on control", Differenfsiafnye Urauneniya, 11, pp 1967-1979 [64] M.G Krein and M.A Rutman (1948), "Linear operators leaving invariant a cone in Banach space", Uspekhi Mat Nauk, 3, pp 3-95 [65] E.B Lee, L Markus (1967), Foundations of Optimal Control Theory, John Willey, New York 127 [66] A Lewis, R Henrion, A Seerger (2006), "Distance to uncontrollability for convex processes", SIAM J Control Optim., 45, pp 26-50 [67] C.F Van Loan (1976), "Generalizing the singular value decomposi-tion", SIAM J Numer Anal., 13, pp 76-83 [68] C.F Van Loan (1985), "How near is a stable matrix to an unstable matrix", In Contemporary Mathematics, Linear Algebra and Systems Theory, American Mathematical Society, 47, pp 465-478 [69] P Losse and V Mehrmann (2008), "Controllability and observabil-ity of second order descriptor systems", SIAM J Control Optim., 47, pp 1351-1379 [70] V Mehrmann, R Nabben and E Virnik (2008), "Generalisation of the Perron-Frobenius theory to matrix pencils", Linear Algebra and its Applications, 428, pp 20-38 [71] E Mengi (2006), "On the estimation of the distance to uncontrollability for higher order systems", SIAM J Matrix Anal Appl., 30, ap [72] 154-172 P.H.A Ngoc, N.K Son (2004), "Stability radii of linear systems under multi-perturbations", Numer Funct Anal Optim., 25(3-4), ap [73] 221-238 P.H.A Ngoc, B.S Lee and N.K Son (2004), "Perron Frobenius the-orem for positive polynomial matrices", Vietnam J Math., 32, pp 475-481 128 [74] P.H.A Ngoc, N.K Son (2005), "Stability radii of positive linear functional differential equations under multi-perturbations", SIAM J [75] Control Optim., 43, pp 2278-2295 P.H.A Ngoc (2007), "Stability radii of positive linear VolterraStieltjes equations", J Differential Equations, 243(1), pp 101-122 [76] P.H.A Ngoc, T Naito, J.S Shin, S Murakami (2008), "On stability and robust stability of positive linear Volterra equations", SIAM J Control Optim., 47(2), pp 975-996 [77] C.C Paige (1981), "Properties of numerical algorithms relating to controllability", IEEE Trans Automat Control, AC-26, pp 130138 [78] J Pena (2005), "On the block-structured distance to nonsurjectivity of sublinear mappings", Math Programming Ser A, 103, pp 561-573 [79] V.N Phat, P.T Nam (2007), "Exponential stability and stabiliza-tion of uncertain linear time-varying systems using parameter dependent Lyapunov function", Int J Control, 80(8), pp 1333-1341 [80] C Potzsche, S Siegmund and F Wirth (2003), "A spectral charac-terization of exponential stability for linear time-invariant systems on time scales", Discrete and Continuous Dynamical System, 9(5), pp 1123-1241 [81] A.J Pritchard, S Townley (1989), "Robustness of linear systems", J Differential Equations, 77(2), pp 254-286 129 [82] L Qiu, B Bernhardsson, A Rantzer, E.J Davison, P.M Young and J.C Doyle (1995), "A formula for computation of the real stability radius", Automatica, 31, pp 879-890 [83] J Renegar (1994), "Some perturbation theory for linear program-ming", Math Programming, 65, pp 73-91 [84] B Shafai, J Chen and M Kothandaraman (1997), "Explicit formulas for stability radii of nonnegative and Metzlerian matrices", IEEE Trans Automat Control, 42, pp 265-270 [85] N.K Son, P.H.A Ngoc (1999), "Robust stability of positive linear time delay systems under affine parameter perturbations", Acta Math Vietnam., 24, pp 353-372 [86] N.K Son, P.H.A Ngoc (2001), "Robust stability of linear functional differential equations", Adv Studies in Contemporary Math., 3, pp 43-59 [87] N.K Son (1980), "Local controllability of linear systems with restrained controls in Banach space", Acta Math Vietnam., 5, pp 78-87 [88] N.K Son and D.D Thuan (2008), "Controllability radius of linear systems with perturbed control sets", Vietnam J Math., 36(2), pp 239-251 [89] N.K Son and D.D Thuan (2008), "Controllability radius of linear systems under structured perturbations", Vietnam J Math., 36(4), pp 473-479 130 [90] N.K Son, D.D Thuan (2010), "Structured distance to uncontrollability under multi-perturbations: an approach using multi-valued linear operators", Systems & Control Letters, 59, pp 476-483 [91] N.K Son and D.D Thuan (2010), "The structured controllability radii of higher order descriptor systems", Vietnam J Math., 38(3), pp 373-380 [92] N.K Son, D.D Thuan (2011), "On the radius of surjectivity for rectangular matrices and its applications to measuring stabilizability of linear systems under structured perturbations", J Nonlinear and Convex Anal., 12, no 3, pp 441-453 [93] N.K Son, D.D Thuan (2012), "The structured distance to nonsurjectivity and its applications to calculating the controllability radius of descriptor systems", J Math Anal Appl., 388, pp 272281 [94] D.D.X Thanh, D.N Vu (2008), "An algorithm for computing a gen-eralized problem of controllability radii", Proceedings of the IEEE Inter Conference on Research Innovation and Vision for the Future in Computing and Communication Technology, ISBN 1-4244-2379-8, IEEE Xplore, pp 17-22 [95] H Tuy (1997), Convex Analysis and Global Optimization, Kluwer Acad Publ., Amsterdam [96] F Wirth, D Hinrichsen (1994), "On stability radii of infinitedimensional time-varying descrete-time systems", IMA J Math Control Inform., 11, pp 253-276 131 [97] F Wirth (1998), "On the calculation of real time-varying stability radii", Int J Robust Nonlinear Control, 8, pp 1043-1058 [98] Z Yun, Y Chengwu (1993), "Formulae for the distance between controllable and uncontrollable linear systems", Systems & Control Letters, 21, pp 173-180 [99] E.L Yip, R.F Sincovec (1981), "Solvability, controllability and ob-servability of continuous descriptor systems", IEEE Trans Automat Control, AC-26, pp 702-707 [100] J Zabczyk (1992), Mathematical control theory: An introduction, : : Birkhauser, Boston Basel Berlin 132

Ngày đăng: 13/11/2020, 16:06

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w