1. Trang chủ
  2. » Giáo án - Bài giảng

de thi dap an thi casio 9 19-3-2010

6 396 8
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 118 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI KHU VỰC GIẢI TOÁN TRÊN MÁY TÍNH CẦM TAY ĐỀ THI CHÍNH THỨC NĂM 2010 Môn toán Lớp 9 Cấp THCS Thời gian thi: 150 phút (Không kể thời gian giao đề) Ngày thi: 19/03/2010. Bài 1. (5 điểm). Tính giá trị của các biểu thức sau : a. 1 1 1 1 A= + . 1 3 3 5 5 7 2009 2011 + + + + + + + b. 2 2 2 2 2 2 1 1 1 1 1 1 B= 1 1 . 1 1 2 2 3 2009 2010 + + + + + + + + + c. C 291945 831910 2631931 322010 1981945= + + + + Kết quả A = +++…+ = +++…+ = = ≈ 21,92209 B = ++…+ = 1+ – +1+ – +…+1+ – = 2010 – ≈ 2009,99950 C ≈ 541,16354 Bài 2. (5 điểm) a. Một người gửi tiết kiệm 250.000.000 (đồng) loại kỳ hạn 3 tháng vào ngân hàng với lãi suất 10,45% một năm. Hỏi sau 10 năm 9 tháng , người đó nhận được bao nhiêu tiền cả vốn lẫn lãi. Biết rằng người đó không rút lãi ở tất cả các định kỳ trước đó. b. Nếu với số tiền ở câu a, người đó gửi tiết kiệm theo loại kỳ hạn 6 tháng với lãi suất 10,5% một năm thì sau 10 năm 9 tháng sẽ nhận được bao nhiêu tiền cả vốn lẫn lãi. Biết rằng người đó không rút lãi ở tất cả các định kỳ trước và nếu rút tiền trước thời hạn thì ngân hàng trả lãi suất theo loại không kỳ hạn là 0,015% một ngày ( 1 tháng tính bằng 30 ngày ). c. Một người hàng tháng gửi tiết kiệm 10.000.000 (đồng) vào ngân hàng với lãi suất 0,84% một tháng. Hỏi sau 5 năm , người đó nhận được bao nhiêu tiền cả vốn lẫn lãi. Biết rằng người đó không rút lãi ra. Kết quả a. Gọi a là số tiền gửi ban đầu, r là lãi suất một kỳ hạn và n là số kỳ hạn thì số tiền cả vốn lẫn lãi sau n kỳ hạn là : A = a(1+r) n + Lãi suất một kỳ hạn 3 tháng là .3 = 2,6125% + 10 năm 9 tháng = 129 tháng = 43 kỳ hạn + Số tiền nhận được sau 10 năm 9 tháng là : A = 250 000 000 43 = 757 794 696,8 đ b. + Lãi suất một kỳ hạn 6 tháng là .6 = 5,25% 1 + 10 năm 9 tháng = 129 tháng = 21 kỳ hạn cộng thêm 90 ngày + Số tiền nhận được sau 10 năm 6 tháng là : B = 250 000 000(1+) 21 = 732 156 973,7 đ + Số tiền B được tính lãi suất không kỳ hạn trong 90 ngày tiếp theo, nhận được số lãi là : C = 732 156 973,7 . . 90 = 98 841 191,45 đ + Và số tiền nhận được sau 10 năm 9 tháng là : B + C = 830 998 165,15 đồng. c. Gọi lãi suất hàng tháng là x, số tiền gốc ban đầu là a đồng + Số tiền cả gốc và lãi cuối tháng 1 là : a + ax = a(1+ x) đ + Số tiền gốc đầu tháng 2 là : a(1+x) + a = a[(1+x)+1] = [(1+x) 2 –1] = [(1+x) 2 –1] đ + Số tiền cả gốc và lãi cuối tháng 2 là : [(1+x) 2 –1] + [(1+x) 2 –1].x = [(1+x) 3 –(1+x)] + Số tiền gốc đầu tháng 3 là : [(1+x) 3 –(1+x)] + a = [(1+x) 3 –(1+x)+x] = [(1+x) 3 – 1] đ + Số tiền cả gốc và lãi cuối tháng 3 là : [(1+x) 3 – 1] + [(1+x) 3 – 1].x = [(1+x) 3 – 1](1+x) + Tương tự, đến cuối tháng n thì số tiền cả gốc và lãi là : [(1+x) n – 1](1+x) đồng Với a = 10 000 000 đồng, x = 0,84%, n = 60 tháng thì số tiền nhận được là : D = [(1+ 0,0084) 60 –1](1+ 0,0084) = 782 528 635,8 đồng Bài 3. (5 điểm) a. Tìm giá trị của x biết. x 3 0 1 2 2 2 1 1 2005 6 1 9 2006 3 1 9 2007 1 1 9 2008 9 1 2 2009 3 3 2 1 5 + = + + + + + + + + + + + + + b. Tìm x ,y biết : 14044 1 1 1 12343 7 1 3 1 1 1 9 1 x y = + + + + + + Kết quả a. x = – 2,57961 b. x = 7 ; y = 6 Bài 4. (5 điểm) Tìm số dư ( trình bày cả cách giải) trong các phép chia sau: a. 2009 2010 : 2011 ; b. 2009201020112012 : 2020 ; c. 1234567890987654321 : 2010 ; 2 Kết quả a. 2009 2 ≡ 4(mod 2011) ⇒ 2009 30 ≡ 4 15 ≡ 550 (mod 2011) ⇒ 2009 2010 ≡ 550 67 (mod 2011) Ta có : 550 2 ≡ 850 (mod 2011) ⇒ 550 6 ≡ 850 3 ≡ 1798 (mod 2011) ⇒ 550 18 ≡ 1798 3 ≡ 1269 (mod 2011) ⇒ 550 54 ≡ 1269 3 ≡ 74 (mod 2011) Mà 550 12 ≡ 1798 2 ≡ 1127 (mod 2011) Nên 550 67 ≡ 74.1127.550 ≡ 1 (mod 2011) Do đó 2009 2010 ≡ 1 (mod 2011) Vậy số dư trong phép chia 2009 2010 : 2011 là 1 b. Số dư trong phép chia 200920102 : 2020 là 802 Số dư trong phép chia 802011201 : 2020 là 501 Số dư trong phép chia 5012 : 2020 là 972 Vậy số dư trong phép chia 2009201020112012 : 2020 là 972 c. Số dư trong phép chia 1234567890987654321 : 2020 là 471 Bài 5. (5 điểm) a. Cho a = 11994 ; b = 153923 ; c = 129935. Tìm ƯCLN( a ; b; c) và BCNN( a; b; c); b. 5 3 3 2 2 3 3 2 2 2 3x y 4x y 3x y 7x P(x, y) x y x y x y 7 - + - = + + + với x = 1,23456 ; y = 3,121235 Kết quả a. + Ta có = = ⇒ ƯCLN(a,b) = 11994 : 6 = 1999 Và ƯCLN(1999,c) =1999. Vậy ƯCLN(a,b,c) =1999 + BCNN(a,b) = 11994 . 77 = 923538 Ta có = = ⇒ BCNN(923538,c) = 923538 . 65 = 60029970 Vậy BCNN(a,b,c) = 60029970 b. 1,23456 3,121235 Ghi vào máy biểu thức (3X 5 Y 3 – 4X 3 Y 2 + 3X 2 Y – 7X) : (X 3 Y 3 + X 2 Y 2 + X 2 Y + 7) Ấn được kết quả là : 2,313486662 Vậy P = 2,31349 Bài 6. (5 điểm) a. Viết giá trị của biểu thức sau dưới dạng số thập phân 2 o ' o ' o ' 2 o ' 2 o ' 2 o ' sin 33 12 sin 56 48.sin 33 12 sin 56 48 A 2sin 33 12 sin 56 48 1 + - = + + b. Tính các tích sau : B = 26031931 x 26032010 ; C = 2632655555 x 2632699999 . Kết quả a. Ta có : A = = 3 = Kết quả A ≈ 0,02515 b. Đặt x = 2603; y = 1931, ta có : B = (x.10 4 + y)(x.10 4 + y + 79) = x 2 .10 8 + 2xy.10 4 + 79x.10 4 + y 2 + 79y Kết hợp tính trên máy và ghi trên giấy, ta được : x 2 .10 8 677560900000000 2xy.10 4 100527860000 79x.10 4 2056370000 y 2 3728761 79y 152549 B 677663488111310 b. Đặt x = 26326 ; y = 55555 ; z = 99999, ta có : C = (x.10 5 + y)(x.10 5 + z) = x 2 .10 10 + xy.10 5 + xz.10 5 + yz Kết hợp tính trên máy và ghi trên giấy, ta được : x 2 .10 10 6930582760000000000 xy.10 5 146254093000000 xz.10 5 263257367400000 yz 5555444445 B 6930992277015844445 Bài 7. (5 điểm) Tìm tứ giác có diện tích lớn nhất nội tiếp trong đường tròn ( O , R) cố định ( trình bày cả cách giải) Tính chu vi và diện tích tứ giác đó biết R = 5, 2358( m) Kết quả a. Dựng hình vuông ABCD và tứ giác MNPQ cùng nội tiếp với đường tròn (O) sao cho MP ⊥ BD Ta sẽ chứng minh S MNPQ lớn nhất khi MNPQ là h.vuông. Thật vậy, gọi h là chiều cao ∆MNP, h’ là chiều cao ∆MBP thì h < h’ ⇒ S MNP = < = S MBP dấu ‘=’ xảy ra khi N ≡ B là điểm chính giữa cung MP. Do đó, ta có : S MNPQ = S MNP + S MPQ < S MBP + S MDP = S MBPD = S MBD + S PBD < S ABD + S CBD = S ABCD Dấu ‘=’ xảy ra khi và chỉ khi MNPQ trùng với ABCD, tức là MNPQ là hình vuông. S ABCD = = 2R 2 = 2(5,2358) 2 = 54,82720328 Vậy S ABCD = 54,82720 (cm 2 ) P ABCD = 4.AB = 4R = 4.5,2358 = 29,61815748 Vậy P ABCD = 29,61816 (cm) Bài 8. ( 5 điểm) Cho đa thức 5 4 3 2 P(x) x ax bx cx dx 6= + + + + + a. Xác định các hệ số a, b, c, d biết P (–1) = 3 ; P(1) = 21 ; P(2) = 120 ; P(3) = 543 ; b. Tính giá trị của đa thức tại x = –2,468 ; x = 5,555 ; c. Tìm số dư trong phép chia đa thức P( x ) cho x + 3 và 2x – 5 . Kết quả 4 a. Ta có hệ phương trình : ⇒ Vậy P(x) = x 5 + 2x 4 + 3x 3 + 4x 2 + 5x + 6 b. P(–2,468) = – 44,43691 và P(5,555) = 7865,46086 c. Số dư trong phép chia P(x):(x + 3) là P(–3) = –135 Số dư trong phép chia P(x):(2x – 5) là P() = 266,15625 Bài 9. (5 điểm) Cho dãy số : ( ) ( ) n n n 9- 11 - 9+ 11 U = 2 11 với n = 0; 1; 2; 3; … a. Tính 5 số hạng U 0 ; U 1 ; U 2 ; U 3 ; U 4 . b. Trình bày cách tìm công thức truy hồi U n+2 theo U n+1 và U n . c. Viết quy trình ấn phím liên tục tính U n+2 theo U n+1 và U n . Từ đó tính U 5 và U 10 Kết quả a. Thay n = 0 ; 1 ; 2 ; 3 ; 4 vào công thức ta được : n 0 1 2 3 4 U n 0 –1 –18 –254 –3312 b. Cho U n + 2 = aU n + 1 + bU n + c. Thay n = 0 ; 1 ; 2 vào công thức, ta được hệ phương trình : ⇒ ⇒ Vậy U n + 2 = 18U n + 1 – 70U n c. Quy trình bấm phím liên tục tính U n + 2 trên máy Casio 570MS, 570ES : Đưa U 1 vào A, tính U 2 rồi đưa vào B: – 1 18 – 700 Lặp lại dãy phím : 18 – 70 (được U 3 ) 18 – 70 (được U 4 ) Do đó tính được U 5 = – 41836 Và U 9 = – 982396816, ghi giấy rồi tính được U 10 = – 12105999648 Bài 10. (5 điểm) Cho hình chữ nhật ABCD chứa vừa khít 3 đường tròn trong nó ( hình vẽ) , biết bán kính đường của đường tròn bằng 20 cm a. Tính diện tích phần hình phẳng nằm ngoài các hình tròn trong hình vẽ . b. Cho hình chữ nhật ABCD quay một vòng xung quanh trục là đường thẳng đi qua tâm của các đường tròn . Tính thể tích vật thể được tạo nên bởi phần hình tìm được ở câu a Kết quả a. Ta có BC = 2R = 40 cm; AC = 6R = 120 cm + Diện tích hình chữ nhật ABCD là : S 1 = AB.AC = 4800 cm 2 + Diện tích mỗi hình tròn là : S 2 = πR 2 = 400π cm 2 + Diện tích cần tìm là : S = S 1 – 3S 2 = 4800 – 1200π (cm 2 ) S ≈ 1030,08881 (cm 2 ) b. Khi cho hình trên quay một vòng quanh trục là đường thẳng qua tâm của các hình tròn thì h.chữ nhật tạo nên một hình trụ có bán kính đáy 5 bằng R = 20 cm; mỗi hình tròn tạo nên một hình cầu bán kính R = 20 cm + Thể tích hình trụ là : V 1 = πR 2 h = π.20 2 .120 = 48000π (cm 3 ) + Thể tích mỗi hình cầu là : V 2 = πR 3 = π.20 3 = (cm 3 ) + Thể tích cần tìm là : V = V 1 – 3V 2 = 16000π (cm 3 ) V ≈ 50265,48264 (cm 3 ) 6 . = 1 199 4 : 6 = 199 9 Và ƯCLN( 199 9,c) = 199 9. Vậy ƯCLN(a,b,c) = 199 9 + BCNN(a,b) = 1 199 4 . 77 = 92 3538 Ta có = = ⇒ BCNN (92 3538,c) = 92 3538 . 65 = 600 299 70 Vậy. 1 . 1 1 2 2 3 20 09 2010 + + + + + + + + + c. C 291 945 83 191 0 263 193 1 322010 198 194 5= + + + + Kết quả A = +++…+ = +++…+ = = ≈ 21 ,92 2 09 B = ++…+ = 1+ –

Ngày đăng: 20/10/2013, 01:11

TỪ KHÓA LIÊN QUAN

w