1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Các chuyên đề Toán lớp 9

68 52 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 68
Dung lượng 1,03 MB

Nội dung

PHẦN I: ĐẠI SỐ CHỦ ĐỀ 1: CĂN THỨC – BIẾN ĐỔI CĂN THỨC Dạng 1: Tìm điều kiện để biểu thức có chứa thức có nghĩa Bài 1: Tìm x để biểu thức sau có nghĩa.( Tìm ĐKXĐ biểu thức sau) 1) 3x  8) x2  2)  2x 9) x2  3) 4) 5) 6) 7) 7x  14 2x  3 x x  3x  11) 2x  5x  12) 7x  x3 7x 2x  x 10) 13) 14) x  5x  x 3  3x 5x 6x   x  Dạng 2: Biến đổi đơn giản thức Bài 1: Đưa thừa số vào dấu a) ; b) x (víi x  0); x c) x ; d) (x  5) x ; 25  x e) x Bài 2: Thực phép tính a) ( 28  14  )   ; d) b) (   10 )(  0,4) ; e) c) (15 50  200  450 ) : 10 ; f) g) 20  14  20  14 ; 3; Bài 3: Thực phép tính h)    5; 11   11  3 7 3 7 26  15  26  15 x2 a) ( 3 216  ) 82 b) 14  15   ): 1 1 7 c)    15  10 Bài 4: Thực phép tính a) (4  15 )( 10  6)  15 c) 3  3  e) 6,5  12  6,5  12  b) d) (3  5)   (3  5)  4  4  Bài 5: Rút gọn biểu thức sau: a) c)  24    24  52 52  5 5 b) d) 3 1 1  3 1 1 3 3  3 3 Bài 6: Rút gọn biểu thức: a)   13  48 c) b)   48  10  1 1     1 2 3 99  100 Bài 7: Rút gọn biểu thức sau: a) a b b a ab : a b , víi a  0, b  vµ a  b  a  a  a  a    , víi a  vµ a  b)     a  a     a a   2a  a ; a4 d)  5a (1  4a  4a ) 2a  c) e) 3x  6xy  3y 2  x2  y2 Bài 8: Tính giá trị biểu thức a) A  x  3x y  2y, x  2 ;y  94 b) B  x  12x  víi x  4(  1)  4(  1) ; c) C  x  y , biÕt x    x  y  y   3; d) D  16  2x  x   2x  x , biÕt 16  2x  x   2x  x  e) E  x  y  y  x , biÕt xy  (1  x )(1  y )  a Dạng 3: Bài tốn tổng hợp kiến thức kỹ tính tốn x 3 x 1  Bài 1: Cho biểu thức P  a) Rút gọn P b) Tính giá trị P x = 4(2 - ) c) Tính giá trị nhỏ P Bài 2: Xét biểu thức A  a2  a 2a  a   a  a 1 a a) Rút gọn A b) Biết a > 1, so sánh A với A c) Tìm a để A = d) Tìm giá trị nhỏ A Bài 3: Cho biểu thức C  1 x   x  2 x  1 x a) Rút gọn biểu thức C b) Tính giá trị C với x  c) Tính giá trị x để C  Bài 4: Cho biểu thức M  a) Rút gọn M  a  1  2 a b  a  b2 a  b :  2  a a b a  b b) Tính giá trị M c) Tìm điều kiện a, b để M <  x 2 x   (1  x)   x  x    x 1 Bài 5: Xét biểu thức P   a) Rút gọn P b) Chứng minh < x < P > c) Tìm giá trị lơn P Bài 6: Xét biểu thức Q  x 9 x  x 1   x 5 x 6 x 2 3 x a) Rút gọn Q b) Tìm giá trị x để Q < c) Tìm giá trị nguyên x để giá trị tương ứng Q số nguyên  xy x  y3   Bài 7: Xét biểu thức H   x y xy   :     x  y  xy x y a) Rút gọn H b) Chứng minh H ≥ c) So sánh H với H  Bài 8: Xét biểu thức A  1    a   a :     a    a  a a  a  a   a) Rút gọn A b) Tìm giá trị a cho A > c) Tính giá trị A a  2007  2006 Bài 9: Xét biểu thức M  3x  9x  x 1 x 2   x x 2 x  1 x a) Rút gọn M b) Tìm giá trị nguyên x để giá trị tương ứng M số nguyên Bài 10: Xét biểu thức P  15 x  11 x  2 x    x  x  1 x x 3 a) Rút gọn P b) Tìm giá trị x cho P  c) So sánh P với Chủ đề 2: PHƯƠNG TRÌNH BẬC HAI – ĐỊNH LÝ VI-ÉT Dạng 1: Giải phương trình bậc hai Bài 1: Giải phương trình 1) x2 – 6x + 14 = ; 2) 4x2 – 8x + = ; 3) 3x2 + 5x + = ; 4) -30x2 + 30x – 7,5 = ; 5) x2 – 4x + = ; 6) x2 – 2x – = ; 7) x2 + 2 x + = 3(x + 8) x2 + x + = (x + 1) ; 2); 9) x2 – 2( - 1)x - = Bài 2: Giải phương trình sau cách nhẩm nghiệm: 1) 3x2 – 11x + = ; 3) x2 – (1 + )x + 2) 5x2 – 17x + 12 = ; =0; 5) 3x2 – 19x – 22 = ; 4) (1 - )x2 – 2(1 + )x + + = ; 6) 5x2 + 24x + 19 = ; 7) ( + 1)x2 + x + - = ; 8) x2 – 11x + 30 = ; 9) x2 – 12x + 27 = ; 10) x2 – 10x + 21 = Dạng 2: Chứng minh phương trình có nghiệm, vơ nghiệm Bài 1: Chứng minh phương trình sau ln có nghiệm 1) x2 – 2(m - 1)x – – m = ; 2) x2 + (m + 1)x + m = ; 3) x2 – (2m – 3)x + m2 – 3m = ; 4) x2 + 2(m + 2)x – 4m – 12 = ; 5) x2 – (2m + 3)x + m2 + 3m + = ; 6) x2 – 2x – (m – 1)(m – 3) = ; 7) x2 – 2mx – m2 – = ; 8) (m + 1)x2 – 2(2m – 1)x – + m = 9) ax2 + (ab + 1)x + b = Bài 2: a) Chứng minh với a, b , c số thực phương trình sau ln có nghiệm: (x – a)(x – b) + (x – b)(x – c) + (x – c)(x – a) = b) Chứng minh với ba số thức a, b , c phân biệt phương trình sau có hai nghiệm phân biết: 1    (Èn x) xa xb xc c) Chứng minh phương trình: c2x2 + (a2 – b2 – c2)x + b2 = vô nghiệm với a, b, c độ dài ba cạnh tam giác d) Chứng minh phương trình bậc hai: (a + b)2x2 – (a – b)(a2 – b2)x – 2ab(a2 + b2) = ln có hai nghiệm phân biệt Bài 3: a) Chứng minh phương trình bậc hai sau có nghiệm: ax2 + 2bx + c = (1) bx2 + 2cx + a = (2) cx2 + 2ax + b = (3) x2 + 2ax + 4b2 = (1) x2 - 2bx + 4a2 = (2) x2 - 4ax + b2 = (3) x2 + 4bx + a2 = (4) b) Cho bốn phương trình (ẩn x) sau: Chứng minh phương trình có phương trình có nghiệm c) Cho phương trình (ẩn x sau): 2b b  c x 0 bc ca 2c c  a bx  x 0 ca ab 2a a  b cx  x 0 ab bc ax  (1) (2) (3) với a, b, c số dương cho trước Chứng minh phương trình có phương trình có nghiệm Bài 4: a) Cho phương trình ax2 + bx + c = Biết a ≠ 5a + 4b + 6c = 0, chứng minh phương trình cho có hai nghiệm b) Chứng minh phương trình ax2 + bx + c = ( a ≠ 0) có hai nghiệm hai điều kiện sau thoả mãn: a(a + 2b + 4c) < ; 5a + 3b + 2c = Dạng 3: Tính giá trị biểu thức đối xứng, lập phương trình bậc hai nhờ nghiệm phương trình bậc hai cho trước Bài 1: Gọi x1 ; x2 nghiệm phương trình: x2 – 3x – = Tính: A  x1  x ; C 1  ; x1  x  E  x1  x ; 3 Lập phương trình bậc hai có nghiệm B  x1  x ; D  3x1  x 3x  x1 ; F  x1  x 4 1 vµ x1  x2  Bài 2: Gọi x1 ; x2 hai nghiệm phương trình: 5x2 – 3x – = Khơng giải phương trình, tính giá trị biểu thức sau: A  2x1  3x1 x  2x  3x1x ; 3 2 1 x x1 x x  B        ; x x  x1 x1   x1 x  3x  5x1x  3x C 2 4x1x  4x1 x 2 Bài 3: a) Gọi p q nghiệm phương trình bậc hai: 3x2 + 7x + = Khơng giải phương trình thành lập phương trình bậc hai với hệ số số mà nghiệm b) Lập phương trình bậc hai có nghiệm p q vµ q 1 p 1 1 vµ 10  72 10  Bài 4: Cho phương trình x2 – 2(m -1)x – m = a) Chứng minh phương trình ln ln có hai nghiệm x1 ; x2 với m b) Với m ≠ 0, lập phương trình ẩn y thoả mãn y1  x1  1 vµ y  x  x2 x1 Bài 5: Khơng giải phương trình 3x2 + 5x – = Hãy tính giá trị biểu thức sau: A  3x1  2x 3x  2x1 ; B x1 x  ; x  x1  C  x1  x2 ; D x1  x   x1 x2 Bài 6: Cho phương trình 2x2 – 4x – 10 = có hai nghiệm x1 ; x2 Khơng giải phương trình thiết lập phương trình ẩn y có hai nghiệm y1 ; y2 thoả mãn: y1 = 2x1 – x2 ; y2 = 2x2 – x1 Bài 7: Cho phương trình 2x2 – 3x – = có hai nghiệm x1 ; x2 Hãy thiết lập phương trình ẩn y có hai nghiệm y1 ; y2 thoả mãn: y  x  a)  y  x  2  x1 y  x2  b)  x2  y  x  Bài 8: Cho phương trình x2 + x – = có hai nghiệm x1 ; x2 Hãy thiết lập phương trình ẩn y có hai nghiệm y1 ; y2 thoả mãn: x1 x  y  y    x x1  a)  ; y y    3x  3x  y y  y  y  x  x 2 b)   y  y 2  5x  5x  Bài 9: Cho phương trình 2x2 + 4ax – a = (a tham số, a ≠ 0) có hai nghiệm x1 ; x2 Hãy lập phương trình ẩn y có hai nghiệm y1 ; y2 thoả mãn: y1  y  1 1  vµ   x1  x x1 x y1 y Dạng 4: Tìm điều kiện tham số để phương trình có nghiệm có nghiệm kép,vơ nghiệm Bài 1: a) Cho phương trình (m – 1)x2 + 2(m – 1)x – m = (ẩn x) Xác định m để phương trình có nghiệm kép Tính nghiệm kép b) Cho phương trình (2m – 1)x2 – 2(m + 4)x + 5m + = Tìm m để phương trình có nghiệm a) Cho phương trình: (m – 1)x2 – 2mx + m – = - Tìm điều kiện m để phương trình có nghiệm - Tìm điều kiện m để phương trình có nghiệm kép Tính nghiệm kép b) Cho phương trình: (a – 3)x2 – 2(a – 1)x + a – = Tìm a để phương trình có hai nghiệm phân biệt Bài 2: a) Cho phương trình: 4x 22m  1x   m2  m   2 x  2x  x 1 Xác định m để phương trình có nghiệm b) Cho phương trình: (m2 + m – 2)(x2 + 4)2 – 4(2m + 1)x(x2 + 4) + 16x2 = Xác định m để phương trình có nghiệm Dạng 5: Xác định tham số để nghiệm phương trình ax2 + bx + c = thoả mãn điều kiện cho trước Bài 1: Cho phương trình: x2 – 2(m + 1)x + 4m = Xác định m để phương trình có nghiệm kép Tìm nghiệm kép Xác định m để phương trình có nghiệm Tính nghiệm cịn lại Với điều kiện m phương trình có hai nghiệm dấu (trái dấu) Với điều kiện m phương trình có hai nghiệm dương (cùng âm) Định m để phương trình có hai nghiệm cho nghiệm gấp đơi nghiệm Định m để phương trình có hai nghiệm x1 ; x2 thoả mãn 2x1 – x2 = - Định m để phương trình có hai nghiệm x1 ; x2 cho A = 2x12 + 2x22 – x1x2 nhận giá trị nhỏ Bài 2: Định m để phương trình có nghiệm thoả mãn hệ thức ra: 1) 2) 3) 4) 5) 6) 7) a) (m + 1)x2 – 2(m + 1)x + m – = ; b) mx2 – (m – 4)x + 2m = ; (4x1 + 1)(4x2 + 1) = 18 2(x12 + x22) = 5x1x2 c) (m – 1)x2 – 2mx + m + = ; 4(x12 + x22) = 5x12x22 d) x2 – (2m + 1)x + m2 + = ; 3x1x2 – 5(x1 + x2) + = Bài 3: Định m để phương trình có nghiệm thoả mãn hệ thức ra: a) x2 + 2mx – 3m – = ; 2x1 – 3x2 = b) x2 – 4mx + 4m2 – m = ; x1 = 3x2 c) mx2 + 2mx + m – = ; 2x1 + x2 + = d) x2 – (3m – 1)x + 2m2 – m = ; e) x2 + (2m – 8)x + 8m3 = ; x1 = x22 x1 = x22 f) x2 – 4x + m2 + 3m = ; x12 + x2 = Bài 4: a) Cho phươnmg trình: (m + 2)x2 – (2m – 1)x – + m = Tìm điều kiện m để phương trình có hai nghiệm phân biệt x1 ; x2 cho nghiệm gấp đôi nghiệm b) Chư phương trình bậc hai: x2 – mx + m – = Tìm m để phương trình có hai nghiệm x1 ; x2 cho biểu thức R  2x1x  đạt giá trị lớn Tìm giá trị lớn x  x  2(1  x1x ) c) Định m để hiệu hai nghiệm phương trình sau mx2 – (m + 3)x + 2m + = Bài 5: Cho phương trình: ax2 + bx + c = (a ≠ 0) Chứng minh điều kiện cần đủ để phương trình có hai nghiệm mà nghiệm gấp đơi nghiệm 9ac = 2b2 ...Ta có BAC = 90 0 ( tam giác ABC vng A); DEB = 90 0 ( góc nội tiếp chắn nửa đường tròn ) => DEB = BAC = 90 0 ; lại có ABC góc chung => DEB   CAB Theo DEB = 90 0 => DEC = 90 0 (vì hai góc ...tia phân giác góc ADE.(1) Theo Ta có SM Ta có MEC = 90 0 (nội tiếp chắn nửa đường trịn (O)) => MEB = 90 0 Tứ giác AMEB có MAB = 90 0 ; MEB = 90 0 => MAB + MEB = 1800 mà hai góc đối nên tứ giác ...B F M 1 2 F E S 2 A B H×nh b Ta có CAB = 90 0 ( tam giác ABC vng A); MDC = 90 0 ( góc nội tiếp chắn nửa đường trịn ) => CDB = 90 0 D A nhìn BC góc 90 0 nên A D nằm đường trịn đường kính BC =>

Ngày đăng: 04/08/2020, 20:25

TỪ KHÓA LIÊN QUAN

w