1. Trang chủ
  2. » Giáo án - Bài giảng

chuyen de BD hsg toan 9

21 659 5
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 585,5 KB

Nội dung

G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk CHUYÊN ĐỀ 1: Phương trình và hệ phương trình. I.Giải phương trình bằng cách đặt ẩn phụ thích hợp. Bài 1:Gpt: .0 1 4 .11 1 2 1 2 .10 2 2 22 =         − − −       − + +       + − x x x x x x Giải: Đặt 1 2 ; 1 2 − + = + − = x x v x x u (1). Ta có: 10.u 2 + v 2 -11.uv = 0 ⇔ (u-v).(10u-v)=0 ⇔ u=v hoặc 10u=v. Xét các trường hợp thay vào (1) ta tìm được x một cách dễ dàng. Bài 2:Gpt: (x 2 - 4x+3).(x 2 - 6x + 8)=15. Giải: Đặt x 2 - 5x + 5 = u (1). Ta có: (x 2 - 4x+3).(x 2 - 6x + 8)=15 ⇔ (x-1).(x-3).(x-2).(x-4)-15=0 ⇔ (x-1).(x-2).(x-3).(x-4)-15=0 ⇔ (x 2 -5x+4).(x 2 -5x+6)-15=0 ⇔ (u-1).(u+1)-15=0 ⇔ u 2 -16=0 ⇔ u= ± 4. Thay các giá trị của u vào (1) ta dễ dàng tìm được x. Bài 3:Gpt: .90 11 2 =       − +       + x x x x Giải: ⇔ 90 )1( 1 )1( 1 . 22 2 =       − + + xx x . 90 )1( 22 . 22 2 2 = − + ⇔ x x x . Đặt u = x 2 ( u ≥ 0) (1). Ta có: 22 2 )1.(902290 )1( 22 . −=+⇔= − + uuu u u u ( u ≠ 1). ⇔ 09018288 2 =+− uu . Từ đây ta dễ dàng tìm được u, thay vào (1) ta tìm được x. Bài 4:Gpt: 3 33 )1.(1232 −=−+ xxx . Giải: Đặt vxux =−= 33 32; (1). Có: ).(4).(3).(4 3333 3 33 vuvuuvvuvuvu +=+++⇔+=+    = −= ⇔=−+⇔=+−+⇔ vu vu vuvuvuvuvu 0)).(.(30)2).(.(3 222 Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 9 1 G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk Xét các trường hợp thay vào (1) ta dễ dàng tìm được x. Bài 5:Gpt: x x xxx 3 22 1 2335 2 23 +=+−++ (1). Giải: Từ (1) suy ra: 162335.2 223 −+=−++ xxxxx xxxxxxxx 122121368121220 232423 −−+++=−++⇒ 0924228 234 =+−+−⇒ xxxx (x ≠ 0). 0 924 228 2 2 =+−+−⇒ x x xx . Đặt y x x =+ 3 (*) ta có: y 2 - 8y + 16 = 0 suy ra y = 4 thay vào (*) ta dễ dàng tìm được x. Bài 6:Gpt: ( ) ).1(018 4 1 ).4.(3)4.(1 =− − + −+−+ x x xxx Giải: Điều kiện x > 4 hoặc x < -1. *Nếu x > 4, (1) trở thành: 018)4).(1(.3)4).(1( =−−++−+ xxxx Đặt 0)4).(1( ≥=−+ yxx (2) ta có: y 2 + 3y -18 = 0. Từ đó ta dễ dàng tìm được y,thay vào (2) ta tìm được x. *Nếu x < -1, (1) trở thành: 018)4).(1(.3)4).(1( =−−+−−+ xxxx Đặt 0)4).(1( ≥=−+ yxx (3) ta có: y 2 - 3y -18 = 0. Từ đó ta dễ dàng tìm được y,thay vào (3) ta tìm được x. Bài 7:Gpt:(2x 2 - 3x +1).(2x 2 + 5x + 1)=9x 2 (1). Giải: (1) 0122044 234 =++−+⇔ xxxx (x ≠ 0).Chia cả hai vế cho x 2 ta được : ⇔ 4x 2 + 4x -20 + 2 12 x x + = 0. ⇔ 024 1 2.2 1 2 2 =−       ++       + x x x x . Đặt y = x x 1 2 + .(2) Ta có: y 2 + 2y -24 = 0. Từ đó ta tìm được y,thay vào (2) ta dễ dàng tìm được x. Bài 8:Gpt: .0168.26416 222 =++−−+− xxxxx Giải: .04.28 =+−−−⇔ xxx Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 9 2 x -∞ 0 4 8 +∞ x-8 - - - 0 + x-4 - - 0 + + x - 0 + + + G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk Đến đây ta xét từng khoảng ,bài toán trở nên đơn giản. Bài 9:Gpt: (1 + x + x 2 ) 2 = 5.(1 + x 2 + x 4 ). Giải: 423242 5552221 xxxxxxx ++=+++++⇔ 022 042224 234 234 =+−+−⇔ =+−+−⇔ xxxx xxxx Nhận thấy x = 0 không phải là nghiệm của phương trình đã cho, vậy x ≠ 0. Chia cả hai vế của phương trình trên cho x 2 ta được: 2x 2 - x + 1 - 0 21 2 =+ x x . Đặt y = x x 1 + (*). Ta có: 2y 2 - y - 3 = 0.Từ đó ta dễ dàng tìm được y, thay vào (*) ta tìm được x. Bài 10: Gpt: (6-x) 4 + (8-x) 4 = 16. Giải: Đặt 7 - x = y (*). Ta có: (y-1) 4 + (y + 1) 4 =16 ⇔ 2y 4 +12 y 2 +2 = 16 ⇔ 2.(y-1).(y+1).(y 2 +7)=0 ⇔ y =1 hoặc y = -1. Thay các giá trị của y tìm được ở trên thay vào (*) ta dễ dàng tìm được các giá trị của x. II.Tìm các nghiệm nguyên (x;y) hoặc (x;y;z) của các phương trình sau: Bài 1: x 2 = y.(y+1).(y+2).(y+3) Giải: Đặt y 2 + 3y = t. Ta có: x 2 = y.(y+1).(y+2).(y+3) = (y 2 + 3y).(y 2 + 3y +2) = t 2 + 2t. *Nếu t > 0 thì t 2 < x 2 = t 2 + 2t < (t+1) 2 suy ra không tồn tại x thỏa mãn. *Nếu t < -2 thì 2t + 4 < 0 nên t 2 + 2t > t 2 + 4t + 4 suy ra t 2 + 2t > t 2 + 4t + 4 = (t+2) 2 . Suy ra: x 2 = t 2 + 2t > (t + 2) 2 (*). Lại có: t 2 +2t < t 2 suy ra x 2 < t 2 (**). Từ (*)&(**) suy ra (t + 2) 2 < x 2 < t 2 suy ra x 2 = (t+1) 2 suy ra t 2 +2t = (t +1) 2 (=x 2 ) Suy ra : t 2 +2t = t 2 +2t +1 (Vô lý). *Nếu t = -1 suy ra x 2 = t 2 +2t = -1 <0 (Vô lý). *Nếu t = 0 suy ra x = 0 ⇒ y = 0 hoặc -1 hoặc -2 hoặc -3 . Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 9 3 G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk Bài 2:    =−+− =+− )2(122 )1(2 2 zxxyx zyx Giải: Từ (2) ta có: 2x 2 - xy+x-2z =1 kết hợp với (1) ta có: 2x 2 - xy+x-2.(2 - x + y)=1 ⇔ 2x 2 -xy +3x-2y-5 =0 .7,1227 2 7 1 2 53 2 ±±=+⇒+⇒Ζ∈ + −+= + −+ =⇔ xx x x x xx y  Từ đó ta tìm được x ⇒ tìm được y ⇒ tìm được z. Bài 3:    =−− =−− )2(1 )1(3 222 zyx zyx Giải: Thay (1) vào (2) ta được: (y + z -3) 2 -y 2 -z 2 =1 ⇔ yz - 3y - 3z = -4 ⇔ (y-3).(z-3) = 5 = 1.5 = (-1).(-5) = 5.1= =(-5).(-1. Từ đó ta tìm được y và z ⇒ tìm được x. Bài 4: 2xy + x + y = 83. Giải: ⇔ .167,11212167 12 167 1 12 2166 2 12 83 ±±=+⇒+⇒Ζ∈ + +−= + − =⇔ + − = yy yy y x y y x  Từ đó ta tìm được y ⇒ tìm được x. Bài 5: .3 =++ y zx x yz z xy Giải: Điều kiện : x,y,z ≠ 0. Nhận xét:Trong ba số x,y,z luôn tồn tại hai số cùng dấu (Theo nguyên tắc Đirichlê có 3 số -3 thỏ mà chỉ có hai chuồng-mọi số nguyên khác 0 chỉ mang dấu âm hoặc dấu dương) Ta có thể giả sử x,y cùng dấu với nhau.Suy ra x.y = xy > 0 và .0, > x y y x Đặt A= .3 =++ y zx x yz z xy Giả sử z <0 khi đó 3 = A = 0000 =++<++ y zx x yz z xy (Vô lý). Vậy z >0.Ta có: A = 3 3 .3 .3 3 zxy x y z y x z z xy y x z x y z z xy y zx x yz z xy =≥++==++    −=== === ⇒==⇒≥⇒ 1,1 1,1 1,1.1 yxz yxz xyzzxy Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 9 4 G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk Bài 6: 2x 2 - 2xy = 5x + y - 19. Giải: Từ bài ra ta có: .17,1121217 12 17 2 12 1952 2 ±±=+⇒+⇒Ζ∈ + ++= + ++ = xx x x x xx y  Từ đó ta tìm được x ⇒ tìm được y. III.Giải hệ phương trình và các phương trình khác. Bài 1: .2 2 11 2 = − + x x Giải: Điều kiện : 2,0 <≠ xx . -Nếu x < 0 thì < − + 2 2 11 x x .2 2 1 2 1 2 <≤ − x Vậy ta xét x > 0: Đặt x = a và bx =− 2 2 (a,b > 0). Ta có:      =+ =+ 2 2 11 22 ba ba Có: 1 1 .2 11 2 ≥⇒≥+= ab abba (1). Lại có: 2 = a 2 + b 2 ≥ 2ab suy ra 1 ≥ ab (2). Từ (1)&(2) suy ra ab = 1 mà a 2 + b 2 =2 nên suy ra (a+b) 2 = 4 suy ra a + b = 2. Vậy ta có: 11 2 1 =⇒==⇒    =+ = xba ba ab . Bài 2: .51632414 4222 +−−=−−++++− yxyyxxx Giải: Điều kiện:        ≥− ≥−−+ ≥+ ≥− )4(016 )3(032 )2(041 )1(04 4 22 2 x yyx x x Từ (4) suy ra x 2 ≥ 4 kết hợp với (1) suy ra x 2 = 4 kết hợp với (2) suy ra x = 2. Phương trình đã cho trở thành: Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 9 5 G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk 51 +−=− yy . Lúc này việc tìm y không còn khó khăn gì nữa (Lập bảng xét dấu). Bài 3: 2x 4 -21x 3 + 74x 2 -105x +50 =0. Giải: Nhận thấy x = 0 không phải là nghiệm của phương trình đã cho. Vậy x ≠ 0.Chia cả hai vế của phương trình đã cho cho x 2 ta được: 026 25 .21 25 .20 50105 74212 2 2 2 =−       +−       +⇔=+−+− x x x x x x xx Đặt y x x =+ 25 ta có: 2y 2 -21.y - 26 = 0.Từ đó ta tìm được y ⇒ tìm ra x. Bài 4:      =−++ =−−+ 71.41 511.2 xx xx Giải: Đặt :      ≥−= ≥+= 01 01 xb xa Hệ đã cho trở thành:    =+ =− 74 52 ba ba Từ đó tìm được a =3,b =1. Đến đây việc tìm ra x không còn khó khăn nữa. Bài 5:      −+= =−+− )2(15 )1(151 xy yx Giải: Thay biểu thức (2) vào phương trình (1) ta có: 11.215151 =−⇔=−−++− xxx . Từ đó ta tìm được x.Việc tìm giá trị của y cũng không có gì khó khan nữa. Bài 6:      =+−+− =−+−+− )2(0332 )1(02445124152 22 22 xyxyyx yxyxyx Giải: Phương trình (2) phân tích được như sau: Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 9 6 G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk (x - y).(x -3 + 2y) = 0    −= = ⇔ yx yx 23 Xét các trường hợp thay vào phương trình (1) ta dễ dàng tìm được x và y. Bài 7: x 3 + (3-m).x 2 + (m-9).x + m 2 -6m + 5 = 0. Giải: Phương trình đã cho phân tích được như sau: [ ] [ ] 0)1(2.)5( 2 =−−−−− mxxmx . Đến đây việc giải và biện luận phương trình không còn khó khăn gì nữa. Bài 8:    =++ =++ xyzzyx zyx 444 1 Giải: Bổ đề: .:,, 222 cabcabcbaRcba ++≥++∈∀ Đẳng thức xảy ra khi và chỉ khi a = b = c. (Dễ dàng chứng minh được bổ đề trên). Sử dụng bổ đề ta có: xyz = x 4 + y 4 + z 4 ≥ x 2 y 2 + y 2 z 2 + z 2 x 2 ≥ xyz.(x + y + z) = xyz. Suy ra các dấu bất đẳng thức ở trên đều phải trở thành đẳng thức tức là ta phải có: x = y =z kết hợp với giả thiết ban đầu :x + y + z =1 ta được: 3 1 === zyx . Bài 9: ( )      +++−=− =+ )2)(2001.( )1(1 2000 20001999 1999 22 xyyxxyyx yx Giải: Điều kiện: x,y .0 ≥ Nhìn nhận phương trình (2) ta thấy: -Nếu x > y thì: VT > 0, VP < 0 suy ra: VT > VP. -Nếu y > x thì: VT <0, VP >0 suy ra: VT < VP. -Nếu x = y khi đó: VT =VP =0. Kết hợp với (1) (Chú ý:x,y .0 ≥ ) ta được: 2 1 == yx . Bài 10: 2.2252.3252 =+−−+−−+ xxxx (1). Giải: (1) ( ) ( ) 2.2332. 2 1 152. 2 1 22 =−−++−⇔ xx 4352152 =−−++−⇔ xx Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 9 7 G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk Ta có: .41525231525234 =+−+−−≥+−+−−= xxxx Vậy dấu bất đẳng thức ở trên phải trở thành dấu đẳng thức tức là: 2 5 7 529 052 0523 ≥≥⇔    −≥ ≥− ⇔≥−− x x x x Vậy nghiệm của phương trình đã cho là:       ∈ 7; 2 5 x . CHUYÊN ĐỀ 2: Bất đẳng thức. Các bài toán tìm giá trị lớn nhất , nhỏ nhất. Bài 1:Cho a,b,c là độ dài của ba cạnh tam giác. CMR: ab + bc + ca ≤ a 2 +b 2 +c 2 < 2.(ab + bc + ca). Giải: Ta có: a 2 +b 2 +c 2 - ab + bc + ca [ ] .0)()()(. 2 1 222 ≥−+−+−= accbba Đẳng thức xảy ra khi và chỉ khi a = b = c. Vậy: ab + bc + ca ≤ a 2 +b 2 +c 2 . Lại có: a < b + c ⇒ a 2 < a.(b + c) (1) Tương tự: b 2 < b.(a + c) (2) ,c 2 < c.(b + a) (3). Cộng (1),(2),(3) theo vế ta được: a 2 +b 2 +c 2 < a.(b + c) + b.(a + c) + c.(b + a) = 2.(ab + bc + ca). Bài 2:Giả sử x > z ; y > z ; z > 0.CMR: xyzyzzxz ≤−+− ).().( (1). Giải: Đặt:    += += nzy mzx (m,n,z > 0). Khi đó (1) trở thành: )).(( nzmzznzm ++≤+ ( ) zn z m nm +       +≤+⇔ .1 (2). Áp dụng BĐT Bunhiacopxki ta có: Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 9 8 G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk ( ) .).(1 .).(1 2 2 mnzn z m mnz z m nzn z m +≥+       +⇔ +=         +≥+       + Vậy (2) đúng, tức là (1) cũng đúng (đpcm). Bài 3:Cho xy > 0 và x + y = 1.CMR: ( ) .5 1 .8 44 ≥++ xy yx Giải: Từ giả thiết .0, 01 0 >⇒    >=+ > yx yx xy Ta có: ).1(4 1 4 1 .21 ≥⇒≥⇒≥+= xy xyxyyx Lại có: ( ) [ ] ( ) [ ] .1 )).(11().(4)).(11.(4.8 2 2 2 2222222442244 =+≥ ≥++=+≥++=+ yx yxyxyxyx Suy ra: 8.(x 4 + y 4 ) 1 ≥ (2). Từ (1) và (2) suy ra: ( ) .541 1 .8 44 =+≥++ xy yx Ta có đpcm. Bài 4:Cho ba số phân biệt a,b,c.CMR:Có ít nhất một trong ba số sau đây là số dương: x = (a + b + c) 2 - 9ab ; y = (a + b + c) 2 - 9cb ; z = (a + b + c) 2 - 9ac. Giải: Ta có: x + y + z = 3. (a + b + c) 2 - 9.(ab + bc + ca) = 3.(a 2 + b 2 +c 2 - ab - bc - ca) = = [ ] .0)()()(. 2 3 222 >−+−+− accbba (Do a ≠ b ≠ c ≠ a). Vậy trong ba số x,y,z luôn có ít nhất một số dương. Bài 5: Nếu    > ≥+ 0 1 ab ba thì 8 1 44 ≥+ ba . Giải: Hoàn toàn tương tự bài 3. Bài 6:CMR: ( ) ( ) ( ) ( ) 4488221010 yxyxyxyx ++≥++ . Giải: Ta có: ( ) ( ) ( ) ( ) 4488221010 yxyxyxyx ++≥++ ( ) ( ) 4444121288221212 yxyxyxyxyxyx +++≥+++⇔ Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 9 9 G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk ( ) ( ) 44448822 yxyxyxyx +≥+⇔ ( ) 0. 62268822 ≥−−+⇔ yxyxyxyx ( ) ( ) ( ) ( ) 0 0 4224 2 2222 662222 ≥++−⇔ ≥−−⇔ yyxxyxyx yxyxyx Bất đẳng thức cuối cùng luôn đúng.Vậy ta có đpcm. Bài 7:CMR: Nếu a,b,c là các số đôi một khác nhau và a + b + c < 0 thì : P = a 3 + b 3 + c 3 - 3abc < 0. Giải: Có: P = a 3 + b 3 + c 3 - 3abc = (a + b + c).(a 2 + b 2 + c 2 - ab - bc - ca) < 0. Bài 8:CMR: 4 1 )12( 1 . 25 1 9 1 2 < + +++= n A với .1, >Ν∈ nn Giải: Dễ dàng biến đổi tương đương chứng minh được:       ++ + + < + )22).(12( 1 )12.(2 1 . 2 1 )12( 1 2 nnnn n Áp dụng ta có: . 4 1 22 1 2 1 . 2 1 22 1 12 1 . 4 1 3 1 3 1 2 1 . 2 1 )22).(12( 1 . 5.4 1 4.3 1 3.2 1 . 2 1 <       + −=       + − + ++−+−= =       ++ ++++< nnn nn A Ta có đpcm. Bài 9:CMR: Nếu: p,q > 0 thì: pq qp qp ≥ + + 22 . Giải: Có: ( ) ( ) .0 . 2 22 ≥ + ++− =− + + qp qpqpqp pq qp qp Ta có đpcm. Bài 10:CMR: kk k 1 1 11 2 − − < với mọi số nguyên dương k >1.Từ đó suy ra: n n 1 2 1 . 3 1 2 1 1 222 −<++++ với n >1. Giải: Ta có: kkkk k 1 1 1 ).1( 11 2 − − = − < . Áp dụng cho k = 2,3, .,n ta được: . 1 2 1 1 1 . 3 1 2 1 2 1 1 1 1 1 . 3 1 2 1 1 222 nnn n −=       − − ++−+−+<++++ Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 9 10 [...]... 3) 3 3 Suy ra: a13 + a 2 + + a n ≡ a1 + a 2 + + a n (mod 3) ≡ 0(mod 3) Ta có đpcm Bài 9: Chứng minh rằng (7.5 2 n +12.6 n ) luôn chia hết cho 19, với mọi số n tự nhiên Giải: Ta có: A = 7.52n + 12.6n = 7.25n + 12.6n Ta có: 25 ≡ 6(mod 19) ⇒ 25 n ≡ 6 n (mod 19) Suy ra: A ≡ 7.6 n +12.6 n ≡ 19. 6 n (mod 19) ≡ 0(mod 19) Ta có đpcm Bài 10: Phân tích thành nhân tử x10 + x5 + 1 Giải: Ta có: x10 + x5 + 1 = (x2... thứ hai là D Tam giác vuông BCD có:BC = BD. Sin( ∠BDC) = 2R.SinA (đpcm) b)Kéo dài AO cắt (O) tại điểm thứ hai là E Hoàn toàn tương tự phần a) ta có:AC=2R.SinB Ta có: SinB= AC AD + CD AD CD < = + = Cos (∠ADB ) + Cos (∠CDB ) = CosC + CosA (1) 2R 2R BD BD Tương tự ta cũng có: SinC < CosA + CosB (2) và SinA < CosB + CosC (3) Chuyên Đề Bồi Dưỡng Học Sinh Giỏi 20 Toán 9 G/v: Trần Văn Đào – Trường THCS Hoàng... điểm I của DE chạy trên một đường thẳng cố định Giải: a)Nhận thấy các tứ giác ADMC và MABE là các tứ giác nội tiếp.Do đó: ∠DCM = ∠DAM và ∠MCE = ∠MBE = ∠MAB.Vậy: ∠DCE = ∠DCM + ∠MCE = ∠DAM + ∠MAB = 90 0 18 Chuyên Đề Bồi Dưỡng Học Sinh Giỏi Toán 9 G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk Ta có đpcm b)Vì tam giác DCE vuông ở C nên ta có thể nhận thấy ngay ∠DCA = 90 0 - ∠ECB... H của DE Giải: a) Ta có: góc BNM = góc ABC =góc ACB =góc BNA vậy tia NM đi qua A Chứng minh tam giác ABN đồng dạng với tam giác AMB suy ra AM.AN = AB2 không đổi c)Gọi K là điểm chính giữa của cung BC ( không chứa A) Dễ thấy D,E lần lượt nằm trên BK và CK Từ K,D,E lần lượt hạ các đường vuông góc với BC tại I.J,L Ta có: BD CE BJ CL 1 BM 1 CM 1 BM + CM + = + = + = =1 BK CK BI CI 2 BI 2 CI 2 BI BD CE... x−y Ta có đpcm Bài 12:Cho tam giác ABC có các cạnh thỏa mãn: a ≤ b ≤ c CMR: ( a + b + c ) 2 ≤ 9bc Giải: Từ giả thiết bài ra ta có: 2b ≥ b + a > c ⇒ 4b − c > 0 ⇒ (b − c).(4b − c) ≤ 0 ⇒ 4b 2 + c 2 ≤ 5bc ⇒ ( 2b + c ) ≤ 9bc(1) 2 Mà: (a + b + c)2 ≤ (2b + c)2 (2) Từ (1) và (2) suy ra: (a + b + c)2 ≤ (2b + c)2 ≤ 9bc Ta có đpcm Bài 13: Cho 0 < a,b,c < 2.CMR:Ba số a.(2-b) ; b.(2-c) ; c.(2-a) không đồng thời... CK Từ K,D,E lần lượt hạ các đường vuông góc với BC tại I.J,L Ta có: BD CE BJ CL 1 BM 1 CM 1 BM + CM + = + = + = =1 BK CK BI CI 2 BI 2 CI 2 BI BD CE ⇒ + = 1 ⇒ BD + CE = CK = khoâng ñoåi CK CK d) Hạ HQ vuông góc với BC.Có: 1 KI DJ + EL KI  BD CE  KI =  + HQ = ( DJ + EL) = Nên H nằm trên đ ường thẳng song song với ÷= 2 2 KI 2  BK CK  2 BC cách BC một khoảng bằng nửa khoảng cách KI , Vì D , E... hợp các điểm P c)CMR: MA.MB = |OA2 - OM2| Giải: a)Gọi I,T lần lượt là các điểm tiếp xúc của tiếp tuyến kẻ từ A và B Dễ thấy: ∆OIA = ∆OTB (cạnh huyền-cạnh góc vuông) Chuyên Đề Bồi Dưỡng Học Sinh Giỏi 19 Toán 9 G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk Do đó: ∠IAO = ∠OBT.Suy ra tứ giác OAMB nội tiếp được b) Có: ∠APB = 1 1 ∠AMB = (1800- ∠AOB)= const 2 2 Vậy có thể chứng... cân ∠PEF = ∠PQN (đồng vị) mà ∠FEM = ∠QEH Suy ra: ∠PEN = ∠PEF + ∠FEM = ∠EQH + ∠QEH = 90 0 Vậy tam giác PEN vuông (1) Thấy: ∆NEQ = ∆PEM (gcg) nên suy ra EN = EP (2) Từ (1) và (2) suy ra:Tam giác PEN vuông cân 2.Có: EI ⊥ PN và EK ⊥ QM Vậy tứ giác EKRI có góc I và góc K vuông (4) Lại có: ∠PQR = ∠RPQ = 450 suy ra: ∠PRQ = 90 0 (3) Từ (3) và (4) suy ra tứ giác ẺIK là hình chữ nhật 3.Dễ thấy QEKH và EFMK là... số  a n 2 lẻ.Vậy ta có:a,bc,m,n đều là các số lẻ Do đó: am 2 + bmn + cn 2 = số lẻ (Mâu thuẫn với (1)) Vậy điều ta giả sử là sai.Hay nói cách khác, ta có đpcm Chuyên Đề Bồi Dưỡng Học Sinh Giỏi 16 Toán 9 G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk CHUYÊN ĐỀ 5: Các bài toán hình học phẳng mang yếu tố chuyển động Bài 1: Cho đường tròn (O) và dây cung BC cố định.Gọi A là... M,N,P luôn đi qua một điểm cố định khác O 2.Tìm tập hợp các tâm I của đường tròn đi qua M,N,P 3.Tìm trên d một điểm M sao cho tam giác MNP là tam giác đều Giải: Chuyên Đề Bồi Dưỡng Học Sinh Giỏi 17 Toán 9 G/v: Trần Văn Đào – Trường THCS Hoàng Văn Thụ – ÊaKuăng – Krông Pắc – ĐăkLăk 1.Gọi K là trung điểm của AB.Dễ thấy M,N,P,O,K đều nằm trên đường tròn đường kính OM Vậy K là điểm cố định cần tìm 2 Tâm I . đầu :x + y + z =1 ta được: 3 1 === zyx . Bài 9: ( )      +++−=− =+ )2)(2001.( )1(1 2000 2000 199 9 199 9 22 xyyxxyyx yx Giải: Điều kiện: x,y .0 ≥ Nhìn. dương: x = (a + b + c) 2 - 9ab ; y = (a + b + c) 2 - 9cb ; z = (a + b + c) 2 - 9ac. Giải: Ta có: x + y + z = 3. (a + b + c) 2 - 9. (ab + bc + ca) = 3.(a 2

Ngày đăng: 14/10/2013, 15:11

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w