1. Trang chủ
  2. » Giáo án - Bài giảng

PT MŨ-LOGARIT

14 340 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 1,15 MB

Nội dung

Chuyªn ®Ị ph¬ng tr×nh mò vµ l«garit ¤n tËp líp 12 ------------------------------------------------------------------------------------------------------------------- Chuyªn ®Ị:  PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG CÓ CHỨA MŨ VÀ LOGARÍT. I. KIẾN THỨC CƠ BẢN VỀ HÀM SỐ MŨ 1. Các đònh nghóa: • n n thua so a a.a .a= 123 (n Z ,n 1,a R) + ∈ ≥ ∈ • 1 a a= a∀ • 0 a 1= a 0∀ ≠ • n n 1 a a − = { } (n Z ,n 1,a R/ 0 ) + ∈ ≥ ∈ • m n m n a a= ( a 0;m,n N> ∈ ) • m n m n m n 1 1 a a a − = = 2. Các tính chất : • m n m n a .a a + = • m m n n a a a − = • m n n m m.n (a ) (a ) a= = • n n n (a.b) a .b= • n n n a a ( ) b b = 3. Hàm số mũ: Dạng : x y a= ( a > 0 , a ≠ 1 ) • Tập xác đònh : D R= • Tập giá trò : T R + = ( x a 0 x R> ∀ ∈ ) • Tính đơn điệu: * a > 1 : x y a= đồng biến trên R * 0 < a < 1 : x y a= nghòch biến trên R • Đồ thò hàm số mũ : Minh họa: II. KIẾN THỨC CƠ BẢN VỀ HÀM SỐ LÔGARÍT 1. Đònh nghóa: Với a > 0 , a ≠ 1 và N > 0 ------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------ GV: GV: TTD TTD 1 a>1 y=a x y x 1 0<a<1 y=a x y x 1 Chuyªn ®Ị ph¬ng tr×nh mò vµ l«garit ¤n tËp líp 12 ------------------------------------------------------------------------------------------------------------------- dn M a log N M a N= ⇔ = Điều kiện có nghóa : N a log có nghóa khi      > ≠ > 0 1 0 N a a 2. Các tính chất : • a log 1 0= a log a 1= • M a log a M= log N a a N= • a 1 2 a 1 a 2 log (N .N ) log N log N= + 1 a a 1 a 2 2 N log ( ) log N log N N = − • a a log N .log N α = α Đặc biệt : 2 a a log N 2.log N= 3. Công thức đổi cơ số : • a a b log N log b.log N= • a b a log N log N log b = * Hệ quả: • a b 1 log b log a = và k a a 1 log N log N k = 4. Hàm số logarít: Dạng a y log x= ( a > 0 , a ≠ 1 ) • Tập xác đònh : + =D R • Tập giá trò =T R • Tính đơn điệu: * a > 1 : a y log x= đồng biến trên + R * 0 < a < 1 : a y log x= nghòch biến trên + R • Đồ thò của hàm số lôgarít: 5. CÁC ĐỊNH LÝ CƠ BẢN: 1. Đònh lý 1: Với 0 < a ≠ 1 thì : a M = a N ⇔ M = N 2. Đònh lý 2: Với 0 < a <1 thì : a M < a N ⇔ M > N (nghòch biến) 3. Đònh lý 3: Với a > 1 thì : a M < a N ⇔ M < N (đồng biến ) 4. Đònh lý 4: Với 0 < a ≠ 1 và M > 0;N > 0 thì : log a M = log a N ⇔ M = N 5. Đònh lý 5: Với 0 < a <1 thì : log a M < log a N ⇔ M >N (nghòch biến) 6. Đònh lý 6: Với a > 1 thì : log a M < log a N ⇔ M < N (đồng biến) ------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------ GV: GV: TTD TTD 2 0<a<1 y=log a x 1 x y O a>1 y=log a x 1 y x O Chuyªn ®Ị ph¬ng tr×nh mò vµ l«garit ¤n tËp líp 12 ------------------------------------------------------------------------------------------------------------------- III. CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a M(x) = a N(x) (đồng cơ số) Ví dụ : Giải các phương trình sau : x 10 x 5 x 10 x 15 16 0,125.8 + + − − = Bài tập rèn luyện: a, 3 17 7 5 128.25,032 − + − + = x x x x (x=10) b, ( ) ( ) 2 2 2 4 log (2 3 5) log (3 5) 2 3 7 4 3 x x x− + + − = + c, 2 1 2 1 2 3 1 x x x x − + − + = d, 2 1 1 2 3 0,12 5 x x x − + −   =  ÷  ÷   e, ( ) ( ) 2 1 2 1 2 3 2 3 x x x − − + − = + 2. Phương pháp 2: Đặt ẩn phụ chuyển về phương trình đại số c¸c d¹ng to¸n c¬ b¶n sau: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) 3 ( ) 2 ( ) ( ) ( ) ( ) 2f(x) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( ) 1 . . or . . . 0 2 . . 3 . . . 4 . a+b . a-b 5 . a+b . a-b . f x f x f x f x f x f x f x f x f x f x f x f x f x f x a a c a a a c a a c a b c c c α β α β γ α β α β γ α β α β γ − + = + + + = + = + = + = + = Ví dụ : Giải các phương trình sau : 1) 2x 8 x 5 3 4.3 27 0 + + − + = 2) x x x 6.9 13.6 6.4 0− + = 3) x x ( 2 3 ) ( 2 3 ) 4− + + = 4) 322 2 2 2 =− −+− xxxx 5) 027.21812.48.3 =−−+ xxxx 6) 07.714.92.2 22 =+− xxx 7, ( ) ( ) 2 5 21 5 21 10.2 x x x − + − = Bài tập rèn luyện: 1) 4)32()32( =−++ xx ( 1 ± x ) 2) xxx 27.2188 =+ (x=0) 3) 13 250125 + =+ xxx (x=0) 4) 12 21025 + =+ xxx (x=0) 5) x x ( 3 8 ) ( 3 8 ) 6+ + − = ( )2 ±= x 6) xxx 8.21227 =+ (x=0) 3. Phương pháp 3: Biến đổi phương trình về dạng tích số A.B = 0 . Ví dụ : Giải phương trình sau : 1) 8.3 x + 3.2 x = 24 + 6 x 2) 0422.42 2 22 =+−− −+ xxxxx Bài tập rèn luyệnï: a, 20515.33.12 1 =−+ + xxx ( 3 5 log 3 = x ) b, 2 2 2 2 1 2 4 .2 3.2 2 8 12 x x x x x x x + + + = + + + 4. Phương pháp 4: Nhẩm nghiệm và sử dụng tính đơn điệu để chứng minh nghiệm duy nhất (thường là sử dụng công cụ đạo hàm) * Ta thường sử dụng các tính chất sau: ------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------ GV: GV: TTD TTD 3 víi b=a.c ta chia 2 vÕ cho c 2f(x) råi ®Ỉt Èn phơ víi (a+b)(a-b)=1 ta ®Ỉt Èn phơ t= (a+b) f(x) víi a b a b . 1 c c + − = ta ®Ỉt Èn phơ t= ( a b c + ) f(x) Chuyªn ®Ị ph¬ng tr×nh mò vµ l«garit ¤n tËp líp 12 ------------------------------------------------------------------------------------------------------------------- • Tính chất 1 : Nếu hàm số f tăng ( hoặc giảm ) trong khỏang (a;b) thì phương trình f(x) = C có không quá một nghiệm trong khỏang (a;b). ( do đó nếu tồn tại x 0 ∈ (a;b) sao cho f(x 0 ) = C thì đó là nghiệm duy nhất của phương trình f(x) = C) • Tính chất 2 : Nếu hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) . ( do đó nếu tồn tại x 0 ∈ (a;b) sao cho f(x 0 ) = g(x 0 ) thì đó là nghiệm duy nhất của phương trình f(x) = g(x)) c¸c d¹ng to¸n c¬ b¶n sau: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) f(x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 . . . 3 . a+b . a-b 4 . a+b . a-b . 5 a ( ) 6 f x g x f x f x f x f x f x f x f x x x f g a b a b c c c b f x a b g f α β γ α β α β γ = + = + = + = + = − = − Ví dụ : Giải các phương trình sau : 1) 3 x + 4 x = 5 x 2) 2 x = 1+ x 2 3 3) x 1 ( ) 2x 1 3 = + 4; 3.25 x-2 +9(3x-10).5 x-2 +3-x=0 5; 2 2 2 log log 3 log 9 2 .3 x x x x− = Bài tập rèn luyện: 1) 163.32.2 −=+ xxx (x=2) 2) x x −= 32 (x=1) 3; 2 2 log 3 log 5 x x x+ = 4; 2 1 2 2 2 ( 1) x x x x − − − = − 5; 2 x + 3 x = x + 4 6; 2 2 sin cos 8 8 10 cos 2 x x y+ = + IV. CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a a log M log N= (đồng cơ số) Ví dụ : Giải các phương trình sau : 1) + = x log (x 6) 3 2) x x 1 2 1 2 log (4 4) x log (2 3) + + = − − 3) )3(log)4(log)1(log 2 1 2 2 1 2 2 xxx −=++− ( 141;11 +−=−= xx ) 4; 2 2 2 2 2 log (x 3x 2) log (x 7x 12) 3 log 3+ + + + + = + 2. Phương pháp 2: Ph¬ng ph¸p l«garÝt ho¸ Tỉng qu¸t: ( ) ( ) f(x) ( ) f(x) ( ) ( ) ( ) ( ) ( ) a a a ( ) a a a 1 log log ( ) ( ).log 2 b log b log log b f x f x f x g x f x g x f x a b a b a b a b f x g x b b a a a = ⇔ = ⇔ =   = ⇔ = ⇔ =  ÷   VÝ dơ : gi¶i c¸c ph¬ng tr×nh sau. a, 2 x .3 x+1 =12 b; 2 x x-x x = 10 c; 3 1+log x 2 x = 3 .x d; 2x 2 x 7 5 5 7= e; 3 x x x+2 .8 = 6 3. Phương pháp 3: Đặt ẩn phụ chuyển về phương trình đại số. Ví dụ : Giải các phương trình sau : 1) 3 3 2 2 4 log x log x 3 + = 2) 051loglog 2 3 2 3 =−++ xx ------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------ GV: GV: TTD TTD 4 víi a b a b . 1 c c ≠ + − víi (a+b).(a-b) ≠1 víi b ≠ a.c Chuyªn ®Ị ph¬ng tr×nh mò vµ l«garit ¤n tËp líp 12 ------------------------------------------------------------------------------------------------------------------- 3; x 2x 2 log 2.log 2.log 4x 0= 4; ( ) 2 3 3 x 3 log (x 2) 4(x 2)log (x 2) 16+ + + + + = 5; 2 2 3x 7 2x 3 log (9 12x 4x ) log (6x 23x 21) 4 + + + + + + + = 6; 2 25 5 log (5 ) 1 log 7 7 0 x x − − = 3. Phương pháp 3: Biến đổi phương trình về dạng tích số A.B = 0 Ví dụ : Giải phương trình sau : 2 7 2 7 log x 2.log x 2 log x.log x+ = + Bài tập rèn luyệnï: )112(log.loglog.2 33 2 9 −+= xxx (x=1;x=4) 2 3 2 3 log x log x log x.log x+ = 4. Phương pháp 4: Nhẩm nghiệm và sử dụng tính đơn điệu để chứng minh nghiệm duy nhất. (thường là sử dụng công cụ đạo hàm) * Ta thường sử dụng các tính chất sau: • Tính chất 1 : Nếu hàm số f tăng ( hoặc giảm ) trong kho¶ng (a;b) thì phương trình f(x) = C có không quá một nghiệm trong kho¶ng (a;b). ( do đó nếu tồn tại x 0 ∈ (a;b) sao cho f(x 0 ) = C thì đó là nghiệm duy nhất của phương trình f(x) = C) • Tính chất 2 : Nếu hàm f tăng trong kho¶ng (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong kho¶ng (a;b) . do đó nếu tồn tại x 0 ∈ (a;b) sao cho f(x 0 ) = g(x 0 ) thì đó là nghiệm duy nhất của phương trình f(x) = g(x)) Ví dụ : Giải các phương trình sau : a; 2 2 2 log (x x 6) x log (x 2) 4− − + = + + b; 2 3 log (x 1) log (x 2)+ = + c; 2 2 log (x x 5) 2 x+ − = − V. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH MŨ THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a M < a N ( , ,≤ > ≥ ) Ví dụ : Giải các bất phương trình sau : 1) 2 x x 1 x 2x 1 3 ( ) 3 − − − ≥ 2) 2 x 1 x 2x 1 2 2 − − ≥ 3; ( ) 2 3 2 1 1 x x x − + − ≤ Bài tập rèn luyện: a; 11 3322 −+ +≤+ xxxx ( 2 ≥ x )b; 2 3 2 1 2 1 x x x − −   ≤  ÷ +   2. Phương pháp 2: Đặt ẩn phụ chuyển về bất phương trình đại số. Ví dụ : Giải các phương trình sau : 1) 2x x 2 2 3.(2 ) 32 0 + − + < 2) x 3 x 2 2 9 − + ≤ 3) 2 1 1 x x 1 1 ( ) 3.( ) 12 3 3 + + > 4) 52428 11 >+−+ ++ xxx ( )20 ≤< x 5) 11 21212.15 ++ +−≥+ xxx ( 2 ≤ x ) 6; 0449.314.2 ≥−+ xxx ( 3log 7 2 ≥ x ) VI. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ DỤNG: 1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : a a log M log N< ( , ,≤ > ≥ ) Ví dụ : Giải các bất phương trình sau : 1) 2 x log (5x 8x 3) 2− + > 2) − < 2 3 3 log log x 3 1 3) 2 3x x log (3 x) 1 − − > 4) x x 9 log (log (3 9)) 1− ≤ 5) )12(log12log4)1444(log 2 555 ++<−+ − xx 2. Phương pháp 2: Đặt ẩn phụ chuyển về bất phương trình đại số. Ví dụ : Giải các phương trình sau : 1) x x 2 3 2 log (3 2) 2.log 2 3 0 + + + − > 2) 2 2x x log 64 log 16 3+ ≥ ------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------ GV: GV: TTD TTD 5 Chuyªn ®Ị ph¬ng tr×nh mò vµ l«garit ¤n tËp líp 12 ------------------------------------------------------------------------------------------------------------------- 3) 2 3log 3)(log 2 2 2 > + + x x ( 2 1 8 1 << x ) 3. Phương pháp 3: Ph¬ng ph¸p l«garÝt ho¸ Tỉng qu¸t: ( ) ( ) f(x) ( ) ( ) ( ) 1 2 b f x f x g x a b a b a > > VÝ dơ : gi¶i c¸c ph¬ng tr×nh sau. a, 2 x .3 x+1 <24 b; 5 ≥ x-1 x x .8 500 c; 2x 2x 7 5 5 7≥ d; 2x 4 (2x) ≥ 2 log x VII. PHƯƠNG PHÁP Gi¶i pt-bpt mò vµ LOGARIT cã tham sè DẠNG 1: Sử dụng công cụ đại số giải các bài toán có chứa tham số Bài 1: Với giá trò nào của m thì phương trình sau có nghiệm: 0)12.(44 =−− xx m ( 10 ≥∨< mm ) Bài 2: Cho phương trình: 022.4 1 =+− + mm xx Tìm m để phương trình có hai nghiệm phân biệt 21 xx ≠ sao cho 3 21 =+ xx (m=4) Bài 3: Tìm m để phương trình sau có hai nghiệm trái dấu: 014)12(16).3( =++−++ mmm xx ( 4 3 1 −<<− m ) DẠNG 2: Sử dụng công cụ đạo hàm giải các bài toán có chứa tham số Bài 1: Tìm m để phương trình sau vô nghiệm: xxx m 36.81.216.5 =+ ( 102 < m ) Bài 2: Tìm m sau cho bất phương trình: 0)4(log)1(log1 2 5 2 5 >++−++ mxxx có nghiệm x ]3,2[ ∈ ( 2921 ≤≤− m ) Bài 3: Tìm m để phương trình: 02 3 1 3 1 1 =++ − − m x x có nghiệm ( 2 −≤ m ) Bài 4: Tìm m để phương trình sau có nghiệm: 0544)5(16 2 11 2 11 =+++− −−−− mm xx BÀI TẬP RÈN LUYỆN  Bài 1: Giải các phương trình 1) 1 2 12 2 1 2.62 )1(3 3 =+−− − xx xx (x=1) 2) )4(log4log2)1(log 3 8 2 2 4 xxx ++−=++ ( 622;2 −== xx ) 3) )2(loglog 37 += xx (x=49) 4) )2(loglog 75 += xx (x=5) 5) 072.32.5 35 13 =+− − − x x (x=1) 6) 3 28 12 2 1 log4log232log +=− − x x ( 2 5 = x ) 7) x xx x 1 3 2 2 log 3 2 log = −− (x=1,x=2,x=4) 8) 05 8 log3 2 2 log 2 =− − + x x x x ( 2, 2 1 == xx ) 9) xxxx 26log)1(log 2 2 2 −=−+ ( 2, 4 1 == xx ) 10) x x x 4 4 log 2 )10(log.2log21 =−+ (x=2,x=8) Bài 2: Giải các bất phương trình 1) 09.93.83 442 >−− +++ xxxx (x>5) ------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------ GV: GV: TTD TTD 6 Chuyên đề phơng trình mũ và lôgarit Ôn tập lớp 12 ------------------------------------------------------------------------------------------------------------------- 2) 23.79 12 2 2 2 xxxxxx ( 20 4 1 xx ) 3) xxx + < 112 2 1 2 1 36 ( 1101 ><<< xxx ) 4) 0128 8 1 4 1 13 xx ( 3 4 x ) 5) )1(log1)21(log 5 5 ++< xx ( 2 1 5 2 << x ) 6) xx 22 loglog2 > ( 2 4 1 < x ) 7) 1)93(loglog 9 < x x ( 10log 3 > x ) 8) )13(log 1 )3(log 1 2 2 4 < + x xx ( 1 3 2 << x ) 9) 0 1 )3(log)3(log 3 3 1 2 2 1 > + ++ x xx (-2 < x <-1) Baứi 3 : Tỡm taọp xaực ủũnh cuỷa caực haứm soỏ sau: 1. 2 1 2 3 2 log 2 x x y x = + 2. 3 8 0,3 2 log ( 1) 2 2 8 x x x y x x = + Bài 4: Giải phơng trình: a. 2 x x 8 1 3x 2 4 + = b. 2 5 x 6x 2 2 16 2 = c. x x 1 x 2 x x 1 x 2 2 2 2 3 3 3 + + = + d. x x 1 x 2 2 .3 .5 12 = e. 2 2 x 1 (x x 1) 1 + = f. 2 x 2 ( x x ) 1 = g. 2 2 4 x (x 2x 2) 1 + = Bài 5:Giải phơng trình: a. 4x 8 2x 5 3 4.3 27 0 + + + = b. 2x 6 x 7 2 2 17 0 + + + = c. x x (2 3) (2 3) 4 0+ + = d. x x 2.16 15.4 8 0 = e. x x x 3 (3 5) 16(3 5) 2 + + + = f. x x (7 4 3) 3(2 3) 2 0+ + = g. x x x 3.16 2.8 5.36+ = h. 1 1 1 x x x 2.4 6 9+ = i. 2 3x 3 x x 8 2 12 0 + + = j. x x 1 x 2 x x 1 x 2 5 5 5 3 3 3 + + + + + + = + + k. x 3 (x 1) 1 + = Bài 6:Giải phơng trình: a. x x x 3 4 5+ = b. x 3 x 4 0+ = c. 2 x x x (3 2 )x 2(1 2 ) 0 + = d. 2x 1 2x 2x 1 x x 1 x 2 2 3 5 2 3 5 + + + + + = + + Bài 7:Giải các hệ phơng trình: a. x y 3x 2y 3 4 128 5 1 + = = b. 2 x y (x y) 1 5 125 4 1 + = = b. 2x y x y 3 2 77 3 2 7 = = d. x y 2 2 12 x y 5 + = + = e . x y x y 2 2 4 x y x y 2 3 6 m m m m n n n n + + = = với m, n > 1. Bài 8: Giải và biện luận phơng trình: ------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------ GV: GV: TTD TTD 7 Chuyên đề phơng trình mũ và lôgarit Ôn tập lớp 12 ------------------------------------------------------------------------------------------------------------------- a . x x (m 2).2 m.2 m 0 + + = . b . x x m.3 m.3 8 + = Bài 9: Tìm m để phơng trình có nghiệm: x x (m 4).9 2(m 2).3 m 1 0 + = Bài 10: Giải các bất phơng trình sau: a. 6 x x 2 9 3 + < b. 1 1 2x 1 3x 1 2 2 + c. 2 x x 1 5 25 < < d. 2 x (x x 1) 1 + < e. x 1 2 x 1 (x 2x 3) 1 + + + < f. 2 3 2 x 2x 2 (x 1) x 1 + > Bài 11: Giải các bất phơng trình sau: a. x x 3 9.3 10 0 + < b. x x x 5.4 2.25 7.10 0+ c. x 1 x 1 1 3 1 1 3 + d. 2 x x 1 x 5 5 5 5 + + < + e. x x x 25.2 10 5 25 + > f. x x 2 x 9 3 3 9 + > Bài 12: Giải bất phơng trình sau: 1 x x x 2 1 2 0 2 1 + Bài 13: Cho bất phơng trình: x 1 x 4 m.(2 1) 0 + > a. Giải bất phơng trình khi m= 16 9 . b. Định m để bất phơng trình thỏa x R . Bài 14: a. Giải bất phơng trình: 2 1 2 x x 1 1 9. 12 3 3 + + > ữ ữ (*) b.Định m để mọi nghiệm của (*) đều là nghiệm của bất phơng trình: ( ) 2 2x m 2 x 2 3m 0+ + + < Bài 15: Giải các phơng trình: a. ( ) ( ) 5 5 5 log x log x 6 log x 2= + + b. 5 25 0,2 log x log x log 3+ = c. ( ) 2 x log 2x 5x 4 2 + = d. 2 x 3 lg(x 2x 3) lg 0 x 1 + + + = e. 1 .lg(5x 4) lg x 1 2 lg0,18 2 + + = + Bài 16: Giải các phơng trình sau: a. 1 2 1 4 lgx 2 lgx + = + b. 2 2 log x 10log x 6 0+ + = c. 0,04 0,2 log x 1 log x 3 1+ + + = d. x 16 2 3log 16 4log x 2log x = e. 2 2x x log 16 log 64 3+ = f. 3 lg(lgx) lg(lgx 2) 0+ = Bài 17: Giải các phơng trình sau: a. x 3 9 1 log log x 9 2x 2 + + = ữ b. ( ) ( ) x x 2 2 log 4.3 6 log 9 6 1 = c. ( ) ( ) x 1 x 2 2 1 2 1 log 4 4 .log 4 1 log 8 + + + = d. ( ) x x lg 6.5 25.20 x lg25+ = + e. ( ) ( ) ( ) x 1 x 2 lg2 1 lg 5 1 lg 5 5 + + = + f. ( ) x x lg 4 5 xlg2 lg3+ = + g. lgx lg5 5 50 x= h. 2 2 lg x lg x 3 x 1 x 1 = i. 2 3 3 log x log x 3 x 162+ = Bài 18: Giải các phơng trình: a. ( ) ( ) 2 x lg x x 6 4 lg x 2+ = + + b. ( ) ( ) 3 5 log x 1 log 2x 1 2+ + + = c. ( ) ( ) ( ) ( ) 2 3 3 x 2 log x 1 4 x 1 log x 1 16 0 + + + + + = d. ( ) 5 log x 3 2 x + = Bài 19: Giải các hệ phơng trình: ------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------ GV: GV: TTD TTD 8 Chuyên đề phơng trình mũ và lôgarit Ôn tập lớp 12 ------------------------------------------------------------------------------------------------------------------- a. 2 2 lgx lgy 1 x y 29 + = + = b. 3 3 3 log x log y 1 log 2 x y 5 + = + + = c. ( ) ( ) ( ) 2 2 lg x y 1 3lg2 lg x y lg x y lg3 + = + + = d. 4 2 2 2 log x log y 0 x 5y 4 0 = + = e. ( ) ( ) x y y x 3 3 4 32 log x y 1 log x y + = + = + f. y 2 x y 2log x log xy log x y 4y 3 = = + Bài 20: Giải và biện luận các phơng trình: a. ( ) ( ) 2 lg mx 2m 3 x m 3 lg 2 x + + = b. 3 x x 3 log a log a log a+ = c. 2 sin x sin x log 2.log a 1= d. 2 2 a x a 4 log a.log 1 2a x = Bài 21 : Tìm m để phơng trình có nghiệm duy nhất: a. ( ) ( ) 2 3 1 3 log x 4ax log 2x 2a 1 0+ + = b. ( ) ( ) lg ax 2 lg x 1 = + Bài 22: Tìm a để phơng trình có 4 nghiệm phân biệt. 2 3 3 2log x log x a 0 + = Bài 23: Giải bất phơng trình: a. ( ) 2 8 log x 4x 3 1 + b. 3 3 log x log x 3 0 < c. ( ) 2 1 4 3 log log x 5 0 > d. ( ) ( ) 2 1 5 5 log x 6x 8 2log x 4 0 + + < e. 1 x 3 5 log x log 3 2 + f. ( ) x x 9 log log 3 9 1 < g. x 2x 2 log 2.log 2.log 4x 1> h. 1 3 4x 6 log 0 x + i. ( ) ( ) 2 2 log x 3 1 log x 1+ + j. 8 1 8 2 2log (x 2) log (x 3) 3 + > k. 3 1 2 log log x 0 ữ ữ l. 5 x log 3x 4.log 5 1+ > m. 2 3 2 x 4x 3 log 0 x x 5 + + n. 1 3 2 log x log x 1+ > o. ( ) 2 2x log x 5x 6 1 + < p. ( ) 2 3x x log 3 x 1 > q. 2 2 3x x 1 5 log x x 1 0 2 + + ữ r. x 6 2 3 x 1 log log 0 x 2 + > ữ + s. 2 2 2 log x log x 0+ t. x x 2 16 1 log 2.log 2 log x 6 > u. 2 3 3 3 log x 4log x 9 2log x 3 + v. ( ) 2 4 1 2 16 2 log x 4log x 2 4 log x+ < Bài 24: Giải bất phơng trình: a. 2 6 6 log x log x 6 x 12+ ------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------ GV: GV: TTD TTD 9 Chuyên đề phơng trình mũ và lôgarit Ôn tập lớp 12 ------------------------------------------------------------------------------------------------------------------- b. 3 2 2 2 log 2x log x 1 x x > c. ( ) ( ) x x 1 2 1 2 log 2 1 .log 2 2 2 + > d. ( ) ( ) 2 3 2 2 5 11 2 log x 4x 11 log x 4x 11 0 2 5x 3x Bài 25: Giải hệ bất phơng trình: a. 2 2 x 4 0 x 16x 64 lg x 7 lg(x 5) 2lg2 + > + + > b. ( ) ( ) ( ) ( ) x 1 x x x 1 lg2 lg 2 1 lg 7.2 12 log x 2 2 + + + < + + > c. ( ) ( ) 2 x 4 y log 2 y 0 log 2x 2 0 > > Bài 26: Giải và biệ luận các bất phơng trình( 0 a 1< ): a. a log x 1 2 x a x + > b. 2 a a 1 log x 1 1 log x + > + c. a a 1 2 1 5 log x 1 log x + < + d. x a 1 log 100 log 100 0 2 > Bài 27: Cho bất phơng trình: ( ) ( ) 2 2 a a log x x 2 log x 2x 3 > + + thỏa mãn với: 9 x 4 = . Giải bất phơng trình. Bài 28: Tìm m để hệ bất phơng trình có nghiệm: 2 lg x mlgx m 3 0 x 1 + + > Bài 29: Cho bất phơng trình: ( ) ( ) 2 1 2 x m 3 x 3m x m log x + + < a. Giải bất phơng trình khi m = 2. b. Giải và biện luận bất phơng trình. Bài 30: Giải và biện luận bất phơng trình: ( ) ( ) x a log 1 8a 2 1 x Bài tập Chuyên đề phơng trình, bất phơng trình mũ và logarit Dạng cơ bản : Các bài tập áp dụng: 91. Tìm m để mọi nghiệm của bất phơng trình 12 3 1 3 3 1 1 12 > + + xx cũng là nghiệm của bất phơng trình (m-2) 2 x 2 -3(m-6)x-(m+1)<0. (*) 92. ( ) ( ) 025353 2 22 21 22 ++ + xx xxxx 93. ( ) ( ) 312223 +=+ xx 94. 1 23 23.2 2 + xx xx 95. 04.66.139.6 222 222 + xxxxxx 96. ( ) ( ) 022log.2log 2 2 2 + x x 97. 2 222 4log6log2log 3.24 xx x = 98. ( ) ( ) 2 2 3 7 2 3 log 9 12 4 log 6 23 21 4 x x x x x x + + + + + + + = 99. 125.3.2 21 = xxx 100. xx 3322 loglogloglog = 101. xx 234432 loglogloglogloglog = 102. xxx 332332 loglogloglogloglog =+ 103. 2loglog3loglog 32 xx 104. 2 )4(log 8 2 xx x 105. xxx x lg25,4lg3lg 10 22 = 106. 2)1( 11 log)1(log + ++ xx xx xx 107. 5lglg 505 x x = 108. 126 6 2 6 loglog + xx x 109. x x = + )3(log 5 2 110. 1623 3 2 3 loglog =+ xx x 111. x x x + = 2 2 3.368 112. 2 65 3 1 3 1 2 + + > x xx 113. xx 31 1 13 1 1 + 114. 13 1 12 1 22 + x x 115. 2551 2 << xx ------------------------------------------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------------------------------------------ GV: GV: TTD TTD 10 [...]... +1 > 10 (*) 2x 1 ( x 2 + 3 x 2 1 + 2 log 2 x 0 log x ( 6 x + 4 y ) = 2 log y ( 6y + 4 x ) = 2 225 log 2 ) -GV: TTD 13 Chuyên đề PT- BPT mũ và Loiarit Ôn tập lớp 12 . x x .8 500 c; 2x 2x 7 5 5 7≥ d; 2x 4 (2x) ≥ 2 log x VII. PHƯƠNG PHÁP Gi¶i pt- bpt mò vµ LOGARIT cã tham sè DẠNG 1: Sử dụng công cụ đại số giải các bài toán. ------------------------------------------------------------------------------------------------------------------------------------ GV: GV: TTD TTD 13 Chuyªn ®Ò PT- BPT mò vµ Loiarit ¤n tËp líp 12

Ngày đăng: 11/10/2013, 16:11

Xem thêm

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w