Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 17 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
17
Dung lượng
472 KB
Nội dung
Tiết 2 Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - H i Anộ • HS2: a/ x.( 6x 2 - 5x + 1) = • HS1: Phát biểu quy tắc nhân đơn thứcvớiđa thức. Cho một ví dụ và tính ví dụ đó. = 6x 3 – 5x 2 + x b/ – 2.( 6x 2 – 5x + 1) = = x.6x 2 = ( – 2).6x 2 + ( – 2).(– 5x) + ( – 2).1) x.( - 5x) x.1 ++ – 12 +x 2 10x – 2 Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - H i Anộ ( ) • 1/Qui tắc: Ví dụ : Làm tính nhân: (x – 2 )( 6x 2 – 5x +1) = ( 6x 2 – 5x +1)x ( 6x 2 – 5x +1) – 2 + = x.6x 2 ( – 2).6x 2 = = 6x 3 = 6x 3 – 17x 2 + 11x – 2 Vậy muốn nhân một đa thứcvớiđathức ta làm như thế nào ? x.(– 5x) x.1 + + + + +( – 2).(– 5x) ( – 2).1) là đathức tích – 5x 2 + x – 12x 2 + 10x – 2 Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - H i Anộ • 1/Qui tắc :Muốn nhân một đathứcvới một đa thức, ta nhân đathức nầy với từng hạng tử của đathức kia rồi cộng các tích với nhau. • Tổng quát : • (A + B)(C + D) = • A.C + A.D + B.C + B.D Nhận xét : Tích của 2 đathức là một đathức Chú ý: Cách 2 ( Sgkp7 ) • 1/Qui tắc: Ví dụ : Sgk Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - H i Anộ 6x 2 – 5x + 1 x – 2 – 12x 2 + 10x – 2 6x 3 – 5x 2 + x 6x 3 – 17x 2 + 11x – 2 X Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - H i Anộ Thực hiện các phép tính nhân sau : • a) (x 2 + 1)( 5 – x) = x 2 (5 – x) + 1.(5 – x) = 5x 2 – x 3 + 1.5 – 1.x = – x 3 + 5x 2 – x + 1 • b) (3 – 2x)( 7 – x 2 + 2x ) • c) (3 – 2x)(x 2 – 2xy + 1) Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - H i Anộ Thực hiện các phép tính nhân sau : • b) (3 – 2x)( 7 – x 2 + 2x ) = 3(7 – x 2 + 2x ) – 2x.(7 – x 2 + 2x) = 21x 3 – 3x 2 + 6x – 14x + 2x 3 – 4x 2 = 23x 3 – 7x 2 – 8x. = 21x 3 + 2x 3 – 3x 2 – 4x 2 + 6x – 14x Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - H i Anộ Thực hiện các phép tính nhân sau và : • c) (3 – 2x)(x 2 – 2xy + 1) = 3(x 2 – 2xy + 1) – 2x.(x 2 – 2xy +1) = 3x 2 – 6xy + 3 – 2x 3 + 4x 2 y – 2x Phép nhân đathức 1 biến ta thực hiện được 2 cách, còn 2 biến trở lên chỉ thực hiện theo cách 1 , không thực hiện theo cách 2 Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - H i Anộ HƯỚNG DẪN VỀ NHÀ • - Học quy tắc nhân đathứcvớiđa thức. • - Làm các bài tập 8 (SGK) và 6, 7, 8 p 4 (SBT) • - Xem bài mới “Luyện tập” Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - H i Anộ • b) (xy – 1)(xy + 5) Phép nhân đathức 1 biến ta thực hiện được 2 cách, còn 2 biến trở lên chỉ thực hiện theo cách 1 , không thực hiện theo cách 2 = x 2 y 2 + 5xy – xy – 5 = x 2 y 2 + 4xy – 5 = xy.(xy + 5) – 1.(xy + 5) [...]... Bài tập bổ sung : • 1/ Nếu hai đa thức f(x),g(x) bằng nhau kí hiệu f(x) =g(x) với mọi x ,thì các hệ số của các hạng tử cùng bậc ở hai đathức bằng nhau • Áp dụng : Tìm hệ số a , b , c biết : – 3x3( 2ax2 – bx + c ) = – 6x5 + 9x4 – 3x3 với mọi x • 2/ Nếu cho x2 – y = a ; y2 – z =b ; và z2 – x = c (a , b ,c là hằng số ).Ch/m biểu thức sau không phụ thuộc vào biến x3 ( z – y2 ) + y3 ( x – z2 ) + z3 ( y –... biểu thức tính diện tích hình chữ nhật theo x , y ,biết kích thước của hình chữ nhật đó là : (2x +y) và (2x - y) • Áp dụng : Tính diện tích của hình chữ nhật khi x = 2,5m và y = 1m • • • • • Giải: Diện tích hình chữ nhật là : S = (2x +y)(2x - y) = 4x2 – y2 Với x = 2,5m và y = 1m => S = 4.(2,5)2 - 12 = 24 m2 Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - Hội An • Bài tập bổ sung : • 1/ Nếu hai đa thức. .. biến x3 ( z – y2 ) + y3 ( x – z2 ) + z3 ( y – x2 ) + xyz ( xyz – 1 ) Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - Hội An • Áp dụng : Tìm hệ số a , b , c biết : – 3x3( 2ax2 – bx + c ) = – 6x5 + 9x4 – 3x3 với mọi x – 3x3( 2ax2 – bx + c ) = – 6x5 + 9x4 – 3x3 – 6ax5 + 3bx4 – 3cx3 = – 6x5 + 9x4 – 3x3 – 6ax5 = – 6x5 ⇒ a = 1 ⇒ 3bx4 = 9x4 ⇒ b = 3 – 3cx3 = – 3x3 ⇒ c = 1 Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm... x + c = – bxy – abx – cyz – bcy – axz – acz + (yz +by + az+ ab)(x + c ) – xyz = –bxy– abx – cyz – bcy – axz – acz + xyz +bxy + axz + abx + cyz +bcy + acz + abc – xyz = + xyz + abc – xyz = abc Vậy biểu thức sau không phụ thuộc vào biến Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - Hội An Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - Hội An Ñinh Vaên Khoa – THCS Nguyeãn Bænh Khieâm - Hội An . • 1/Qui tắc :Muốn nhân một đa thức với một đa thức, ta nhân đa thức nầy với từng hạng tử của đa thức kia rồi cộng các tích với nhau. • Tổng quát : • (A. 2 + 11x – 2 Vậy muốn nhân một đa thức với đa thức ta làm như thế nào ? x.(– 5x) x.1 + + + + +( – 2).(– 5x) ( – 2).1) là đa thức tích – 5x 2 + x – 12x 2