1. Trang chủ
  2. » Giáo án - Bài giảng

Tiet 62. Nghiem da thuc 1 bien

15 316 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 1,97 MB

Nội dung

KiÓm tra Bµi 1: Cho ®a thøc 3 H(x) x 4x = − Bµi 2: Tìm x biết TÝnh H(-2) ; H(0) ; H(1) ; H(2) 3 H( ) ( ) 4.( ) 8 8 0= − = − + = 3 H( ) 4. 0= − = 3 H(1) 1 4.1 3= − = − 3 H( ) 4. 8 8 0= − = − = -2 -2 -2 0 0 0 2 2 2 1 a) 2x 0 2 + = 1 2x 2 = − 1 x 4 = − 1 x : 2 2 = − b) x 2 - 1 = 0 x 2 = 1 => x = 1 hoặc x = -1 5 (F 32) 0 9 − = Nước đóng băng tại 0 0 C, nên thay C = 0 vào công thức (1) ta có: TiÕt 62. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 1. Nghiệm của đa thức một biến: Vậy nước đóng băng ở 32°F. * Bài toán: Cho biết công thức đổi từ độ F sang độ C là: ( ) 5 32 9 = −C F Hỏi nước đóng băng ở bao nhiêu độ F? (1) • Trong công thức trên, thay F = x ( )=P x 5 5 160 (x -32) = x - 9 9 9 • Ta có P(32) = 0. • Ta nói x = 32 là một nghiệm của đa thức P(x) Em hãy cho biết nước đóng băng ở bao nhiêu độ C? F 32 0 F 32 − =⇒ ⇒ = Vậy khi nào P(x) = có giá trị bằng 0 ? 5 160 x - 9 9 ta có : 1. Nghiệm của đa thức một biến: * Bài toán: • Ta có P(32) = 0. • Ta nói x = 32 là một nghiệm của đa thức P(x) 5 160 P(x) = x - 9 9 * Xét đa thức Nếu tại x = a đa thức P(x) có giá trị bằng 0 thì ta nói a (hoặc x = a) là một nghiệm của đa thức đó. §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN Muốn kiểm tra một số a có phải là nghiệm của đa thức P(x) không ta làm như sau: • Tính P(a) =? (giá trị của P(x) tại x = a) • Nếu P(a) = 0 => a là nghiệm của P(x) • Nếu P(a) 0 => a không phải là nghiệm của P(x) ≠ Vậy khi nào số a được gọi là nghiệm của đa thức P(x)? Muốn kiểm tra một số a có phải là nghiệm của đa thức P(x) hay không ta làm thế nào? Hay x = a lµ nghiÖm cña ®a thøc P(x) khi P(a) = 0 Khái niệm: a (hoặc x = a) lµ nghiÖm cña ®a thøc P(x) khi P(a) = 0 2. Ví dụ: b) x = 1; x = -1 là nghiệm của đa thức Q(x) = x 2 - 1 vì Q(1) = 0 ; Q(-1) = 0 §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 1 1 P 2. 1 1 1 0 2 2     − = − + =− + =  ÷  ÷     Vì a) là nghiệm của P(x) = 2x+1 1 x 2 =− b) Cho Q(x) = x 2 – 1 Tại sao x = 1 và x = -1 là nghiệm của đa thức Q(x) ? c) Cho đa thức G(x) = x 2 + 1 Có giá trị nào của x làm cho G(x) = 0 hay không? Tại sao? có phải là nghiệm của đa thức a) 1 x 2 =− P(x) = 2x +1 hay không ? Muốn kiểm tra một số a có phải là nghiệm của đa thức P(x) không ta làm như sau: • Tính P(a) =? (giá trị của P(x) tại x = a) • Nếu P(a) = 0 => a là nghiệm của P(x) • Nếu P(a) 0 => a không phải là nghiệm của P(x) ≠ 1. Nghiệm của đa thức một biến: Bài tập: Vậy đa thức G(x) = x 2 +1 không có nghiệm. Vì 2 x 0 ≥ với mọi x 2 2 x 1 1 x 1 0 ⇒ + ≥ ⇒ + > với mọi x c) G(x) = x 2 + 1 Không có giá trị nào của x làm cho G(x) = 0 Vậy một đa thức (khác đa thức không) có thể có bao nhiêu nghiệm? a (hoặc x = a) lµ nghiÖm cña ®a thøc P(x) khi P(a) = 0 2. Ví dụ: b) x = 1; x = -1 là nghiệm của đa thức Q(x) = x 2 - 1 vì Q(1) = 0 ; Q(-1) = 0 §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 1 1 P 2. 1 1 1 0 2 2     − = − + =− + =  ÷  ÷     Vì a) là nghiệm của P(x) = 2x+1 1 x 2 =− c) Đa thức G(x) = x 2 + 1 không có nghiệm. Muốn kiểm tra một số a có phải là nghiệm của đa thức P(x) không ta làm như sau: • Tính P(a) =? (giá trị của P(x) tại x = a) • Nếu P(a) = 0 => a là nghiệm của P(x) • Nếu P(a) 0 => a không phải là nghiệm của P(x) ≠ * Một đa thức (khác đa thức không) có thể có một nghiệm, hai nghiệm, …. hoặc không có nghiệm. * Người ta đã chứng minh được rằng số nghiệm của một đa thức (khác đa thức không) không vượt quá bậc của nó. Chú ý: 1. Nghiệm của đa thức một biến: 1. Nghiệm của đa thức một biến: 2. Ví dụ: §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN ?1 x = -2; x = 0; x = 2 có phải là nghiệm của đa thức hay không? Vì sao? 3 H(x) x 4x = − VËy x = -2; x = 0; x = 2 lµ nghiÖm cña ®a thøc 3 H(x) x 4x = − a (hoặc x = a) lµ nghiÖm cña ®a thøc P(x) khi P(a) = 0 * Chú ý (SGK trang 47): Muốn kiểm tra một số a có phải là nghiệm của đa thức P(x) không ta làm như sau: • Tính P(a) =? (giá trị của P(x) tại x = a) • Nếu P(a) = 0 => a là nghiệm của P(x) • Nếu P(a) 0 => a không phải là nghiệm của P(x) ≠ 3 H( ) ( ) 42 2 2.( ) 8 8 0 = − = −− +− =− 3 H( ) 4. 00 0 0 = − = 3 H( ) ( ) 4.( ) 8 8 02 2 2 = − = − = Bµi 1: Cho ®a thøc 3 H(x) x 4x = − TÝnh H(-2) ; H(0) ; H(1) ; H(2) 3 H(1) 1 4.1 3= − = − 1. Nghiệm của đa thức một biến: 2. Ví dụ: §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN a (hoặc x = a) lµ nghiÖm cña ®a thøc P(x) khi P(a) = 0 1 P(x) 2x 2 = + 2 Q(x) x 2x 3 = − − 1 2 1 -1 Trong các số cho sau mỗi đa thức, số nào là nghiệm của đa thức? 1 4 1 4 − 1 1 1 3 P 2. 2 2 2 2   = + =  ÷   1 1 1 P 2. 1 4 4 2   = + =  ÷   1 1 1 P 2. 0 4 4 2     − = − + =  ÷  ÷     ?2 2 Q( 1) ( 1) 2.( 1) 3 0− = − − − − = 2 Q(3) 3 2.3 3 0 = − − = 2 Q(1) 1 2.1 3 4 = − − = − 1 x 4 =− 1 P(x) 2x 2 = + Vậy là nghiệm của đa thức Vậy 3 và -1 là nghiệm của đa thức Q(x) = x 2 – 2x – 3 3 Muốn kiểm tra một số a có phải là nghiệm của đa thức P(x) không ta làm như sau: • Tính P(a) =? (giá trị của P(x) tại x = a) • Nếu P(a) = 0 => a là nghiệm của P(x) • Nếu P(a) 0 => a không phải là nghiệm của P(x) ≠ * Chú ý (SGK trang 47): 1. Nghim ca a thc mt bin: Đ9. NGHIM CA A THC MT BIN Cách 2: Vậy P(x) có nghiệm là Cho P(x) = 0 1 2x 0 2 + = 1 x 4 = Nhn xột: tỡm nghim ca a thc, ta cú th cho a thc ú bng 0, ri thc hin nh bi toỏn tỡm x. ?2 a (hoc x = a) là nghiệm của đa thức P(x) khi P(a) = 0 Tỡm nghim ca a thc 1 a)P(x) 2x 2 = + 2. Vớ d: Mun kim tra mt s a cú phi l nghim ca a thc P(x) khụng ta lm nh sau: Tớnh P(a) =? (giỏ tr ca P(x) ti x = a) Nu P(a) = 0 => a l nghim ca P(x) Nu P(a) 0 => a khụng phi l nghim ca P(x) * Chỳ ý (SGK trang 47): Bài 2: Tỡm x bit: 1 2x 2 = 1 x 4 = 1 a) 2x 0 2 + = 2 b) Q(x) x 1= 2 b) x 1 0 = x 2 = 1 => x = 1 hoc x = -1 Vậy 1 v -1 l nghiệm ca a th c Q(x). 1. Nghiệm của đa thức một biến: §9. NGHIỆM CỦA ĐA THỨC MỘT BIẾN 2) Tìm nghiÖm cña ®a thøc Q(x) = 3x + 6 3) Chøng tá r»ng ®a thøc sau kh«ng cã nghiÖm A(x) = x 4 + 2 1) cã ph¶i lµ nghiÖm cña ®a thøc 1 P(x) 5x 2 = + 1 x 10 = 2. Ví dụ: Muốn kiểm tra một số a có phải là nghiệm của đa thức P(x) không ta làm như sau: • Tính P(a) =? (giá trị của P(x) tại x = a) • Nếu P(a) = 0 => a là nghiệm của P(x) • Nếu P(a) 0 => a không phải là nghiệm của P(x) ≠ * Chú ý (SGK trang 47): a (hoặc x = a) lµ nghiÖm cña ®a thøc P(x) khi P(a) = 0 1. Nghim ca a thc mt bin: 2. Vớ d: Đ9. NGHIM CA A THC MT BIN 2) Cho Q(x)=0 3x + 6 = 0 3x = -6 x = -2 Vậy x = -2 là nghiệm của đa thức Q(x) 3) vỡ với mọi x V y a th c A( x) không có nghiệm. 4 x 0 4 x 2 2 + => A(x) > 0 2) Tỡm nghiệm của đa thức Q(x) = 3x + 6 3) Chứng tỏ rằng đa thức A(x) = x 4 + 2 không có nghiệm 1) có phải là nghiệm của đa thức 1 P(x) 5x 2 = + 1 x 10 = 1 x 10 = V y không là nghiệm của đa thức 1 1 1 1 1 P 5. 1 10 10 2 2 2 = + = + = ữ 1) Vỡ 1 P(x) 5x 2 = + Mun kim tra mt s a cú phi l nghim ca a thc P(x) khụng ta lm nh sau: Tớnh P(a) =? (giỏ tr ca P(x) ti x = a) Nu P(a) = 0 => a l nghim ca P(x) Nu P(a) 0 => a khụng phi l nghim ca P(x) * Chỳ ý (SGK trang 47): a (hoc x = a) là nghiệm của đa thức P(x) khi P(a) = 0 [...]... N 4 T 5 R 6  7 N Học vui – Nghiệm của đa thứcthức B(x) = + 1 là ? Các sốVui là nghiệmC(x) = 2x A(x)P(x) khi nào học ! của đa +1 = 3x nhiêu Số a là nghiệm của đa thức là bao (x 1) (x+6) Nghiệm của đa thức 2 Câu 1 1 − 6 1 − 3 1 6 1 3 A B C D 1 Đ 2 Ê Câu 2 2 Câu 3 P(x) = 0 1 1 − 2 1 P(x) ≠ 0 Câu 4 Không có nghiệm P(a) = 0 6 1 2 P(a) ≠ 0 −6 1 3 N 5 R 4 T 6  7 N Lễ hội Đền Trần được đặt tại thôn Tam... Em làEm là người sắc nhất! nhất! người xuất xuất sắc Em đượcđược điểm nhất! Em đạtlà người xuất sắc 10 và một Em đạt điểm 10 và một Em đạt được điểm 10 vàcác tràng tràng pháo tay lớncác bạn bạn pháo tay lớn của của một tràng pháo tay lớn của các bạn Phần thưởng là hộp bút (giá 50 000đ) Phần thưởng là 10 quyển vở (giá 35 000đ) Phần thưởng là cặp sách (giá 80 000đ) Đồng hồ Con thỏ Quả bí §9.§9 NGHIỆM... Vui học ! Câu 1 A Câu 3 Câu 4 Luật chơi: “ĐI TÌM MẬT MÔ “MẬT MÔ là một cụm từ gồm 7 chữ cái Để tìm ra mật mã bạn lần lượt trả lời các câu hỏi từ 1 đến 4 Mỗi câu trả lời đúng, bạn tìm được một chữ cái của mật mã Nếu tìm đúng mật mã thì bạn sẽ nhận được phần thưởng Nếu trả lời sai câu hỏi hoặc đoán không đúng mật mã thì bạn khác tham gia tiếp! CHÚC CÁC EM MAY MẮN! B Luật chơi Câu 2 C D 1 Đ 2 Ê 3 N 4... biến P(x): Cách 1: Kiểm tra lần lượt các giá trị của biến Giá trị nào làm cho P(x) = 0 thì giá trị đó là nghiệm của đa thức P(x) Qua bài này ta cần ghi nhớ kiến thức gì? Cách 2: Cho P(x) = 0 rồi tìm x  Một đa thức (khác đa thức không) có số nghiệm không vượt quá bậc của nó H­íng dÉn vÒ nhµ * Nắm vững phần ghí nhớ kiến thức * Bài tập 54 ; 55 ; 56/ trang 48 SGK 43 ; 44 ; 46 ; 47/ trang 15 + 16 SBT . + 2 không có nghiệm 1) có phải là nghiệm của đa thức 1 P(x) 5x 2 = + 1 x 10 = 1 x 10 = V y không là nghiệm của đa thức 1 1 1 1 1 P 5. 1 10 10 2 2 2 = + = + = ữ 1) Vỡ 1 P(x) 5x 2 = + Mun. khi P(a) = 0 1 P(x) 2x 2 = + 2 Q(x) x 2x 3 = − − 1 2 1 -1 Trong các số cho sau mỗi đa thức, số nào là nghiệm của đa thức? 1 4 1 4 − 1 1 1 3 P 2. 2 2 2 2   = + =  ÷   1 1 1 P 2. 1 4 4 2   =. trang 47): Bài 2: Tỡm x bit: 1 2x 2 = 1 x 4 = 1 a) 2x 0 2 + = 2 b) Q(x) x 1= 2 b) x 1 0 = x 2 = 1 => x = 1 hoc x = -1 Vậy 1 v -1 l nghiệm ca a th c Q(x). 1. Nghiệm của đa thức một

Ngày đăng: 16/07/2014, 15:00

TỪ KHÓA LIÊN QUAN

w