Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 11 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
11
Dung lượng
402,5 KB
Nội dung
Điền vào chỗ . Trong bảng bên để được câu trả lời đúng . 1. Nếu đạilượng y liên hệ với đạilượng x theo công thức . . . . .(1) . . hay xy = a ,( a là một hằng số khác 0) thì ta nói y tỉlệnghịch với x theo hệ sốtỉlệ a . 2 . Nếu hai đạilượng x và y tỉlệnghịch với nhau theo hệ sốtỉlệ a thì: * . . . . (2). . . . . . . . . . . . . . . * . . . . .(3) . . . . . . . x a y = ayxyxyx nn ==== 2211 1 1 1 3 3 1 1 2 2 1 , .,; y y x x y y x x y y x x n n === Mét «t« ®i tõ A ®Õn B hÕt 6 giê . Hái «t« ®ã ®i tõ A ®Õn B hÕt bao nhiªu giê nÕu nã ®i víi vËn tèc míi b»ng 1,2 lÇn vËn tèc cò . Xe bus Hoµng long A B A B Xe bus Hoµng long Ôtô đi từ A đến B Với vận tốc v 1 thì thời gian là t 1 . Với vận tốc v 2 thì thời gian là t 2 Vận tốc và thời gian là hai đại lượngtỉlệnghịch nên ta có: 1 2 2 1 2 2 6 6 1,2 5 1,2 t v t v t t = ⇒ = ⇒ = = Vậy nếu đi với vận tốc mới thì ô tô đi từ A đến B hết 5 giờ. GiẢI: mà t 1 = 6; v 2 = 1,2 v 1 Bốn đội có 36 máy cày ( cùng năng suất, công việc bằng nhau) Đội 1 HTCV trong 4 ngày; Đội 2 HTCV trong 6 ngày; Đội 3 HTCV trong 10 ngày; Đội 4 HTCV trong 12 ngày. Hỏi mỗi đội có bao nhiêu máy cày? Lời giải: Gọi số máy của bốn đội lần lượt là: ( chiếc) . Ta có: Vì số máy tỉlệ với số ngày hoàn thành công việc nên : 12 1 10 1 6 1 4 1 4321 xxxx === Theo tính chất của dãy tỷ số bằng nhau ta có : 2 1 .60 10 6 x = = 3 1 .60 6 10 x = = 4 1 .60 5 12 x = = Do vậy: Trả lời : Số máy của bốn đội lần lượt là : 15 ; 10 ; 6 ; 5 ( chiếc) 4321 121064 xxxx === Hay 36 4321 =+++ xxxx 4321 ,,, xxxx . . . . . . . . . . . . . 60 60 36 36 12 1 10 1 6 1 4 1 4321 == +++ +++ xxxx ==== 12 1 10 1 6 1 4 1 4321 xxxx 1 1 .60 15 4 x = = Qua bàitoán 2 ta thấy được mối quan hệ giữa “bài toántỉlệ thuận và bài toántỉlệ nghịch” Nếu y tỉlệnghịch với x thì y tỉlệ thuận với 1 1 ó . a tac y a x x x = = HS làm ? a) x và y tỉlệnghịch y và z tỉlệnghịch a x y ⇒ = . b a a y x z b z b z ⇒ = ⇒ = = Có dạng x = k. z Vậy x tỉlệ thuận với z b) x và y tỉlệnghịch y và z tỉlệ thuận nên y = b. z a x y ⇒ = . x. a x b z a z b ⇒ = = hay hoặc a b x z = Vậy x tỉlệnghịch với z X 1 -8 10 y 8 -4 1,6 3 2 2 2 6 16 -4 -2 Cho biết hai đạilượng x, y tỉlệnghịch với nhau. Điền số thích hợp vào ô trống: . 15 4 x = = Qua bài toán 2 ta thấy được mối quan hệ giữa bài toán tỉ lệ thuận và bài toán tỉ lệ nghịch Nếu y tỉ lệ nghịch với x thì y tỉ lệ thuận với 1. tỉ lệ nghịch y và z tỉ lệ nghịch a x y ⇒ = . b a a y x z b z b z ⇒ = ⇒ = = Có dạng x = k. z Vậy x tỉ lệ thuận với z b) x và y tỉ lệ nghịch y và z tỉ lệ