1. Trang chủ
  2. » Giáo án - Bài giảng

Toán 8 buổi 2(năm học 2008-2009)

47 564 2
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 47
Dung lượng 424,5 KB

Nội dung

Điểm D, E ở vị trí nào thì BD=DE=EC Bài 18: Hình thang cân ABCD có O là giao điểm của hai đờng thẳng chứa cạnh bên AD,BC và E là giao điểm của hai đờng chéob. Chứng minh rằng hai tia phâ

Trang 2

a Tính các góc của tứ giác

b Chứng minh AB//CD

Bài 3: Cho tứ giác ABCD

a Gọi I là giao điểm của các tia phân giác góc A , góc B của tứ giác Chứngminh góc AIB bằng nửa tổng hai góc C và góc D

Bài 4: Tứ giác lồi ABCD có tổng góc B và góc D bằng 1800 , CD=CB Chứngminh AC la phân giác của góc A

Bài 5: Hai đờng chéo của tứ giác ABCD cắt nhau tại O, chia tứ giác thành 4

tam giác có đỉnh O Biết số đo diện tích của các tam giác này là những sốnguyên Chứng minh rằng tích các số đo diện tích của các tam giác đó là một

số chính phơng

Bài 6: Hai đờng chéo của tứ giác lồi ABCD vuông góc với nhau tại O, đồng

thời AB < BC <CD Chứng minh rằng : BC - AB > CD - AD

Bài 7: Cho tứ giác ABCD Tìm điểm O trong mặt phẳng của tứ giác sao cho

tổng các khoảng cách từ O đến A,B,C,D là nhỏ nhất

Bài 8: Cho tứ giác ABCD có diện tích S=32, tổng AB+BD+DC = 16 Tính

BD

Bài 9: Tứ giác ABCD có BC = CD va DB la tia phân giác của góc D Chứng

minh rằng ABCD là hình thang

Bài 10: Cho tam giác ABC cân tại A, trên các cạnh AB, AC lấy các điểm M,

N sao cho BM = CN

a Tứ giác BMNC la hình gì ? Vì sao ?

b Tính các góc của tứ giác BMNC biết góc A bằng 400

Bài 11: Hai đoạn thẳng AB và CD cắt nhau tại O Biết rằng OA = OC ,

OB=OD Tứ giác ACBD là hình gì ? Vì sao?

Bài 12: Hai góc của một hình thang cân có hiệu bằng 400 Đó là hai góc ở một

đáy hay hai góc ở một cạnh bên ? Tính các góc của hình thang

Bài 13: Cho tam giác ABC vuông cân tại A.ở phía ngoài tam giác ABC, vẽ

tam giác BCD vuông cân tại B Tứ giác ABCD là hình gì ? Vì sao?

Bài 14: Cho hình thang ABCD có A=B = 900 , AB=BC =1/2(AD)

a Tính các góc của hình thang

b Chứng minh AC CD

Bài 15: Cho tam giác ABC cân tại A, các đờng phân giác BE, CF Chứng

minh rằng tứ giác BFEC là hình thang cân có đáy nhỏ bằng cạnh bên

Bài 16: Chứng minh hình thang có hai đờng chéo bằng nhau là hình thang

cân

Trờng THCS Xuân Canh

Trang 3

Bài 17:Cho tam giác ABC cân tại A Lấy điểm D trên cạnh AB, điểm E trên

cạnh AC sao cho AD=AE

a Tứ giác BDEC là hình gì? Vì sao?

b Điểm D, E ở vị trí nào thì BD=DE=EC

Bài 18: Hình thang cân ABCD có O là giao điểm của hai đờng thẳng chứa

cạnh bên AD,BC và E là giao điểm của hai đờng chéo Chứng minh rằng CE

là trung trực của hai đáy

Bài 19: Cho hình thang ABCD (AB//CD) có đáy CD bằng tổng hai cạnh bên

AD và BC Chứng minh rằng hai tia phân giác của góc A và góc B cắt nhau tạimột điểm thuộc cạnh đáy CD

Bài 20: Cho hình thang ABCD, O là giao điểm của hai đờng chéo AC và BD.

Chứng minh rằng ABCD là hình thang cân nếu OA=OB

Bài 21: Một hình thang cân có đơng cao bằng 4 cm, tổng hai đáy bằng 8cm

Tính góc giữa hai đờng chéo của hình thang

Trang 4

Bài 4: Tìm giá trị nhỏ nhất, giá trị lớn nhất ( nếu có ):

- Luyện tập về đờng trung bình của tam giác - hình thang

- Rèn kỹ năng chứng minh, luyện tập nâng cao

II Bài tập :

Bài 1: Cho tam giác ABC, điểm D thuộc cạnh AC sao cho AD=1/2(DC) Gọi

M là trung điểm của BC, I là giao điểm của BD và AM Chứng minh AI=IM

Bài 2: Hình thang ABCD (AB//CD) gọi E, E, I theo thứ tự là trung điểm của

AD,BC,AC chứng minh rằng ba điểm E, I, F thẳng hàng

Bài 3: Cho hình thang ABCD (AB//CD), M la trung điểm của AD, N là trung

điểm của BC Gọi I, K theo thứ tự là giao điểm của MN với BD, AC Cho biếtAB=6cm, CD=14cm Tính các độ dài MI, IK, KN

Bài 4: Cho tứ giác ABCD Gọi M, N lần lợt là trung điểm các cạnh AD, BC

Chứng minh rằng MN (AB + CD)/2 Dấu đẳng thức xảy ra khi nào?

Bài 5: Cho hình thang cân, đáy nhỏ AB, đáy lớn CD Góc nhọn hợp bởi hai

đ-ờng chéo AC và BD bằng 600 Gọi M, N la hình chiếu của B va C lên AC va

BD, P la trung điểm của cạnh BC Chứng minh tam giác MNP là tam giác

Bài 7: Chứng minh rằng đoạn thẳng nối các trung điểm của cặp cạnh đối diện

một tứ giác bằng nửa tổng hai cạnh kia thì tứ giác đó là hình thang

Bài 8 : Cho tam giác ABC vuông tại B, Â=580 phân giác AD Gọi M, N, Itheo thứ tự là trung điểm của AD, AC, CD

a Tứ giác BMNI là hình gì? Chứng minh

b Tính các góc của tứ giác BMNI

Trờng THCS Xuân Canh

Trang 5

Bài 9: Hình thang cân ABCD có C=600, DB là phân giác của góc D Biết chu

vi của hình thang là 20, tính mỗi cạnh của hình thang

Bài 10: Cho hình thang ABCD(AB//CD) Chứng minh rằng ABCD là hình

thang cân khi và chỉ khi ACD=BDC

Bài 11: Cho tứ giác lồi ABCD có AB=CD Chứng minh rằng đờng thẳng đi

qua trung điểm của hai đờng chéo tạo với AB và CD các góc bằng nhau

Bài 12: Cho tam giác ABC có Â=700, AC>AB Trên các cạnh AB và AC, lấycác điểm D và E sao Cho BD=CE Gọi M, N, I lần lợt là trung điểm của BC,

DE, DC

a Tam giác MIN là tam giác gì? Chứng minh

b Gọi F là giao điểm của MN và AC, tính số đo góc MFC

Bài 13: Cho tam giác ABC có AC>AB , gọi D, E, F là trung điểm các cạnh

BC, AC, AB Trên cạnh AC lấy điểm M sao cho CM=1/2(AB+AC) Chứngminh rằng DM là tia phân giác của góc EDF

Bài 14: Cho tam giác ABC cân tại A có H là trung điểm cạnh BC Gọi I là

hình chiếu vuông góc của H lên cạnh AC và O là trung điểm của HI Chứngminh AO BI

Bài 15: Dựng tam giác ABC biết hai trung tuyến BE = m, CF = n và đờng cao

Trang 6

a Nếu m là một số nguyên thì ( 2m + 1)2 – 1 chia hết cho 8.

b Hiệu các bình phơng của 2 số chẵn liên tiếp chia hết cho 4

c Hiệu các bình phơng của 2 số lẻ liên tiếp chia hết cho 8

- Ôn tập dựng hình bằng thớc và compa - bài toán dựng hình cơ bản

- Luyện tập các bài toán dựng hình

II Bài tập :

Bài 1: Dựng tam giác ABC vuông tại A, biết cạnh huyền BC=5cm và B=350

Bài 2: Dựng tam giác ABC vuông tại A, biết cạnh huyền BC=4,5cm và cạnh

góc vuông AC=2cm

Bài 3: Dựng hình thang cân ABCD(AB//CD), biết CD=3cm, AC=4cm, D=700

Bài 4: Dựng hình thang ABCD (AB//CD), biết D=900, AD=2cm, CD=4cm,BC=3cm

Bài 4: Dựng hình thang cân ABCD (AB//CD), biết hai đáy AB=2cm,

CD=4cm, đờng cao AH=2cm

Trờng THCS Xuân Canh

Trang 7

Bài 5:Dựng hình thangABCD, biết hai đáy AB=2cm,CD=4cm, C=500, D=700.

Bài 6: Dựng hình thang ABCD, biết hai đáy AB=1cm, CD=4cm, hai cạnh bên

Bài 9: Dựng tứ giác ABCD biết : AB=2cm, BC=3,5cm, CD=3cm, AD=3cm và

AC là tia phân giác của góc A

Bài 10: Dựng hình thang cân biết đờng cao bằng 2cm, đờng chéo bằng 3cm,

hiệu hai đáy bằng 2cm

Bài 11:Dựng hình thang cân biết hai đáy bằng 1cm và 4cm,cạnh bên bằng

3cm

Bài 12: Dựng tam giác ABC biết b=5cm, b-c=2cm, B+C =1200

Bài 13: Dựng tam giác vuông ABC biết cạnh huyền c và hiệu hai cạnh góc

Trang 8

Bài 3: Cho tam giác ABC cân tại A, đờng cao AH Trên cạnh AB lấy điểm I,

trên cạnh AC lấy điểm K sao cho AI=AK Chứng minh rằng I đối xứng với Kqua AH

Bài 4:Cho tam giác ABC, điểm M nằm trên đờng phân giác của góc ngoài

đỉnh C ( M khác C) Chứng minh rằng: AC+CB< AM+MB

Bài 5: Cho góc nhọn xOy, điểm A nằm trong góc đó Dựng điểm B thuộc tia

Ox, điểm C thuộc tia Oy sao cho tam giác ABC có chu vi nhỏ nhất

Bài 6: Cho tam giác vuông ABC, Â=1v, đờng cao AH Gọi D và E lần lợt là

các điểm đối xứng của điểm H qua AB và AC Chứng minh:

Trờng THCS Xuân Canh

Trang 9

a Tính các góc của tam giác ADE.

b Chứng minh MA là tia phân giác của góc IMK

c Điểm M ở vị trí nào trên BC thì DE có độ dài ngắn nhất

Bài 8: Cho tam giác ABC Hãy dựng điểm M trên cạnh AC sao cho chu vi

tam giác AMB bằng dộ dài cạnh BC

Bài 9: Cho tam giác ABC, các phân giác BD và CE cắt nhau ở O Qua A vẽ

các đờng vuông góc với BD và với CE, chúng cắt BC theo thứ tự ở N và M.Gọi H là hình chiếu của O trên BC Chứng minh rằng HM =HN

Bài 10: Cho hai đờng thẳng x, y và hai điểm A, B Dựng điểm C thuộc x,

điểm D thuộc y sao cho A, B, C, D là các đỉnh của hình thang cân có AB làmột cạnh đáy

Bài 11: Cho hình bình hành ABCD, gọi E, F lần lợt là hình chiếu của A, C lên

BD Chứng minh AECF là hình bình hành

Bài 12: Cho hình bình hành ABCD, trên đờng chéo BD lấy E và F sao cho

BE=DF ( BE<BD/2) Chứng minh AE//CF

Bài 13: Cho hình bình hành ABCD Gọi E, F theo thứ tự là trung điểm của

AB, CD Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE.Chứng minh rằng:

a EMFN là hình bình hành

b Các đờng thẳng AC, BD, EF đồng quy

Bài 14: Cho hình bình hành ABCD có Â=  > 900 ậ phía ngoài hình bìnhhành vẽ các tam giác đều ADF, ABE

a Tính EAF

b Chứng minh tam giác CEF đều

Bài 15: Cho tam giác ABC ở phía ngoài tam giác vẽ các tam giác vuông cân

tại A là ABD và ACE Vẽ hình bình hành ADIE Chứng minh rằng:

a IA = BC

b IA  BC

Bài 16: Cho tam giác ABC Dựng đờng thẳng song song với BC cắt cạnh AB

ở E, cắt cạnh AC ở F sao cho BE=AF

Bài 17: Cho hình bình hành ABCD Từ đỉnh A kẻ đờng thẳng song song với

đờng chéo BD cắt các tia CB, Cd lần lợt tại E và F Chứng minh :

a Các tứ giác ADBE và ADBF là hình bình hành

b Các đoạn thẳng AC, ED, BF gặp nhau tại một điểm

Bài 18: Cho hình bình hành ABCD có BAD =1200 và AB = 2AD

a Chứng minh rằng tia phân giác của góc ADC đi qua trung điểm E của cạnhAB

Trang 10

b Gọi F là trung điểm của cạnh DC Chứng minh tam giác ADF đều và ADvuông góc với AC.

Bài 19: Trong tứ giác ABCD, là trung điểm của AB, F là trung điểm của CD.

M, N, P, Q lần lợt là trung điểm của AF,CE, BF, và DE Chứng minh tứ giácMNPQ là hình bình hành

Bài 20: Cho tam giác ABC, các đờng trung tuyến AD, BE và CF Các đờng

thẳng kẻ từ E song song với AB và từ F song song với BE cắt nhau tại G.Chứng minh CG = AD

Bài 21: Chứng minh rằng tứ giác có giao điểm các đờng chéo trùng với giao

điểm các đoạn thẳng nối trung điểm các cạnh đối diện thì tứ giác đó là hìnhbình hành

Bài 22: Cho tam giác ABC có H là trực tâm Từ B và C kẻ các tia Bx, Cy lần

lợt vuông góc với AB , AC sao cho chúng cắt nhau tại I Gọi M là trung điểmcủa BC Chứng minh ba điểm H, M, I thẳng hàng

Bài 23: Cho hình bình hành ABCD có BC=2AB, M là trung điểm của AD Hạ

CE vuông góc với AB, E thuộc AB Chứng minh EMD = 3 AEM

5 : ) xyz 5 z xy 3

15 yz x

3 ( : ) z y

2 3

3

m 1

m

2 2

4 3 3

2

5 2 5

4 3

Trang 11

Bài 2: Chia đa thức A(x) cho đa thức B(x):

3 n n P 2

c x3 + ax + b chia cho x +1 d 7, chia cho x - 3 d -5

d ax3 + bx2 + c chia hết cho x + 2, chia cho x2 - 1 thì d x + 5

Bài 5: Tìm số tự nhiên n để x2n + xn + 1 chia hết cho x2 + x + 1

Bài 1: Cho tam giác ABC, điểm D thuộc cạnh BC, I là trung điểm của AD Từ

D kẻ DE//AB, EAC ; DF//AC , F  AB Chứng minh Evà F đối xứng nhauqua I

Bài 2: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC.

Gọi O là một điểm bất kỳ nằm trong tam giác ABC Vẽ điểm M đối xứng với

O qua D, vẽ điểm N đối xứng với O qua E Chứng minh MNCB là hình bìnhhành

Bài 3: Cho hình bình hành ABCD, O là giao điểm của hai đờng chéo Qua O,

vẽ đờng thẳng cắt hai cạnh AB, CD ở E, F Qua O vẽ đờng thẳng cắt hai cạnh

AD, BC ở G, H Chứng minh rằng GFH là hình bình hành

Bài 4: Cho hình bình hành ABCD, điểm E đối xứng với D qua A, điểm F đối

xứng với D qua C

a Chứng minh E đối xứng với F qua B

b Hình bình hành ABCD có thêm điều kiện gì thì E đối xứng với F qua đờngthẳng DB?

Trang 12

Bài 5: Cho góc xOy khác góc bẹt và điểm A nằm trong góc đó Vẽ điểm B

đối xứng với điểm A qua Ox, vẽ điểm C đối xứng với điểm A qua Oy

Góc xOy phải bằng bao nhiêu độ để điểm B đối xứng với điểm C qua O

Bài 6: Cho góc xOy và một điểm M nằm trong góc đó Hãy dựng qua O một

đờn thẳng cắt Ox ở A và cắt Oy ở B sao cho M là trung điểm của AB

Bài 7: Cho góc xAy và điểm G nằm trong góc đó Dựng điểm B thuộc tia Ax,

điểm C thuộc tia Ay sao cho G là trọng tâm của tam giác ABC

Bài 8: Cho tứ giác ABCD có hai đờng chéo vuông góc với nhau Gọi E, F, G,

H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA Tứ giác EFGH lafhình gì? Vì sao?

Bai 9 : Cho tam giác ABC vuông cân tại A, AC = 4cm, điểm M thuộc cạnh

BC Gọi D, E theo thứ tự là chân các đờng vuông góc kẻ từ M đến AB, AC

a Tứ giác ADME là hình gì? Tính chu vi của tứ giác đó

b Điểm M ở vị trí nào trên cạnh BC thi đoạn thẳng DE có độ dài nhỏ nhất

Bài 10: Cho tam giác ABC, đơng cao AH Gọi D, E, M theo thứ tự là trung

điểm của AB, AC, BC Chứng minh tứ giác DEMH la hinh thang cân

Bài 11: Cho tam giác nhọn ABC, các đờng cao BD, CE Gọi H, K theo thứ tự

là chân các đờng vuông góc kẻ từ B, C đến đờng thẳng DE Chứng minh rằngEH=DK

Bài 12: Cho tam giác ABC vuông tại A, đờng cao AH Gọi D, E theo thứ từ là

chân các đờng vuông góc kẻ từ H đến AB, AC

a Chứng minh rằng AH = DE

b Gọi I là trung điểm của HB, K là trung điểm của HC Chứng minh rằngDI//EK

Bài 13: Cho tam giác ABC vuông tại A, đờng cao AH, trung tuyến AM.

a Chứng minh rằng HAB = MAC

b Gọi D, E theo thứ tự là chân các đơng vuông góc kẻ từ H đến AB, AC.Chứng minh rằng AM vuông góc với DE

Bài 14: Cho tam giác ABC vuông cân tại C M là một điểm trên cạnh AB, kẻ

MR AC, MS BC, gọi O là trung điểm của AB Chứng minh rằng tam giácORS vuông cân

Bài 15: Cho hình chữ nhật ABCD Trên tia đối của các tia CB và DA lấy tơng

ứng hai điểm E và F sao cho CE=DF=CD Từ F kẻ đờng vuông góc với AEcắt CD tại H Chứng minh tam giác CHB vuông cân

Bài 16: Cho tam giác nhọn ABC, O là trực tâm của tam giác Gọi M, N, P lânf

lợt loà trung điểm các cạnh AB, AB, CA còn R, S, T lần lợt là trung điểm các

đoạn OA, OB, OC

Trờng THCS Xuân Canh

Trang 13

a Chứng minh tứ giác MPTS là hình chữ nhật.

b Chứng minh ba đoạn RN, MT, SP bằng nhau và cắt nhau tại trung điểmmỗi đờng

c Với điều kiện nào của tam giác ABC thì MR = RP = MS

Bài 17: Cho tam giác nhọn ABC, các đờng cao BD, CE Gọi H, K lần lợt là

hình chiếu của B và C lên DE

a Chứng minh EH = DK

b Nếu tam giác ABC cân ở A thì tứ giác BCKH là hình gì?

Bài 18: cho hình chữ nhật ABCD Kẻ BH AC Gọi M là trung điểm của AH,

K là trung điểm của CD, N là trung điểm của BH

a Chứng minh tứ giác MNCK là hình bình hành

b Tính góc BMK

Bài 19: Cho hình chữ nhật ABCD va điểm E thuộc đờng chéo AC Qua E kẻ

đờng thẳng song song với BD cắt AD, CD lần lợt ở M và N Vẽ hình chữ nhậtMDNF Chứng minh:

a DF // AC

b E là trung điểm của BF

Bài 20: Dựng hình chữ nhật biết:

a Đờng chéo và tổng hai cạnh kề nhau

b Đờng chéo và hiệu hai cạnh kề nhau

Bài 20: Hình chữ nhật ABCD có cạnh AD bằng một nửa đờng chéo AC Tính

góc nhọn tạo bởi hai đờng chéo của hình chữ nhật

Bài 21: Cho tam giác ABC cân ở A Từ một điểm D trên đáy BC, vẽ đờng

thẳng vuông góc với BC cắt các đờng thẳng AB, AC lần lợt ở E và F Vẽ cáchình chữ nhật BDEH và CDFK chứng minh A là trung điểm của HK

Trang 14

) x ( P

x x 2 x x

2

x x

.

b

18 x

15 x x x

3

) x

2

2 2

2

2 2 2

2 2 2

2 2 2

2 3

2 3

) y x ( ) x z ( ) z y

(

z y x

c

z y xy 2 x

yz 2 xz 2 xy 2 z y x

.

b

3 x x x

x x 7 x

xy 2 A

1 x x

minh ABCD là hình thoi

Bài 3: Hình thoi ABCD có Â=600 Kẻ hai đờng cao BE, BF Tam giác BEF làtam giác gì? Vì sao?

Bài 4:. Cho hình bình hành ABCD, các đờng chéo cắt nhau ở O Gọi E, F, G,

H theo thứ tự là giao điểm của các đờng phân giác của các góc AOB, BOC,COD, DOA Chứng minh răng EFGH là hình thoi

Bài 5: Cho tam giác ABC Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm

E sao cho BD = CE Gọi M, N, P, Q lần lợt là các trung điểm của BC, CD,

DE, EB

Trờng THCS Xuân Canh

biết rằng x + y +z = 0

Trang 15

a Tứ giác MNPQ là hình gì? Vì sao?

b Phân giác của góc A cắt cạnh BC tại F Chứng minh PM//AF

c Đờng fthẳng QN cắt AB, AC lần lợt ở I và K Tam giác AIK là tam giácgì? Vì sao ?

Bài 6: Cho hình thoi ABCD có AB=AC Kẻ AE  BC, EF  CD.

a Chứng minh tam giác AEF đều

b Biết AB=4cm tính độ dài các đờng chéo hình thoi

Bài 7: Cho hình bình hành ABCD, có AD=2AB.; Từ C kẻ CE vuông góc với

AB Nối E với trung điểm M của AD Từ M kẻ MF vuông góc với CE, MF cắt

BC ở N

a Tứ giác MNCD là hình gì? Vì sao?

b Tam giác EMC là tam giác gì? Vì sao?

c Chứng minh BAD = 2AEM

Bài 8: Dựng hình thoi ABCD biết DAC=300, tổng dộ dài hai đờng chéoAC+BD = m

Bài 9: Cho hình thang cân ABCD có đáy CD Gọi E, F, G, H theo thứ tự là

trung điểm của AB, BD, CD, DA

a Chứng minh EG là tia phân giác của góc FEH

b Tính các góc của hình thoi EFGH nếu biết hình thang ABCD có C=D=550

Bài 10: Hình bình hành ABCD có AC AD Gọi M, N theo thứ tự là trung

điểm của AB, CD Chứng minh AMCN là hình thoi

Bài 11: Cho tứ giác ABCD có Â=C=900 Các đờng thảng AB và CD cắt nhautại I, các đờng thẳng BC và ADcắt nhau tại K Tia phân giác của góc I cắt

AD, BC theo thứ tự ở E, F Tia phân giác của góc K cắt AB, CD theo thứ tự ở

M, N

a Chứng minh rằng IF vuông góc với KM b MENF là hình thoi

Bài 12: Cho tứ giác lồi ABCD có AB = CD Gọi M, N, I, K thứ tự là trung

điểm của BC, AD, AC, BD Chứng minh rằng:

a MN  IK

b Đờng thẳg IK tạo với AB , CD các góc bằng nhau

Bài 13: Cho hình thoi ABCD có Â=600, lấy điểm E trên cạnh AD, điểm F trêncạnh DC sao cho AE=DF

a Tam giác BEF là tam giác gì? vì sao?

b Các điểm E, F ở vị trí nào trênAD, DC thì EF có độ dài ngắn nhất

Bài 14: Cho tam giác ABC, điểm I nằm giữa B và C Qua I vẽ đờng thẳng

song song với AB cắt AC ở H Qua I vẽ đờng thẳng song song với AC cắt AB

ở K

Trang 16

a Tứ giác AHIK là hình gì?

b Điểm I ở vị trí nào trên BC thì tứ giác AHIK là hình thoi?

c Tam giác ABC có điều kiện gì thì tứ giác AHIK là hình chữ nhật?

Bài 15: Cho tam giác ABC vuông tại A, đờng phân giác AD Gọi M,N theo

thứ tự là chân các đờng vuông góc kẻ từ D đênd AB, AC Chứng minh tứ giácAMDN la hinh vuông

Bài 16: Hình chữ nhật ABCD có AB=2AD Gọi P, Q theo thứ tự là trung điểm

của AB, CD Gọi H là giao điểm của AQ và DP, gọi K la giao điểm của CP va

BQ Chứng minh PHQK là hình vuông

Bài 17: Cho hình vuông ABCD Trên cạnh AD lấy điểm F, trên cạnh DC lấy

điểm E sao cho AF = DE Chứng minh AE = BF và AE  BF

Bài 18: Cho hình vuông ABCD Gọi E là một điểm nằm giữa C và D Tia

phân giác của góc DAE cắt CD ở F Kẻ FH  AE ( H thuộc AE), FH cắt BC ở

G Tính số đo góc FAG

Bài 19: Cho hình vuông DEBC Trên cạnh CD lấy điểm A, trên tia đối của tia

DC lấy điểm K, trên tia đối của tia ED lấy điểm M sao cho CA=DK=EM Vẽhình vuông DKIH ( H thuộc cạnh DE) Chứng minh rằng ABMI là hìnhvuông

Bài 20:. Cho tam giác ABC Vẽ ở ngoài tam giác các hình vuông ABDE,ACFH

a Chứng minh rằng EC=BH, ECFH

b Gọi M, N theo thứ tự là tâm các hình vuông ABDE, ACFH Gọi I là trung

điểm của BC Tam giác MIN là tam giác gì? Vì sao?

c Gọi K là trung điểm của EH Tứ Giác MINK là hình gì? Vì sao?

Bài 21:. Cho hình vuông ABCD, điểm E thuộc cạnh CD Tia phân giác củagóc ABE cắt AD ở K Chứng minh AK + CE =B

Bài 22:. Cho hình vuông ABCD, Gọi E, F theo thứ tự là trung điểm của AB,

BC a Chứng minh rằng CE  DF

b Gọi M là giao điểm của CE và DF Chứng minh AM=AD

Bài 23:. Cho hình vuông ABCD Vẽ điểm E trong hình vuông sao choEDC=ECD=150 Chứng minh tam giác AEB đều

Bài 24: Cho tam giác ABC có 3 góc nhọn, Â=450, đờng cao AH Gọi D là

điểm đối xứng với H qua AB, gọi E là điểm đối xứng với H qua AC Goi K làgiao điểm của DB và EC

a Chứng minh rằng ADKE là hình vuông

b Tam giác ABC có điều kiện gì thì ba điểm A, H, K thẳng hàng

Tuần 13.

Trờng THCS Xuân Canh

Trang 17

; 6 x x

1

; 2 x x

1

.

e

9 x x

1

; 9 x x

x

; 27

x 1

; x 1

x

; x

1 x

; x x

1 x

2 x

2

2 2

3

2 2

2 2

2 2

3

2 2

4 3 2

2

2 2 2 2

2

y x

x y

x

x y

x

x 2 y x

1 y

1 ) 3 x )(

2 x (

1 )

2 x )(

1 x (

1 )

y x x

y

x 16 xy

x 1 x

1 x

2 x (

1 )

x 2 )(

x 1 (

1 1

2 2

2 2 2 2

2 2 2

y x z

z x

z y

y z

y x

x B

Bài 1: Cho tứ giác ABCD Gọi E, F, G, H theo thứ tự là trung điểm của AB,

BC, CD, DA Tìm điều kiện của tứ giác ABCD để EFGH là :

a Hình chữ nhật

Trang 18

b Hình thoi.

c Hình vuông

Bài 2: Cho tứ giác ABCD Gọi E, F, G, H theo thứ tự là trung điểm của AB,

AC, CD, DB Tìm điều kiện của tứ giác ABCD để EFGH là :

a Hình chữ nhật

b Hình thoi

c Hình vuông

Bài 3: Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC Gọi M

là điểm đối xứng với D qua AB, E là giao điểm của DM và AB Gọi N là điểm

đối xứng với D qua AC, F là giao điểm của DN và AC

a Tứ giác ADEF là hình gì? Vì sao?

b Các tứ giác ADBM, ADCNN là hình gì? Vì sao?

c Chứng minh rằng M đối xứng với N qua A

d Tam giác vuông ABC có điều kiện gì thì tứ giác AEDF là hình vuông

Bài 4: Cho tam giác ABC vuông tại A, đờng cao AH Gọi D là điểm đối xứng

với H qua AB, E là điểm đối xứng với H qua AC

a Chứng minh rằng D đối xứng với E qua A

b Tam giác DHE là tam giác gì? Vì sao?

c Tứ giác BDEC là hình gì? Vì sao?

d Chứng minh BC=BD+CE

Bài 5: Cho tam giác ABC, trên tia đối của tia BC lấy điểm D, trên tia đối của

tia CB lấy điểm E sao cho BD+BC+CE Qua D kẻ đờng thẳng song song với

AB cắt AC ở H Qua E kẻ đờng thẳng song song với AC cắt AB ở K, chúngcắt nhau ở I

a Tứ giác BHKC là hình gì? Vì sao?

b Tia IA cắt BC ở M Chứng minh MB=MC

c Tìm điều kiện của tam giác ABC để tứ giác DHKE là hình thang cân

Bài 6: Cho hình thang ABCD có Â=D=900, CD = 2AB=2AD Gọi H là hìnhchiếu của D lên AC; M, N, P lần lợt là trung điểm của CD, HC và HD

a Chứng minh tứ giác ABMD là hình vuông và tam giác BDC là tam giácvuông cân

b Chứng minh tứ giác DMPQ là hình bình hành

c Chứng minnh AQ vuông góc với DP

Bài 7: Cho hình thang cân ABCD (BC//AD) Gọi M, N, P, Q lần lợt là trung

điểm của các cạnhAB, BC, CD, DA

a Chứng minh MP là tia phân giác của góc QMN

Trờng THCS Xuân Canh

Trang 19

b Hình thang ABCD phải có thêm điều kiện gì đối với hai đờng chéo để gócMNQ bằng 450.

c Chứng minh rằng nếu thêm điều kiện đó thì hình thang ABCD sẽ có đờngcao bằng đờng trung bình của nó

Bài 8: Cho hình thoi ABCD Trên tia đối của tia BA lấy điểm M, trên tia đối

của tia CB lấy điểm N, trên tia đối của tia DC lấy điểm P, trên tia đối của tia

AD lấy điểm Q sao cho BM = CN = DP = AQ

a Chứng minh tứ giác MNPQ là hình bình hành

b Chứng minh hình bình hành ABCD và hình bình hành MNPQ có chungtâm đối xứng

c Nếu ABCD là hình vuông thì tứ giác MNPQ là hình gì? Vì sao?

Bài 9: Cho hình bình hành ABCD có AB=2AD Gọi M, N thứ tự là trung điểm

d Tứ giác MENF là hình gì? Vì sao?

e Hình bình hành ABCD có thêm điều kiện gì thì MENF là hình vuông?

Bài 10 : Cho hình vuông ABCD M là một điểm tuỳ ý trên đờng chéo BD Kẻ

ME  AB, MF  AD

a Chứng minh DE=CF và DECF

b Chứng minh ba đờng thẳng DE, BF, CM đồng quy

c Xác định vị trí của điểm M trên BD để điện tích tứ giác AEMF lớn nhất

Bài 11: Cho tam giác ABC vuông ở A, có AB=AC=a.

a Trên các cạnh AC và AB lấy tơng ứng hai điểm D và E sao cho AD = AE.Các đờng thẳng vuông góc với CE kể từ A và D lần lợt cắt BC tại K và L.Chứng minh BK=KL

b Một hình chữ nhật APMN thay đổi có đỉng P trên cạnh AB, đỉnh N trêncạnh AC và có chu vi luôn bằng 2a Chứng minh rằng đỉnh M chuyển độngtrên một đoạn thẳng cố định

c Chứng minh rằng khi hình chữ nhật APMN thay đổi thì các đờng thẳngvuông góc kẻ từ M xuông đờng chéo PN luôn đi qua một điểm cố định

Bài 12: Cho hình vuông EFGH Một góc vuông xEy quay quanh E, có cạnh

Ex cắt các đờng thẳng FG và GH theo thứ tự ở M và N, cạnh Ey cắt hai đờngthẳng trên lần lợt ở P và Q

a Chứng minh các tam giác EMQ và ENP là các tam giác vuông cân

Trang 20

b Đờng thẳng QM cắt NP ở R Gọi I và K theo thứ tự là trung điểm của PN

và QM Tứ giác EKRI là hình gì? Vì sao?

c Chứng minh bốn điểm F, H, K, I thẳng hàng và đờng thẳng IK cố định khigóc xEy quay quanh E

Bài 13: Cho hình bình hành ABCD có BC=2AB và Â=600 Gọi E, F theo thứ

tự là trung điểm của BC, AD Vẽ điểm I đối xứng vói A qua B

a Tứ giác ABEF là hình gì? Chứng minh

b Tứ giác AIEF là hình gì? Chứng minh

c Tứ giác BICD là hình gì? Chứng minh

d Tính số đo góc AED

Bài 14: Cho tam giác ABC vuông ở A, điểm D thuộc cạnh BC Gọi M, N thứ

tự là hình chiếu của D trên AB, AC

a Chứng minh AD = MN

b Gọi AH là đờng cao của tam giác ABC Chứng minh MHN=900

c Khi điểm D chuyển động trên cạnh BC thì trung điểm của MN chuyển

động trên đờng nào?

d Xác định vị trí của điểm D sao cho đoạn thẳng MN có độ dài ngắn nhất

Bài 15: Cho hình chữ nhật ABCD(AB>BC) Lấy E đối xứng với B qua A, lấy

F đối xứng với B qua C

a Chứng minh E, F đối xứng nhau qua D

b Kẻ BH EF Từ H kẻ HP  AB, HQ  BC Tứ giác BPHQ là hình gì?

c Chứng minh BD  PQ

Bài 16: Cho hình vuông ABCD Lấy điểm M trên cạnh BC ( khác B, C) Tia

phân giác của góc ADM cắt cạnh AB tại N Chứng minh : DM = AN + CM

Bài 17: Cho góc nhọn xOy và đờng thẳng d không đi qua O Dựng hình

vuông ABCD sao cho A nằm trên Ox, C nằm trên Oy, B và D nằm trên đ ờngthẳng d

Bài 18: Cho ba điểm M, N, O không thẳng hàng Dựng hình vuông ABCD

nhận O làm tâm đối xứng, M và N theo thứ tự thuộc các đờng thẳng AB, CD

Bài 19: Dựng tứ giác ABCD biết hai cạnh đối AD = a, BC = b và ba góc

Â=, B=, D =

Trờng THCS Xuân Canh

Trang 21

Tuần 19 Luyện tập toán rút gọn

I Mục tiêu: Luyện tập phép trừ, nhân, chia phân thức, phối hợp các phép tính rút

gon phân thức Các dạng bài tập rèn luyện kĩ năng

II Bài tập:

Bài 1: Thực hiện phép tính:

x 2 x

2

x x

1

d

y xy x

y x x

y

xy 3 y

x

1

c

1 x

3 x 1 x

1 x 1

y x y xy

3 3

2

2 2 2

x y xy y : y x xy

x

y x

.

c

6 x x

2 x 2 x x

2 x

.

b

xy x

y xy 2 2

x

xy y x x

.

a

2 2

2 2

2 3

2 2

2 3

y : x y

y y x

y x y x

y x

.

b

y x

y x y x

y x : y x

y x y

3 3 2

2

2 2

y x (

z y )

z y )(

z x (

y x )

z y )(

y x (

z x

b

) z x )(

y x (

1 )

z y )(

z x (

1 )

z y )(

y x (

1

Bài 1: Tính diện tích của một hình thang vuông, biết hai đáy có độ dài là

2cm và 4cm, góc tạo bởi một cạnh bên và đáy lớn có số đo bằng 450

Bài 2: Tính diện tích hình thang, biết các đáy có độ dài là 7cm và 9cm, một

trong các cạnh bên dài 8cm và tạo với đáy một góc bằng 300

Trang 22

Bài 3: Chứng minh rằng mọi đờng thẳng đi qua trung điểm của đờng trung

bình của hình thang và cắt hai đáy của hình thang sẽ chia hình thang đó thànhhai hình thang có diện tích bằng nhau

Bài 4: Diện tích của một hình bình hành bằng 24cm2 Khoảng cách từ giao

điểm hai đờng chéo đến các cạnh của hình bình hành bằng 2cm và 3cm Tínhchu vi của hình bình hành đó

Bài 7: Cho tam giác cân ABC với AB=AC=5cm, BC=6cm Gọi O là trung

điểm của đờng cao AH Các tia BO và CO cắt các cạnh bên AC, AB lần lợt ở

D và E Tính diện tích tứ giác AEOD

Bài 8: Cho tam giác ABC Gọi D là trung điểm cạnh BC Trên hai cạnh AB và

AC lần lợt lấy hai điểm E và F Chứng minh rằng SDEF1/2SABC Với vị trí nàocủa E và F thì SDEF đạt giá trị lớn nhất

Bài 9: Cho hình thang ABCD Gọi M, N lần lợt là trung điểm của hai đáy BC

và AD Trên MN lấy điểm O tuỳ ý, qua O kẻ đờng thẳng song song với BCcắt AB ở P, cắt CD ở Q

Bài 10: Cho hình bình hành ABCD có diện tích là 1 Gọi M là trung điểm của

cạnh BC; AM cắt đờng chéo BD ở Q Tính diện tích tứ giác MQDC

2 2

2 2 2 2

2 2

) 1 x (

1 )

1 x (

1 x 1 x

1 x

c

y x

y x y x

y x

y x

y x y x

y x b x

2

1 x 1

1 x

1

Bài 2: Cho biểu thức:

Trờng THCS Xuân Canh

Trang 23

4 x x x

x 2 4 x

2 x 4 x

x x A

2 3

2

2 2

c a c

b c b

c )

a c (

b )

c b (

a

2 2

) y x ( ab ) z x ( ac ) z y ( bc

cz by ax P

Bài1: Cho hình thang cân ABCD ( AB//CD, AB<CD), đờng cao BH Gọi M,

N theo thứ tự là trung điểm của AD,BC

a Tứ giác MNHD là hình gì?

b Biết BH=8cm, MN=12cm Tính diện tích các tứ giác ABCD, MNHD

Bài 2: Cho hình bình hành ABCD có AB=8cm, AD=4cm Gọi M, N theo thứ

tự là trung điểm của AB, CD

a Xác định dạng các tứ giác AMCN, AMND

b Gọi I là giao điểm của DM và AN, gọi K là giao điểm củaCM và BN Xác

định dạng tứ giác MINK

c Chứng minh IK//CD

d Hình bình hành ABCD có thêm điều kiện gì thì MINK là hình vuông? Khi

đó diện tích MIMK là bao nhiêu?

Bài 3: Cho hình chữ nhật ABCD (AB>BC) Lấy E đối xứng của B qua A, lấy

F đối xứng của B qua C

a Chứng minh E, F đối xứng nhau qua D

Ngày đăng: 29/09/2013, 08:10

HÌNH ẢNH LIÊN QUAN

- Rèn các cách chứng minh hình chữ nhật, đờng thẳng song song với một đ- đ-ờng thẳng cho trớc. - Toán 8 buổi 2(năm học 2008-2009)
n các cách chứng minh hình chữ nhật, đờng thẳng song song với một đ- đ-ờng thẳng cho trớc (Trang 13)
- Ôn tập hình thoi, hình vuông - Toán 8 buổi 2(năm học 2008-2009)
n tập hình thoi, hình vuông (Trang 17)
Bài 2: Hình bình hành ABCD có hai đờng cao AH, AK bằng nhau. Chứng minh - Toán 8 buổi 2(năm học 2008-2009)
i 2: Hình bình hành ABCD có hai đờng cao AH, AK bằng nhau. Chứng minh (Trang 17)
b. Gọi M,N theo thứ tự là tâm các hình vuông ABDE, ACFH. Gọi I là trung điểm của BC. Tam giác MIN là tam giác gì? Vì sao? - Toán 8 buổi 2(năm học 2008-2009)
b. Gọi M,N theo thứ tự là tâm các hình vuông ABDE, ACFH. Gọi I là trung điểm của BC. Tam giác MIN là tam giác gì? Vì sao? (Trang 20)
a. Hình chữ nhật. b. Hình thoi. c. Hình vuông. - Toán 8 buổi 2(năm học 2008-2009)
a. Hình chữ nhật. b. Hình thoi. c. Hình vuông (Trang 21)
Bài 9: Cho hình thang ABCD. Gọi M,N lần lợt là trung điểm của hai đáy BC và AD. Trên MN lấy điểm O tuỳ ý, qua O kẻ đờng thẳng song song với BC cắt  AB ở P, cắt CD ở Q. - Toán 8 buổi 2(năm học 2008-2009)
i 9: Cho hình thang ABCD. Gọi M,N lần lợt là trung điểm của hai đáy BC và AD. Trên MN lấy điểm O tuỳ ý, qua O kẻ đờng thẳng song song với BC cắt AB ở P, cắt CD ở Q (Trang 27)
I Mục tiêu: Luyện tập hình hộp chữ nhật, thể tích hình hộp chữ nnhật. - Toán 8 buổi 2(năm học 2008-2009)
c tiêu: Luyện tập hình hộp chữ nhật, thể tích hình hộp chữ nnhật (Trang 48)
Bài1: Cho hình hộp chữ nhật ABCDA1B1C1D1. - Toán 8 buổi 2(năm học 2008-2009)
i1 Cho hình hộp chữ nhật ABCDA1B1C1D1 (Trang 48)
Bài 2: Một bể chứa nớc dạng hình hộp chữ nhật. Chiều rộng và chiều dài tỉ lệ với 4 và 5, chiều rộng và chiều cao tỉ lệ với 5 và 4 - Toán 8 buổi 2(năm học 2008-2009)
i 2: Một bể chứa nớc dạng hình hộp chữ nhật. Chiều rộng và chiều dài tỉ lệ với 4 và 5, chiều rộng và chiều cao tỉ lệ với 5 và 4 (Trang 49)
Hình lập phơng là  12 . - Toán 8 buổi 2(năm học 2008-2009)
Hình l ập phơng là 12 (Trang 49)
Hình lăng trụ Số cạnh của  một đáy (n) - Toán 8 buổi 2(năm học 2008-2009)
Hình l ăng trụ Số cạnh của một đáy (n) (Trang 51)
a. Tính chiều cao của hình lăng trụ. b. Tính diện tích tứ giác BCC’B’. - Toán 8 buổi 2(năm học 2008-2009)
a. Tính chiều cao của hình lăng trụ. b. Tính diện tích tứ giác BCC’B’ (Trang 52)
- Luyện tập hình chóp đều, hình chóp cụt đều, diện tích xung quanh và thể tích của hình chóp đều. - Toán 8 buổi 2(năm học 2008-2009)
uy ện tập hình chóp đều, hình chóp cụt đều, diện tích xung quanh và thể tích của hình chóp đều (Trang 53)
Bài1: Cho hình chóp tứ giác đều (hình vẽ). Điền các số thích hợp vào cá cô còn trống trong bảng sau: - Toán 8 buổi 2(năm học 2008-2009)
i1 Cho hình chóp tứ giác đều (hình vẽ). Điền các số thích hợp vào cá cô còn trống trong bảng sau: (Trang 53)
Bài 2: Hình chóp đều SABC có cạnh đáy a=12cm,   chiều   cao   h=8cm.   Hãy   tính   diện  tích xung quanh của hình chóp đó. - Toán 8 buổi 2(năm học 2008-2009)
i 2: Hình chóp đều SABC có cạnh đáy a=12cm, chiều cao h=8cm. Hãy tính diện tích xung quanh của hình chóp đó (Trang 54)
Bài 4: Hình vẽ là chiếc lều ở một trại hè với - Toán 8 buổi 2(năm học 2008-2009)
i 4: Hình vẽ là chiếc lều ở một trại hè với (Trang 54)
Bài6: Hình chóp đều SABC có cạnh đáy 3dm. Các mặt bên đều là các tam giác vuông cân đỉnh S - Toán 8 buổi 2(năm học 2008-2009)
i6 Hình chóp đều SABC có cạnh đáy 3dm. Các mặt bên đều là các tam giác vuông cân đỉnh S (Trang 55)
Bài 6: Hình chóp đều SABC có cạnh đáy 3dm. Các mặt bên đều là các tam giác - Toán 8 buổi 2(năm học 2008-2009)
i 6: Hình chóp đều SABC có cạnh đáy 3dm. Các mặt bên đều là các tam giác (Trang 55)

TỪ KHÓA LIÊN QUAN

w