Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 20 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
20
Dung lượng
465 KB
Nội dung
[...]... nào thỏa mãn điều kiện đề bài +) Nếu a = 6 thì : 244 < < 265 (p = 4 hoặc p = 6) Chỉ có một số thỏa mãn 2 trường hợp này là : 264 = 69 6 96 +) Nếu a = 9 thì : 300 < < 317 (p = 3 hoặc p = 7) Trường hợp này cũng chỉ có 2 một số thỏa mãn là : 307 = 94249 Tóm lại có 7 số thỏa mãn điều kiện bài ra : 10201, 12321, 40804, 1 464 1, 44844, 69 6 96, 94249 Nhận xét : - Nếu bài toán có thêm điều kiện a, b, c đôi một khác... toán có thể phát biểu dưói dạng : Giải phương trình : Do vai trò của x, y, z như nhau nên không mất tính tổng quát, giả sử x ≥ y ≥ z và từ (1) ta => : 1/x ≤ 1/y ≤ 1/z < 1/2 => x ≥ y ≥ z ≥ 3 (2) Từ (1), (2) => 1/2 = 1/x + 1/y + 1/z ≤ 3/z => z ≤ 6 => 3 ≤ z ≤ 6 => z thuộc {3 ; 4 ; 5 ; 6} * Với z = 3, ta có : 1/x + 1/y + 1/3 = 1/2 => 1/x + 1/y = 1/2 - 1/3 = 1 /6 => 6x + 6y = xy => xy - 6x - 6y + 36 = 36. .. + 1 /6 + 1/7 < 1/5 + 1/5 + 1/5 = 3/5 (3) 1/8 + 1/9 + 1/10 + + 1/17 < 10.1/8 = 5/4 (4) Từ (3), (4) => : A < 3/5 + 5/4 = 37/20 < 2 Cách 3 :1/5 + 1 /6 + 1/7 + 1/8 + 1/9 < 5.1/5 = 1 (5) 1/10 + 1/11 + + 1/17 < 8.1/8 = 1 (6) Từ (5), (6) => : A < 1 + 1 = 2 Cách 4 : 1 /6 + 1/7 + + 1/11 < 6. 1 /6 = 1 (7) 1/12 + 1/13 + + 1/17 < 6. 1/12 = 1/2 (8) Từ (7), (8) => : A < 1/5 + 1 + 1/2 = 17/10 < 2 Cách 5 : 1/5 + 1 /6 +... (25 - 31) + = ( -6) + ( -6) + ( -6) + Vì A có 40 số hạng nên sẽ có 20 cặp số có giá trị bằng -6 Do đó A = ( -6) 20 = -120 b) Ta xét 2 trường hợp : Trường hợp 1 : Với n chẵn Tương tự câu a, vì A có n số hạng nên sẽ có cặp số n/2 cặp số Do đó A = ( -6) .n/2 = - 3n Trường hợp 2 : Với n lẻ, khi đó n - 1 chẵn Ta có A = 1 - 7 + 13 - 19 + 25 - 31 + = 1 + (- 7 + 13) + (- 19 + 25) + = 1 + 6 + 6 + Vì A có (n... + a5, a2 + a6, a3 + a4, a3 + a5, a3 + a6, a4 + a5, a4 + a6, a5 + a6 Vậy có tất cả : 5 + 4 + 3 + 2 + 1 = 15 tổng 2) Phản chứng a6 ≤ 2011, => a5 ≤ 2010 Tổng nhỏ nhất là : a1 + a2 ≥ 2003 + 2004 = 4007 Tổng lớn nhất là : a5 + a6 ≤ 2010 + 2011 = 4021 Nhưng ta chú ý rằng có tất cả 15 số tự nhiên ≥ 4007 và ≤ 4021 Do 15 tổng trên khác nhau, => a1 + a2 = 4007 và a5 + a6 = 4021, tức là a2 = 2004, a6 = 2011, a1... bằng 6 nên A = 1 + 6 (n - 1)/2 = 1 + 3(n - 1) = 3n - 2 Vậy A = -3n (với n chẵn) ; A = 3n - 2 (với n lẻ) Bài 4(1) : Cho 6 số tự nhiên a1, a2, a3, a4, a5, a6 thoả mãn : 2003 = a1 < a2 < a3 < a4 < a5 < a6 1) Nếu tính tổng hai số bất kì thì được bao nhiêu tổng? 2) Biết rằng tất cả các tổng trên là khác nhau Chứng minh a6 ≥ 2012 Lời giải : 1) Các tổng đó là a1 + a2, a1 + a3, a1 + a4, a1 + a5, a1 + a6, a2... z, ta có bảng : * Với z = 6, ta có : 1/x + 1/y + 1 /6 = 1/2 => 1/x + 1/y = 1/2 - 1 /6 = 1/3 => : 3x + 3y = xy => => (x - 3)(y - 3) = 9 Do x, y thuộc Z+, x ≥ y ≥ z, ta có bảng : * Vậy phương trình (1) có các nghiệm là : (42 ; 7 ; 3), (24 ; 8 ; 3), (18 ; 9 ; 3), (15 ; 10 ; 3), (12 ; 12 ; 3), (20 ; 5 ; 4), (12 ; 6 ; 4), (8 ; 8 ; 4), (10 ; 5 ; 5), (6 ; 6 ; 6) , cùng các hoán vị Từ đây, dễ dàng => phân số có... là S = a + (a + 2) + + (a + 40 06) = [ a + (a + 40 06) ] : 2 x 2004 = (a + 2003) x 2004 Do đó S = 8030028 tương đương với (a + 2003) x 2004 = 8030028 hay a = 2004 Vậy 8030028 = 2004 + 20 06 + 2008 + + 60 10 Nhận xét : Hầu hết các bạn giải đúng Một số bạn tính S hơi khác một chút : S = 2004a + (2 + 4 + + 40 06) Bài 2(11) : Tìm số nguyên a lớn nhất sao cho số T = 427 + 410 16 + 4a là số chính phương Lời giải... (x - 6) (y - 6) = 36 Do x, y thuộc Z+, x ≥ y ≥ z, ta có bảng : * Với z = 4, ta có : 1/x + 1/y + 1/4 = 1/2 => 1/x + 1/y = 1/2 - 1/4 = 1/4 => : 4x + 4y = xy => => (x - 4)(y - 4) = 16 Do x, y thuộc Z+, x ≥ y ≥ z, ta có bảng : * Với z = 5, ta có : 1/x + 1/y + 1/5 = 1/2 => 1/x + 1/y = 1/2 - 1/5 = 3/10 => 10x + 10y = 3xy => (3x - 10)(3y - 10) = 100 Do x, y thuộc Z+, x ≥ y ≥ z, ta có bảng : * Với z = 6, ta... rằng : 1/5 + 1 /6 + 1/7 + + 1/17 < 2 Lời giải : Có khá nhiều cách chứng minh nhờ “đánh giá” vế trái bởi các kiểu khác nhau Ta gọi vế trái của bất đẳng thức là A Cách 1 : Ta có : 1/5 + 1 /6 + 1/7 + 1/8 + 1/9 + 1/10 < 1/5 + 1/5 + 1/5 + 1/5 + 1/5 + 1/5 = 6/ 5 (1) 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/ 16 + 1/17 < 1/11 + 1/11 + 1/11 + 1/11 +1/11 + 1/11 + 1/11 = 7/11 (2) Từ (1) và (2) => : A < 6/ 5 + 7/11 = 101/55