1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ THI vào 10 hòa BÌNH 2010 2011

3 54 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 124 KB

Nội dung

� 1Câu (2 điểm) Cho biểu thức : A = � � � ĐỀ THI VÀO 10 2 �x - + �: x- x+ � �x -2 a) Tìm x để biểu thức A có nghĩa ; b) Rút gọn biểu thức A Câu (2 điểm) Cho phương trình : x - mx - x - m - = (1), (m tham số) a) Chứng minh phương trình (1) ln có hai nghiệm phân biệt x1; x với giá trị m ; 2 b) Tìm giá trị m để biểu thức P = x1 + x - x1x + 3x1 + 3x đạt giá trị nhỏ Câu (2 điểm) Một canơ xi dòng sơng từ bến A đến bến B hết giờ, ngược dòng sơng từ bến B bến A hết (Vận tốc dòng nước khơng thay đổi) a) Hỏi vận tốc canô nước yên lặng gấp lần vận tốc dòng nước chảy ? b) Nếu thả trơi bè nứa từ bến A đến bến B hết thời gian ? Câu (3 điểm) Cho tam giác ABC vuông A AB = 10cm Gọi H chân đường cao kẻ từ A xuống BC Biết HB = 6cm, tính độ dài cạnh huyền BC Cho tam giác ABC nội tiếp đường tròn (O), H trực tâm tam giác, AH cắt đường tròn (O) D (D khác A) Chứng minh tam giác HBD cân Hãy nêu cách vẽ hình vng ABCD biết tâm I hình vng điểm M, N thuộc đường thẳng AB, CD (Ba điểm M, I, N không thẳng hàng) 2 � �x y - xy - = Câu (1 điểm) Giải hệ phương trình : � 2 2 �x + y = x y Hết Họ tên thí sinh : Số báo danh : Phòng thi : Giám thị (Họ tên, chữ ký) : Giám thị (Họ tên, chữ ký) : Së GD & ĐT Hoà Bình kỳ thi tuyển sinh vào lớp 10 năm học 2010-2011 Câ u Hớng dẫn chấm DTNT Cht lng cao (Mọi cách giải khác cho điểm tơng ứng) -ý Híng dÉn chÊm §iĨ m a 1 b a 2 b a 3 b a x � 2, x � 2, x � 0.5 x2   x   x  x  : x2  x 2 2 x 6 x 2   x x 2 x ViÕt (1) � x  (m  1) x  (m  3)  Ta cã   (m  1)2  4( m  3)  m  6m  13  (m  3)   m V×   m nên phơng trình (1) có hai nghiệm phân biệt víi mäi m �x1  x2  m  + Theo định lý Viet ta có: � �x1 x2  (m  3) A 0.5 0.5 0.5 0.5 0.5 + Lúc đó: P  (m  1)  3( m  3)  3(m  1)  m  8m  13  (m  4)  �3 + Vậy với m = - P đạt giá trị nhỏ -3 + Gọi x, y lần lợt vận tốc tht canô vận tốc dòng nc chảy, từ giả thiết ta có phơng trình: 6( x y ) 8( x  y ) � x  14 y � x  y + VËy vËn tốc canô nc yờn lng gấp lần vận tốc dòng nớc + Gọi khoảng cách hai bÕn A, B lµ S, ta cã: 6( x  y )  S � 48 y  S + Vậy th trụi bè nứa xuôi từ A đến B ht s thi gian áp dụng hệ thức lợng tam giác vuông ABC, ta có: BA2 50 BA  BH BC � BC   BH 50 Vậy độ dài cạnh huyền là: (cm) S  48 (giê) y E b H O I B C D 0.5 0.5 10 B + BH cắt AC E Chứng minh đợc (1) �  HBC � ΔBHI : ΔAHE � HAC � � + L¹i cã: HAC=DBC (2) 0.5 A H A 0.5 + Tõ (1) vµ (2) suy ra: BC phân giác DBH (3) + Kết hợp (3) với giả thiết BC HD suy tam giác DBH cân B C 0.5 0.5 + Gọi M’ N’ điểm đối xứng M N qua tâm I hình vng ABCD Suy MN’ // M’N + Gọi H, K chân đường vng góc hạ từ I xuống đường thẳng MN’ M’N Vẽ đường tròn tâm H, bán kính HI cắt MN’ hai điểm A B; vẽ đường tròn tâm K, bán kính KI cắt M’N hai điểm C D + Nối điểm A, B, C, D theo thứ tự ta hình vng ABCD 4 c N' H M A 0.5 0.5 B I D N K C M' (Thí sinh không cần phân tích, chứng minh c¸ch dùng) xy  1 � 2 + Cã x y  xy   � � xy  � � �x �0 � �xy  1 � � + Gi¶i hƯ � , V« nghiƯm �y   x �x  y  � �2 x  1 � � x2 � �x �0 � �xy  � � � x y�2 + Gi¶i hƯ � �y  x x  y  � � �2 x  4 � � x2  0.5 0.25 0.25  KÕt luËn hÖ cã hai nghiÖm: ( ; 2);(  ;  2) ... từ A đến B ht s thi gian áp dụng hệ thức lợng tam giác vuông ABC, ta cã: BA2 50 BA  BH BC � BC   BH 50 VËy ®é dài cạnh huyền là: (cm) S 48 (giờ) y E b H O I B C D 0.5 0.5 10 B + BH c¾t AC... - P đạt giá trị nh nht bng -3 + Gọi x, y lần lợt vận tốc tht canô vận tốc dòng nc chảy, từ giả thi t ta có phơng trình: 6( x  y )  8( x  y ) � x  14 y � x  y + VËy vËn tèc cđa can« nước... cã: HAC=DBC (2) 0.5 A H A 0.5 + Tõ (1) (2) suy ra: BC phân giác DBH (3) + Kết hợp (3) với giả thi t BC HD suy tam giác DBH cân B C 0.5 0.5 + Gọi M’ N’ điểm đối xứng M N qua tâm I hình vng ABCD

Ngày đăng: 21/04/2020, 00:57

TỪ KHÓA LIÊN QUAN

w