1. Trang chủ
  2. » Giáo Dục - Đào Tạo

29 đề thi thử THPTQG 2019 toán THPT nguyễn trãi thanh hóa lần 1 có lời giải

15 27 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 1,09 MB

Nội dung

TRƯỜNG THPT NGUYỄN TRÃI ĐỀ KHẢO SÁT CHẤT LƯỢNG KHỐI 12 - LẦN MƠN: TỐN Năm học: 2018-2019 Thời gian làm bài: 90 phút Mã đề: A Câu 1: Đồ thị hàm số y   x  x  có điểm cực trị? A.2 B C.1 D Câu 2: Với giá trị tham số m hàm số y  x  mx  (2m  3) x  đạt cực đại x  ? A m  B m  C m  D m  Câu 3: Bác An gửi vào ngân hàng số tiền triệu đồng với lãi suất 0, 7% / tháng Sau sáu tháng gửi tiền, lãi suất tăng lên 0,9% / tháng Đến tháng thứ 10 sau gửi tiền, lãi suất giảm xuống 0, 6% / tháng giữ ổn định Biết bác An không rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu (người ta gọi lãi kép) Hỏi sau năm gửi tiền, bác An rút số tiền gần với số sau ? A 5.453.000 đồng B 5.436.000 đồng C 5.468.000 đồng D 5.463.000 đồng Câu Hàm số sau có đồ thị hình bên? A y   x  x  y B y   x  x  C y  x  3x  D y  x  x  1 -1 x -1 Câu 5: Cho hàm số y  x 1 Có tất giá trị m để đồ thị hàm số có hai đường tiệm mx  x  cận ? A.0 B C D Câu 6: Từ chữ số 0, 1, 2, 3, lập số tự nhiên không chia hết cho 5, gồm chữ số khác ? A 120 B 72 C 69 D 54 Câu 7: Với giá trị tham số m hàm số y   x  mx  (2m  3) x  m  nghịch biến ?  m  3 A 3  m  B m  C  D 3  m   m  2x 1 có đồ thị (C ) đường thẳng d : y  x  m Giá trị tham số m để d cắt (C ) Câu 8: Cho hàm số y  x 1 hai điểm phân biệt A, B cho AB  10 là: A m  1 m  B  m  C m  m  D m  m  Câu 9: Bất phương trình  x  3x   có tập nghiệm là: 9 9   B  ;  C  ;  D  ;  4 4   Câu 10: Phương trình sau phương trình đường trịn tâm I  1;  , bán kính ? A  ; 2  x  1   y    2 D  x  1   y    A  x  1   y    2 B C  x  1   y    Câu 11: Cho tập hợp A gồm 12 phần tử Số tập gồm phần tử tập hợp A là: 4 A A12 B C12 C 4! D A12 1  có tập nghiệm là: Câu 12: Bất phương trình  x  1 x  2   1    1  A  ;  1   0;  \   B  ;  1   0;  \     2   2  5 1   5 C  ; 1   0;  \   D  ;  1   0;   4  4 2 Câu 13: Cho hai đường thẳng song song d1 , d2 Trên d1 lấy điểm phân biệt, d lấy điểm phân biệt Xét tất tam giác tạo thành nối điểm với Chọn ngẫu nhiên tam giác Xác suất để thu tam giác có hai đỉnh thuộc d1 là: 5 A B C D 8 9 Câu 14: Với giá trị tham số m phương trình 3sin x  m cos x  vô nghiệm? A m  B m  C m  4 D 4  m  Câu 15: Cho chuyển động thẳng xác định phương trình S (t )   t  3t  2t  , t tính giây (s) S tính mét (m) Tại thời điểm vận tốc chuyển động đạt giá trị lớn ? A t  B t  C t  D t  2  Câu 16: Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC có trọng tâm G  ;0  , biết M(1; -1) trung 3  điểm cạnh BC Tọa độ đỉnh A là: A (2; 0) B  2;  C  0;   D (0; 2) Câu 17: Một tổ có học sinh nam học sinh nữ Số cách xếp học sinh thành hàng dọc cho học sinh nam đứng liền là: A.17820 B 17280 C 5760 D 2820 a x   5x  a  , với a, b  Z , b  phân số tối giản Giá trị a  b là: Câu 18: Giới hạn lim x 3 x  x  b b A B 1 C D Câu 19: Cho hai số thực dương a b Biểu thức a b a viết dạng lũy thừa với số mũ hữu tỉ b a b là: 30 31 A  a  b B  a  b C  a  b x3 là: 2 x B D  (; 3)  (2; ) 31 30 D  a  b Câu 20: Tập xác định hàm số y  log A D  \{  3; 2} C D  [  3; 2] D D  (3; 2) Câu 21: Số nghiệm phương trình cos2 x  cos x   đoạn 0;2  là: A.2 B.4 C D Câu 22: Cho hàm số y   x  3x  3x  Khẳng định sau khẳng định đúng? A Hàm số đồng biến B.Hàm số nghịch biến C.Hàm số đồng biến khoảng  ;1 nghịch biến khoảng 1;   D.Hàm số nghịch biến khoảng  ;1 đồng biến khoảng 1;   Câu 23: Tập xác định hàm số y  A  1;  \ 2;3  x 1 là: x  5x   x B  1;   C  1; 4 \ 2;3 Câu 24: Giá trị nhỏ hàm số y  2sin x  cos x  bằng: 31 A B C D  1;4  \ 2;3 D 24  3x là: x2 A x  2 y  3 B y  2 x  3 C x  2 y  D x  y  Câu 26: Một lớp có 20 học sinh nam 15 học sinh nữ Giáo viên chọn ngẫu nhiên học sinh lên bảng giải tập Xác suất để học sinh chọn có nam nữ là: 4615 4610 4615 4651 A B C D 5236 5236 5236 5263 Câu 27: Cho a, b, c  0; a  1; b  Trong khẳng định sau, khẳng định sai? A loga (b.c)  loga b  loga c B log a b.log b c  log a c C log a b  D log ac b  c log a b log b a Câu 25: Phương trình đường tiệm cận đứng tiệm cận ngang đồ thị hàm số y  45 1  Câu 28: Số hạng không chứa x khai triển  x   là: x   15 5 15 A C45 B C45 C C45 D C45 Câu 29: Cho hình chóp tứ giác có tất cạnh a Cơsin góc mặt bên mặt đáy bằng: 1 1 A B C D 2 3 Câu 30: Hàm số y   x đạt giá trị nhỏ tại: A x  2 B x  C x  ; x  D x  ; x  2 Câu 31: Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật, tam giác SAD vng S nằm mặt phẳng vng góc với mặt phẳng đáy Biết AB=a, SA=2SD, mặt phẳng (SBC) tạo với mặt phẳng đáy góc 600 Thể tích khối chóp S.ABCD bằng: 15a3 3a3 5a3 A B C D 5a3 2 Câu 32: Trong bốn giới hạn sau đây, giới hạn  ? 3x  3x  3x  3x  A lim B lim C lim D lim x  x  x  x  x 2 x 2 x2 x2 Câu 33: Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có M(2;0) trung điểm cạnh AB Đường trung tuyến đường cao qua đỉnh A có phương trình x - y -  x - y -  Phương trình đường thẳng AC là: A 3x  y   B 3x+4y+5=0 C 3x - y   D 3x  y   Câu 34: Điều kiện xác định hàm số y  tan x là: A x    k B x    k C x   k  D x   k  Câu 35: Cho khối lăng trụ đứng ABC A ' B ' C ' có đáy ABC tam giác cân với AB  AC  a, BAC  120° , mặt phẳng  A ' BC ' tạo với đáy góc 60 Tính thể tích khối lăng trụ cho bằng: 9a 3a3 3a a3 B C D 8 8 Câu 36: Cho hàm số y  f  x  có đạo hàm R có đồ thị hàm số y  f '  x  hình vẽ A   Xét hàm số g  x   f x  Mệnh đề sau sai? A Hàm số g(x) nghịch biến (0; 2) B Hàm số g(x) đồng biến  2;   C Hàm số g(x) nghịch biến  ;   D Hàm số g  x  nghịch biến (1;0) P  log a b  Câu 37: Cho a, b  ; a, b  1; a  b Biểu thức log a a có giá trị : b2 A B C D Câu 38: Dân số giới cuối năm 2010, ước tính khoảng tỉ người Hỏi với mức tăng trưởng 1,5% năm sau năm dân số giới lên đến 10 tỉ người? A B 28 C 23 D 24 Câu 39: Cho hình chóp S.ABCD có AC=2a, góc mặt phẳng (SBC) mặt đáy 45 Thể tích khối chóp S.ABCD bằng: a3 3a a3 A a3 B C D 3 Câu 40: Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, SA vng góc với đáy SA  a Góc đường thẳng SD mặt phẳng (ABCD) bằng: A acr sin B 45o C 60o D 30 o x2 có đồ thị hình sau ? Câu 41: Hàm số y  x 1 y y A B 1 -2 -1 -2 x D -2 -1 x x y y C -1 -2 -1 x Câu 42: Với giá trị tham số m hàm số y  x3  x  mx  đồng biến khoảng  0;   ? A m  B m  C m  12 D m  12 Câu 43: Bất phương trình mx   m  1 x  m   vô nghiệm khi: 1 B m  C m  5 Bất phương trình có nghiệm khi: Câu 44: mx  x   m A m  D m  25 2 B m  C m  D m  4 Câu 45: Cho hình chóp S.ABC có đáy ABC tam giác vng B cạnh bên SB vng góc với mặt phẳng đáy Biết SB  3a, AB  4a, BC  2a Khoảng cách từ B đến mặt phẳng (SAC) bằng: 4a 12 29a 14 a 12 61a A B C D 14 29 61 Câu 46: Cho hình chóp S.ABCD có đáy ABCD hình vng, SA  (ABCD) Gọi M hình chiếu A SB Khẳng định sau đúng? A AM  SD B AM  (SCD) C AM  CD D AM  ( SBC ) Câu 47: Cho hàm số y  x  3x  có đồ thị (C ) đường thẳng d : y  x  Số giao điểm (C ) d là: A B C D 2 Câu 48: Số nghiệm phương trình x  x   x  x  là: A m  A B C D Câu 49: Cho khối chóp tứ giác S.ABCD Gọi M trung điểm SC, mặt phẳng (P) chứa AM song song với BD chia khối chóp thành khối đa diện Đặt V1 thể tích khối đa diện có chứa đỉnh S V2 thể tích khối đa V1 diện có chứa đáy Tỉ số bằng: V2 V1 V1 V1 V1 1    A B C D V2 V2 V2 V2 Câu 50: Hàm số sau có đồ thị hình bên? C y   x  3x  B y  x  x  A y  x  x  D y   x3  x2  Hết ĐÁP ÁN 1-C 2-D 3-A 4-A 5-D 6-D 7-A 8-C 9-B 10-D 11-B 12-D 13-D 14-D 15-B 16-D 17-B 18-A 19-C 20-D 21-A 22-B 23-A 24-A 25-A 26-B 27-D 28-D 29-A 30-A 31-C 32-C 33-C 34-D 35-A 36-D 37-C 38-D 39-C 40-C 41-A 42-C 43-A 44-A 45-A 46-D 47-B 48-C 49-B 50-A HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: C y '  4 x3  x  2 x(2 x  3) ; y '   x  Đạo hàm đổi dấu từ + sang âm qua x=0 nên x=0 điểm cực trị hàm số Câu 2: D  y '(1)  3.12  2m.1  2m   m3 Để hàm số đạt cực đại x    y ''(1)  6.1  2m  Câu 3: A Gọi số tiền gửi vào vào M đồng, lãi suất r /tháng Cuối tháng thứ n: số vốn tích luỹ là: Tn  M (1  r )n Số vốn tích luỹ bác An sau tháng gửi tiền với lãi suất 0, 7% / tháng là: T1  1, 007  triệu đồng; Số vốn tích luỹ bác An sau tháng gửi tiền ( tháng với lãi suất 0,9% / tháng) là: T2  T1 1, 009   1, 007  1, 009  triệu đồng; Do số tiền bác An lĩnh sau năm (12 tháng) từ ngân hàng ( tháng sau với lãi suất 0, 6% / tháng) là: 3 T  T2 1, 006   1, 007  1, 009  1, 006  triệu đồng  5452733, 453 đồng Câu 4: A Đây hàm số bậc trùng phương có cực trị đồ thị hướng xuống nên a  0, b  Câu 5: D + f ( x)  mx  x  có bậc  nên đồ thị hàm số ln có tiệm cận ngang Do đồ thị hàm số cần có tiệm cận đứng + m  , đồ thị hàm số có tiệm cận đứng đường thẳng x   m = thỏa toán + m  , đồ thị hàm số có tiệm cận đứng phương trình mx2 - 2x + = có nghiệm kép  f    3m    m        1  3m   có hai nghiệm phân biệt có nghiệm x =    f     f 1   m    m  1     Vậy m  0; ; 1   Câu 6: D Gọi số cần tìm có dạng abcd d có cách chọn (d  0; 5) a có cách chọn (a  0; d ) b có cách chọn (b  a; d ) c có cách chọn: Vậy theo quy tắc nhân có 3.3.3.2  54 số thỏa mãn yêu cầu toán Câu 7: A Tập xác định: D  Ta có y   x  2mx  2m  Để hàm số nghịch biến a y  1   y  0, x     3  m   m  2m     Câu 8: C Phương trình hồnh độ giao điểm đồ thị (C ) đường thẳng d  x  1 2x 1  xm  x 1  x  (m  1) x  m   (1) Khi d cắt (C ) hai điểm phân biệt A , B chi phương trình (1) có hai nghiệm phân biệt khác  (m  1)  4(m  1)   m   m  (*) 1    (1)  (m  1)  m   Ta có A( x1; x1  m), B( x2 ; x2  m)  AB  ( x2  x1; x2  x1 )  AB  2( x2  x1 )  x2  x1 ,  x1  x2   m  Từ ta có  x1 x2  m  AB  10  x2  x1   ( x2  x1 )2  x1 x2  m   (1  m)2  4(m  1)   m2  6m    (thỏa (*) ) m  Vậy chọn m   m  Câu 9: B  2  x   x  2  x  3x      x  x  3x     2  x  2  x     2  x  x   9  Bất phương trình có tập nghiệm S   ; ` 4  Câu 10: D Câu 11 B Số cách chọn phần tử từ 12 phần tử bằng: C124 Câu 12: D 1 4 x  x   0 (2 x  1) x  (2 x  1)  x  1   1  Bất phương trình có tập nghiệm S   ;  1   0;  \     2 Câu 13: D n()  C62 C41  C61.C42 Gọi A biến cố tam giác có hai đỉnh thuộc d1 n(A)= C62 C41 Xác suất để thu tam giác có hai đỉnh thuộc d1 là: P(A) = C C1 n( A)  16  n() C6 C4  C6 C4 Câu 14: D 3sin x  m cos x  5(VN )  32  m2  52  m2  42  4  m  Câu 15: B t  Ta có vận tốc v  t   S '  t   t  6t   v '  t   3t     Lập bảng biến thiên ta có v  t  đạt t   giá trị lớn t  Câu 16: D Vì G trọng tâm tam giác ABC nên: MA  3MG  A(0; 2) Câu 17: B Coi học sinh nam phần tử X, hoán vị phần tử gồm X học sinh nữ có 6! cách Ứng với cách xếp có 4! cách hoán vị học sinh nam  Theo quy tắc nhân số cách xếp là: 6!4!=17280 Câu 18: A Ta có lim x 3     x  x   x  3 x x x  4x  x   5x   lim  lim  x 3 x  4x  x   x   x  3 x  1 x3  x  1 x   x    Suy a  9; b   a  b  Câu 19: C 1 1 1   a b a  a   b 15  a  30 a 15 30  a          1     b a b b a b b 15 30  b  Câu 20: D   Hàm số log x3 x3   3  x  có nghĩa 2 x 2 x Câu 21: A cos x  1  x  k 2 Ta có cos x  cos x     cos x  2(vn) x   0; 2   x   ; x  2 Câu 22: B TXĐ: D  Câu 23: A Ta có y '  3x2  x   3( x  1)2  , x  x 1 Hàm số y  có nghĩa x  5x   x   x 1  1  x    4  x   x  2, x   x2  5x    TXĐ D=  1;4  \ 2;3 Câu 24: A TXĐ: D  Biến đổi y  2sin x  sin x  Đặt t  sin x ,  t  Xét hàm số f (t )  2t  t  liên tục đoạn [0;1] f (t )  8t  2t  2t (4t 1) Trên khoảng (0;1) phương trình f '(t )   t    31 Ta có: f (0)  4; f    ; f (1)  2 31 31  k f (t )  sin x   cos x   x   Vậy tmin t   y   0;1 8 2 R Câu 25: A  3x  3x   lim    nên đồ thị hàm số có tiệm cận đứng x  2 Ta có lim  x ( 2) x  x ( 2) x   3x  3 nên đồ thị hàm số có tiệm cận ngang y  3 Ta có lim x  x  Câu 26: B n     C354 4 Gọi A biến cố học sinh gọi có nam nữ Khi n  A  C35  C20  C15 n  A C354  C20  C154 4615   Vậy P  A  n   C354 5236 Câu 27: D Sai, log ac b  log a b c Câu 28: D 45  k k x   k k Số hạng tổng quát Ck45 x 45 k     C45  1  C45 x 453k 2k x  x  Số hạng không chứa x tương ứng với 45  3k   k  15 k 15 Vậy số hạng cần tìm C15 45  1  C 45 15 Câu 29: A H trung điểm CD a a  SO  SA2  OA2  2 SO  Khi tan  tan SHO  OH Do cos  Câu 30: A x x y   0  x0 TXĐ: D   2; 2 Ta có: y  ;  x2  x2 Khi đó: y  2  0; y  0  2; y  2   Hàm số đạt giá trị nhỏ điểm có hồnh độ x  2 Câu 31: C Kẻ SH  AD  SH  ( ABCD) Ta có: OA  S A a H D • B 600 K C  SBC  ;  ABCD  SKH  60 • SH  HK tan 60  a 1  SD  15a , SA  a 15 , AD  3a    2 2 3a 4SD SH SA SD 2 1 3a 5a Vậy VS ABCD  SH S ABCD  a 3.a  3 2 Câu 32: C •   x  2  3x   xlim  2  3x       lim   Ta có xlim Vậy   2 x 2 x  x    x   Câu 33: C 7 x  y    A 1;  Tọa độ A nghiệm hệ :  6 x  y   B đối xứng với A qua M  B  3;   Đường thẳng BC qua B vng góc với đường thẳng BH nên BC: x  y   7 x  y   3   N  0;   Tọa độ trung điểm N BC nghiệm hệ :  2  x  y   AC  2MN   4;  3  Phương trình đường thẳng AC : 3x  y   Câu 34: D Hàm số y  tan x   sin x   xác định  cos x   x   k  x   k , k  cos x Câu 35: A Ta có B'H  sin 30.B'C '  a Ta có BHB'  60  BB'  B'H.tan 60   VABC.A 'B'C'  SABC BB'  Câu 36: D Xét g  x   f x     3a a 3a 3a 3   g '  x   f ' x  2 x x  x  x   x    x  1 g ' x     x        f '  x     x 2  x    x  2 Bảng xét dấu g '  x  : Suy hàm số g  x  nghịch biến (1;0) sai Câu 37: C a P  log a b   log a b  log a  log a b  2(log a a  log a b)  Ta có log a a b b2 Câu 38: D n Áp dụng công thức: Sn  A 1  r  S  Suy ra: n  log1 r   n   A Trong đó: A  7; Sn  10; r  1,5%  Ta n  23,95622454 Câu 39: C 1,5 100 S A D O B M C  SM  BC Gọi M trung điểm BC   OM  BC ˆ  450 Suy  ( SBC );( ABCD)    SM ; OM   SMO Vì AC  2a nên AB  BC  a  SO  OM  a 1a a3 VSABCD  SO.S ABCD  (a 2)  3 Câu 40: C S A B D C Vì SA  (ABCD) nên góc đường thẳng SD mặt phẳng (ABCD) góc SDA SA   SDA  60o Tam giác SAD vuông A nên tan SDA  AD Câu 41: A x2 Đồ thị hàm số y  có tiệm cận đứng x  Tiệm cận ngang y  x 1 x2 Đồ thị hàm số y  qua điểm  0;  x 1 Câu 42: C y '  3x  12 x  m Hàm số đồng biến  0;    m  12 x  3x2  g ( x), x  (0; ) Lập bảng biến thiên g ( x)  0;   ax g ( x)  m  12 Dựa vào bảng biến thiên, kết luận: m  m 0;   Câu 43: A ĐK: mx   m  1 x  m   0, x  R (*) TH1 m  : *  2 x    x  (loại)    5m     *   a  m  TH2:  m   m m  Vây BPTđã cho vô nghiệm m  Câu 44: A ĐK: x  bpt  x 3 5 x x 3  y'   m , xét hs y  x 1 x   x  1 x 1 y'   x  BBT: Vậy bất phương trình có nghiệm  y  5  m  m  Câu 45: A Kẻ BK  AC , BH  SK S 3a • d  B;  SAC    BH H 2a B 4a C K A 1 1      2 2 BK AB BC 16a 4a 16a 1 61 12a   2  2  BH  • 2 2 BH BK SB 16a 9a 144a 61 Câu 46: D •  AM  SB  AM   SBC  •   AM  BC  BC   SAB   Câu 47: B Phương trình hồnh độ giao điểm  x    17 3 2 x  x   x   x  x  x     x  1 x  x     x    x   17  Vậy số giao điểm Câu 48: C Điều kiện: x  x   Đặt t  x  x  , t  * ,  x  x  t  , phương trình cho trở thành:  t  1  loaïi  t  t2    t2  t     t  Đối chiếu với điều kiện (*) ta có t=2 Với t=2 ta có x  x    x  x    x  Vậy phương trình cho có nghiệm x=1 Câu 49: B Nhìn hình vẽ ta thấy V1  VS MIAG Gọi VS ABCD  V  VS ABC  VS ADC  V VS AGM SG SM 1 V     VS AGM  VS ABC SB SC 3 VS AMI SM SI    Có VS ADC SC SD 3 Có   VS AMI  V V V V  VS MIAG   V2  V   V   3 V1 Câu 50: A ĐTHS có điểm cực đại (0;1); điểm cực tiểu (2;-3) ... Hết ĐÁP ÁN 1- C 2-D 3-A 4-A 5-D 6-D 7-A 8-C 9-B 10 -D 11 -B 12 -D 13 -D 14 -D 15 -B 16 -D 17 -B 18 -A 19 -C 20-D 21- A 22-B 23-A 24-A 25-A 26-B 27-D 28-D 29- A 30-A 31- C 32-C 33-C 34-D 35-A 36-D...  1)  m   Ta có A( x1; x1  m), B( x2 ; x2  m)  AB  ( x2  x1; x2  x1 )  AB  2( x2  x1 )  x2  x1 ,  x1  x2   m  Từ ta có  x1 x2  m  AB  10  x2  x1   ( x2  x1 )2  x1... trình có tập nghiệm S   ; ` 4  Câu 10 : D Câu 11 B Số cách chọn phần tử từ 12 phần tử bằng: C124 Câu 12 : D 1 4 x  x   0 (2 x  1) x  (2 x  1)  x  1? ??   ? ?1  Bất phương trình có

Ngày đăng: 11/04/2020, 18:04

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w