1. Trang chủ
  2. » Đề thi

Tuyển tập 45 đề thi vào lớp 10 môn Toán

47 144 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 47
Dung lượng 1,33 MB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO Bắc Ninh ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2014 – 2015 Môn thi: Toán Thời gian:120 phút (Không kể thời gian giao đề) Đề số 1 Câu 1. (3,0 điểm) 1. Tìm điều kiện của x để biểu thức có nghĩa. 2. Giải phương trình : 3. Giải hệ phương trình : Câu 2. (2,0 điểm) Cho biểu thức với 1. Rút gọn M 2. Tính giá trị của biểu thức M khi 3. Tìm số tự nhiên a để 18M là số chính phương.

Bộ đề thi Toán vào 10 Tỉnh; TP HCM – Hà Nội Phần III SỞ GIÁO DỤC VÀ ĐÀO TẠO Bắc Ninh ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2014 – 2015 Mơn thi: Tốn Thời gian:120 phút (Không kể thời gian giao đề) Đề số Câu (3,0 điểm) Tìm điều kiện x để biểu thức có nghĩa Giải phương trình : Giải hệ phương trình : Câu (2,0 điểm) Cho biểu thức Rút gọn M với Tính giá trị biểu thức M Tìm số tự nhiên a để 18M số phương Câu (1,0 điểm) Hai ô tô khởi hành lúc từ A đến B Mỗi ô tô thứ chạy nhanh ô tô thứ hai 10km/h nên đến B sớm ô tô thứ hai Tính vận tốc tơ, biết A B cách 300km Câu (2,5 điểm) Cho nửa đường tròn (O) đường kính AB = 2R Kẻ hai tiếp tuyến Ax, By nửa đường tròn (O) Tiếp tuyến thứ ba tiếp xúc với nửa đường tròn (O) M cắt Ax, By D E Chứng minh tam giác DOE tam giác vuông Chứng minh : Xác định vị trí điểm M nửa đường tròn (O) để diện tích tam giác DOE đạt giá trị nhỏ Câu (1,5 điểm) 1.Giải phương trình Cho tam giác ABC đều, điểm M nằm tam giác ABC cho Tính số đo …… Hết …… SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH DƯƠNG KỲ THI TUYỂN SINH 10 THPT Năm học 2014 – 2015 Mơn thi: Tốn Thời gian: 120 phút (không kể thời gian giao đề) Đề số Bài (1 điểm) Rút gọn biểu thức A = Bài (1,5 điểm) Cho hai hàm số y = -2x2 y = x 1/ Vẽ đồ thị hàm số mặt phẳng toạ độ 2/ Tìm toạ độ giao điểm hai đồ thị hàm số phép tính Bài (2 điểm) 1/ Giải hệ phương trình 2/ Giải phương trình 2x2 – 3x – = 3/ Giải phương trình x4 – 8x2 – = Bài (2 điểm) Cho phương trình x2 – 2(m – 1)x + 2m – = (m tham số) 1/ Chứng minh phương trình ln có hai nghiệm phân biệt với m 2/ Tìm giá trị m để phương trình có hai nghiệm trái dậu 3/ Với giá trị m biểu thức A = x12 + x22 đạt giá trị nhỏ Tìm giá trị Bài (3,5 điểm) Cho đường tròn (O;R) đường kính AB cố định Trên tia đối tia AB lấy điểm C cho AC=R Qua C kẻ đường thẳng d vng góc với CA lấy điểm M đường tròn (O) khơng trùng với A, B Tia BM cắt đường thẳng d P Tia CM cắt đường tròn (O) điểm thứ hai N, tia PA cắt đường tròn (O) điểm thứ hai Q Chứng minh tứ giác ACPM tứ giác nội tiếp Tính BM.BP theo R Chứng minh hai đường thẳng PC NQ song song Chứng minh trọng tâm G tam giác CMB ln nằm đường tròn cố định điểm M thay đổi đường tròn (O) …… Hết … SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐĂK LĂK KỲ THI TUYỂN SINH 10 THPT Năm học 2014 – 2015 Mơn thi: Tốn Thời gian: 120 phút, khơng kể thời gian giao đề Đề số Câu 1: (1,5 điểm) 1) Giải phương trình: x2 – 3x + = 2) Cho hệ phương trình: Tìm a, b biết hệ có nghiệm Câu 2: (2 điểm) Cho phương trình: x2 – 2(m + 1)x + m2 + 3m + = (1) (m tham số) 1) Tìm giá trị m để phương trình (1) có hai nghiệm phân biệt 2) Tìm giá trị m để phương trình (1) có hai nghiệm phân biệt x 1, x2 thõa mãn: x12 + x22 = 12 Câu 3: ( điểm) 1) Rút gọn biểu thức 2) Viết phương trình đường thẳng qua điểm A(0;1) song song với đường thẳng d: x + y = 10 Câu ( 3,5 điểm) Cho tam giác ABC có đường cao AH, lấy điểm M tùy ý thuộc đoạn HC (M không trùng với H, C) Hình chiếu vng góc M lên cạnh AB, AC P Q 1) Chứng minh APMQ tứ giác nội tiếp xác định tâm O đường tròn ngoại tiếp tứ giác APMQ 2) Chứng minh rằng: BP.BA = BH.BM 3) Chứng minh rằng: OH PQ 4) Chứng minh M thay đổi HC MP +MQ khơng đổi Câu (1 điểm) Tìm giá trị nhỏ biểu thức: với x > … Hết …… SỞ GIÁO DỤC - ĐÀO TẠO HƯNG YÊN ĐỀ CHÍNH THỨC KÌ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2014 - 2015 MƠN TỐN Thời gian: 120 phút (Khơng kể thời gian chép đề) Đề số Câu 1: (2,0 điểm) 1) Rút gọn biểu thức: P = 2) Tìm m để đường thẳng y = (m +2)x +m song song với đường thẳng y = 3x -2 3) Tìm hồnh độ điểm A parabol y = 2x2, biết A có tung độ y = 18 Câu (2,0 điểm) Cho phương trình x2 – 2x + m +3 =0 ( m tham số) 1) Tìm m để phương trình có nghiệm x = Tìm nghiệm lại 2) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn: Câu (2,0 điểm) 1) Giải hệ phương trình 2) Một mảnh vườn hình chữ nhật có chiều dài chiều rộng 12m Nếu tăng chiều dài thêm 12m chiều rộng thêm 2m diện tích mảnh vườn tăng gấp đơi Tính chiều dài chiều rộng mảnh vườn Câu (3,0 điểm) Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O, bán kính R Hạ đường cao AH, BK tam giác Các tia AH, BK cắt (O) điểm thứ hai D E a) Chứng minh tứ giác ABHK nội tiếp đường tròn Xác định tâm đường tròn b) Chứng minh rằng: HK // DE c) Cho (O) dây AB cố định, điểm C di chuyển (O) cho tam giác ABC có ba góc nhọn Chứng minh độ dài bán kính đường tròn ngoại tiếp tam giác CHK khơng đổi Câu (1,0 điểm) Giải hệ phương trình -Hết SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2014 – 2015 Môn thi: TỐN Thời gian : 120 phút (khơng kể thời gian giao đề) Đề số Câu 1.(2,5 điểm) Cho biểu thức a) Tìm điều kiện xác định rút biểu thức A b) Tìm tất giá trị x để Câu (1,5 điểm) Một ô tô xe máy hai địa điểm A B cách 180 km, khởi hành lúc ngược chiều gặp sau Biết vận tốc ô tô lớn vận tốc xe máy 10 km/h Tính vận tốc xe Câu (2,0 điểm) Cho phương trình (m tham số) a) Giải phương trình m = b) Chứng minh phương trình ln có hai nghiệm phân biệt với m Câu 4.(3,0 điểm) Cho điểm A nằm bên ngồi đường tròn (O) Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (B, C tiếp điểm) Gọi M trung điểm AB Đường thẳng MC cắt đường tròn (O) N (N khác C) a) Chứng minh ABOC tứ giác nội tiếp b) Chứng minh c) Tia AN cắt đường tròn (O) D ( D khác N) Chứng minh: Câu (1,0 điểm) Cho ba số thực dương thỏa mãn Chứng minh rằng: - Hết SỞ GIÁO DỤC - ĐÀO TẠO THÁI BÌNH ĐỀ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2014 - 2015 Mơn: TỐN Thời gian:120 phút (không kể thời gia giao đề) Đề số Câu (2,0 điểm) Cho biểu thức: với x > 0, x ≠ 1 Rút gọn biểu thức P Tìm x để P = -1 Câu (2,0 điểm): Cho hệ phương trình: Giải hệ phương trình m = (m tham số) Tìm m để hệ phương trình có nghiệm (x; y) thoả mãn: Câu (2,0 điểm) Cho Parabol (P): y = x2 đường thẳng (d): y = 2x + m (m tham số) Tìm toạ độ giao điểm (d) (P) m = Tìm m để (d) cắt (P) điểm phân biệt có hồnh độ x1, x2 thoả mãn: Câu (3,5 điểm): Cho hình thang vng ABCD (vng A D) với đáy lớn AB có độ dài gấp đôi đáy nhỏ DC Gọi H chân đường vng góc kẻ từ A đến BD Gọi M, N trung điểm HA, HB trung điểm AB Chứ ⊥AN Chứng minh: điểm A, , N, C, D nằm đường tròn Chứng minh: AN.BD = 2DC.AC Câu (0,5 điểm): Cho số dương a, b, c thoả mãn: ab + bc + ca = 3abc Tìm giá trị lớn biểu thức: …… Hết …… SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2014 – 2015 Mơn thi: Tốn Thời gian: 120 phút (Khơng kể thời gian giao đề) Đề số Câu 1:(2,0 điểm) Giải phương trình: a x – = b x2 – 6x + = Giải hệ phương trình: Câu 2:(2,0 điểm) Cho biểu thức: Rút gọn A với Tính giá trị biểu thức A Câu 3:(2,0 điểm) Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): tham số m Parabol (P): Tìm m để đường thẳng (d) qua điểm A(1; 0) Tìm m để đường thẳng (d) cắt Parabol (P) hai điểm phân biệt có hồng độ x1, x2 thỏa mãn Câu 4:(3,0 điểm) Cho đường tròn tâm O đường kính AB = 2R Gọi C trung điểm OA; qua C kẻ đường thẳng vng góc với OA cắt đường tròn hai điểm phân biệt M N Trên cung nhỏ BM lấy điểm K ( K khác B M), tia KN lấy điểm cho K = KM Gọi H giao điểm AK MN Chứng minh rằng: Tứ giác BCHK tứ giác nội tiếp AK.AH = R2 NI = BK Câu 5:(1,0 điểm) Cho số thực dương x, y, z thỏa mãn xyz = Tìm giá trị lớn biểu thức -Hết -7 SỞ GIÁO DỤC & ĐÀO TẠO NINH BÌNH ĐÈ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2006- 2007 Môn thi: Tốn Thời gian120 phút( khơng kể thời gian giao đề) Đề số Câu :(2 điểm) Cho phương trình: x2 – x - 3a - = (x ẩn ) Tìm a để phương trình nhận x = nghiệm Câu :(4 điểm) Cho biểu thức : A= a) Rút gọn A x b) Tính giá trị A Câu 3:(4 điểm) Cho hàm số : y = mx2 a) Xác định m, biết đồ thị hàm số cắt đường thẳng y= -3x+2 điểm M có hồng độ b) Với m tìm câu a, Chứng minh đồ thị hàm số đường thẳng (d) có phương trình y = kx-1 ln cắt hai điểm phân biệt A B với giá trị k c) Gọi x1, x2 tương ứng hoành độ A B, Chứng minh Câu 4: (6 điểm) Cho đường tròn (O;R) , điểm M nằm ngồi đường tròn Vẽ tiếp tuyến MC, MD (C,D tiếp điểm ) cát tuyến MAB qua tâm O đường tròn (A M B) a) Chứng minh MC2 = MA.MB b) Gọi K BD tia CA Chứng minh điểm B,C,M,K nằm đường tròn c) Tính độ dài BK theo R Câu (1,5 điểm) Tìm a, b hữu tỷ để phương trình x2 + ax +b = nhận x = Câu (1,5 điểm) Tìm x, y nguyên thoả mãn phương trình x + x2 + x3 = 4y + y2 nghiệm Hết SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2010 - 2011 Mơn thi : Tốn Thời gian: 120 phút (Khơng kể thời gian giao đề) Đề số Câu I (3,0 điểm) Cho biểu thức A = Nêu điều kiện xác định rút gọn biểu thức A Tính giá trị biểu thức A x = Khi x thoả mãn điều kiện xác định Hãy tìm giá trị nhỏ cuả biểu thức B, với B = A(x-1) Câu II (2,0 điểm) Cho phương trình bậc hai sau, với tham số m : x2 - (m + 1)x + 2m - = (1) Giải phương trình (1) m = 2 Tìm giá trị tham số m để x = -2 nghiệm phương trình (1) Câu III (1,5 điểm) Hai người làm chung công việc sau 30 phút họ làm xong cơng việc Nếu người thứ làm giờ, sau người thứ hai làm hai người làm 75% cơng việc Hỏi người làm sau xong công việc? (Biết suất làm việc người không thay đổi) Câu IV (3,5 điểm) Cho nửa đường tròn tâm O đường kính AB Điểm H cố định thuộc đoạn thẳng AO (H khác A O) Đường thẳng qua điểm H vng góc với AO cắt nửa đường tròn (O) C Trên cung BC lấy điểm D (D khác B C) Tiếp tuyến nửa đường tròn (O) D cắt đường thẳng HC E Gọi giao điểm AD HC Chứng minh tứ giác HBD nội tiếp đường tròn Chứng minh tam giác DE tam giác cân Gọi F tâm đường tròn ngoại tiếp tam giác CD Chứng minh góc ABF có số đo khơng đổi D thay đổi cung BC (D khác B C) Hết - SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2010 - 2011 Môn thi : Tốn Thời gian: 120 phút (Khơng kể thời gian giao đề) Đề số 10 Câu I (3,0 điểm) Cho biểu thức A = Nêu điều kiện xác định rút gọn biểu thức A Tính giá trị biểu thức A x = Khi x thoả mãn điều kiện xác định Hãy tìm giá trị nhỏ cuả biểu thức B, với B = A(x-1) Câu II (2,0 điểm) Cho phương trình bậc hai sau, với tham số m : x2 – (m + 1)x + 2m – = (1) Giải phương trình (1) m = 2 Tìm giá trị tham số m để x = -2 nghiệm phương trình (1) Câu III (1,5 điểm) Hai người làm chung công việc sau 30 phút họ làm xong cơng việc Nếu người thứ làm giờ, sau người thứ hai làm hai người làm 75% cơng việc Hỏi người làm sau xong công việc? (Biết suất làm việc người không thay đổi) Câu IV (3,5 điểm) Cho nửa đường tròn tâm O đường kính AB Điểm H cố định thuộc đoạn thẳng AO (H khác A O) Đường thẳng qua điểm H vng góc với AO cắt nửa đường tròn (O) C Trên cung BC lấy điểm D (D khác B C) Tiếp tuyến nửa đường tròn (O) D cắt đường thẳng HC E Gọi giao điểm AD HC Chứng minh tứ giác HBD nội tiếp đường tròn Chứng minh tam giác DE tam giác cân Gọi F tâm đường tròn ngoại tiếp tam giác CD Chứng minh góc ABF có số đo khơng đổi D thay đổi cung BC (D khác B C) …… Hết …… 10 KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2008 – 2009 Môn thi: TỐN Thời gian: 120 phút (khơng kể thời gian giao đề) SỞ GIÁO DỤC VÀ ĐÀO TẠO LẠNG SƠN Đề số 32 Bài 1: (2 điểm) Tính giá trị biểu thức: a) b) Bài 2: (1 điểm) Giải phương trình: x4 + 2008x3 – 2008x2 + 2008x – 2009 = Bài 3: (1 điểm) Giải hệ phương trình: Bài 4: (2 điểm) Một đội cơng nhân hồn thành cơng việc, cơng việc định mức 420 ngày cơng thợ Hãy tính số cơng nhân đội, biết đội tăng thêm người số ngày để hồn thành cơng việc giảm ngày, giả thiết suất công nhân Bài 5: (4 điểm) Cho tam giác ABC vng A có AB > AC, đường cao AH Trên nửa mặt phẳng bờ BC chứa điểm A, vẽ nửa đường tròn đường kính BH cắt AB E, nửa đường tròn đường kính HC cắt AC F a) Chứng minh tứ giác AEHF hình chữ nhật b) Chứng minh tứ giác BEFC tứ giác nội tiếp c) Chứng minh AE.AB = AF.AC 33 d) Gọi O giao điểm AH EF Chứng minh: p < OA + OB + OC < 2p, 2p = AB + BC + CA - HẾT - SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH ĐỊNH KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2008 – 2009 Môn thi: TỐN Thời gian: 120 phút (khơng kể thời gian giao đề) Đề số 33 Câu 1: (2,0đ) 1) Giải phương trình: 2x + = 2) Giải hệ phương trình sau: 3) Cho phương trình ẩn x sau: x2 – 6x + m + = a) Giải phương trình m = b) Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn Câu 2: (1,5đ) Rút gọn biểu thức sau: a) b) c) Câu 3: (2,0đ) Một ruộng hình chữ nhật có chu vi 300m Tính diện tích ruộng, biết chiều dài giảm lần chiều rộng tăng gấp lần chu vi ruộng khơng đổi Câu 4: (3,0đ) Cho đường tròn tâm O, bán kính R dường thẳng d cố định không giao Từ điểm M thuộc d, kẻ hai tiếp tuyến MA, MB với đường tròn (O, R) (A, B tiếp điểm) a) Gọi giao điểm MO cung nhỏ AB đường tròn (O, R) Chứng minh tâm đường tròn nội tiếp tam giác MAB 34 b) Cho biết MA = , tính diện tích hình phẳng giới hạn hai tiếp tuyến MA, MB cung nhỏ AB đường tròn (O, R) c) Chứng minh M thay đổi d đường thẳng AB ln qua điểm cố định Câu 5: (1,5 điểm) a) Cho Chứng minh rằng: A = b) Cho x, y, z ba số dương Chứng minh rằng: c) Tìm a∈ N để phương trình x2 – a2x + a + = có nghiệm nguyên - HẾT SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT PH THỌ NĂM HỌC 2017 – 2018 Mơn thi: TỐN Thời gian: 120 phút (không kể thời gian giao đề) Đề số 34 Câu (1,5 điểm) a) Giải phương trình: b) Giải hệ phương trình: Câu (2,5 điểm) Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình hai điểm A, B thuộc (P) có hồnh độ a) Tìm tọa độ A, B b) Viết phương trình đường thẳng (d) qua hai điểm A,B c) Tính khoảng cách từ O (gốc tọa độ) đến đường thẳng (d) Câu (2,0 điểm) Cho phương trình: a) Giải phương trình với (m tham số) b) Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn điều kiện : Câu (3,0 điểm) Cho tứ giác ABCD nội tiếp đường tròn (O; R) Gọi giao điểm AC BD Kẻ H vng góc với AB; K vng góc với AD ( ) 35 a) b) c) d) rằng: Chứng minh tứ giác AH K nội tiếp đường tròn Chứng minh A C = B D Chứng minh tam giác H K tam giác BCD đồng dạng Gọi S diện tích tam giác ABD, S’ diện tích tam giác H K Chứng minh Câu (1,0 điểm) Giải phương trình : Hết KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2017 – 2018 Môn thi: TỐN Thời gian: 120 phút (khơng kể thời gian giao đề) SỞ GIÁO DỤC VÀ ĐÀO TẠO TIỀN GIANG Đề số 35 Bài I (3,0 điểm) Giải hệ phương trình phương trình sau: a/ b/ Rút gọn biểu thức: Cho phương trình (có ẩn số x) a/ Chứng minh phương trình cho ln có hai nghiệm x1, x2 với m b/ Cho biểu thức Bài II (2,0 điểm) Tìm giá trị m để B = Cho parabol đường thẳng 1/ Vẽ đồ thị (P) (d) hệ trục tọa độ 2/ Bằng phép tính, xác định tọa độ giao điểm A B (P) (d) Tính độ dài đoạn thẳng AB Bài III (1,5 điểm) 36 Hai thành phố A B cách 150km Một xe máy khởi hành từ A đến B, lúc ơtơ khởi hành từ B đến A với vận tốc lớn vận tốc xe máy 10km/h Ơtơ đến A 30 phút xe máy đến B Tính vận tốc xe Bài IV (2,5 điểm) Cho nửa đường tròn tâm O, đường kính AB = 2R Gọi M điểm cung AB, N điểm thuộc cung MB (N khác M B) Tia AM AN cắt tiếp tuyến B nửa đường tròn tâm O C D Tính số đo Chứng minh tứ giác MNDC nội tiếp đường tròn Chứng minh AM.AC = AN.AD = 4R2 Bài V (1,0 điểm) Cho hình nón có đường sinh 26cm, diện tích xung quanh Tính bán kính đáy thể tích hình nón cm2 HẾT -SỞ GIÁO DỤC VÀ ĐÀO TẠO BẮC NINH ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC: 2017– 2018 Mơn thi: Tốn Thời gian: 120 phút (Khơng kể thời gian giao đề) Đề số 36 Câu I (2,5đ) Giải hệ phương trình Rút gọn biểu thức với Câu II (2,0đ) Cho phương trình với , tham số Giải phương trình với Chứng minh phương trình Gọi hai ln có hai nghiệm phân biệt với hai nghiệm phương trình , nhận , lập phương trình bậc nghiệm Câu III (1,0đ) Giải toán cách lập phương trình, hệ phương trình Một nhóm gồm 15 học sinh (cả nam nữ) tham gia buổi lao động trồng Các bạn nam trồng 30 cây, bạn nữ trồng 36 Mỗi bạn nam trồng số bạn nữ trồng số Tính số học sinh 37 nam số học sinh nữ nhóm, biết bạn nam trồng nhiều bạn nữ Câu IV (3,5đ) Cho đường tròn (O) đường kính AC Trên bán kính OC lấy điểm B tuỳ ý (B ≠ O, C) Gọi M trung điểm đoạn AB Qua M kẻ dây cung DE vng góc với AB CD cắt đường tròn đường kính BC Chứng minh tứ giác BMD nội tiếp 267769296 Chứng minh tứ giác ADBE hình thoi 196524928 Chứng minh B // AD 196524840 Chứng minh , B, E thẳng hàng Chứng minh M tiếp tuyến đường tròn đường kính BC Câu (1,0 điểm) Giải phương trình ( Cho bốn số thực dương thỏa mãn Tìm giá trị nhỏ biểu thức Hết SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH DƯƠNG ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC: 2017– 2018 Môn thi: Tốn Thời gian: 120 phút (Khơng kể thời gian giao đề) Đề số 37 Bài : (1 điểm) Rút gọn biểu thức sau: 1) ; 2) Bài 2: (1.5 điểm) Cho parabol (P): 1) Vẽ đồ thị (P); đường thẳng (d): 2) Viết phương trình đường thẳng xúc (P) biết song song (d) tiếp Bài :(2,5 điểm) 1) Giải hệ phương trình Tính với x, y vừa tìm 2) Cho phương trình (m tham số) a) Giải phương trình (1) với m = 1; b) Tìm giá trị tham số m để phương trình (1) có hai nghiệm phân biệt thỏa điều kiện 38 Bài 4:(1,5 điểm) Hai đội công nhân đắp đê ngăn triều cường Nếu hai đội làm ngày xong việc Nếu làm riêng đội hồn thành cơng việc chậm đội ngày Hỏi làm riêng đội đắp xong đê ngày? Bài 5: (3,5 điểm) Ta giác AMB cân M nội tiếp đường tròn (O; R) Kẻ MH vng góc AB (H∈ AB), MH cắt đường tròn N Biết MA = 10cm, AB = 12cm a) Tính MH bán kính R đường tròn; b) Trên tia đối tia BA lấy điểm C MC cắt đường tròn D, ND cắt AB E Chứng minh tứ giác MDEH nội tiếp chứng minh hệ thức sau: ; c) Chứng minh NB tiếp xúc với đường tròn ngoại tiếp tam giác BDE …………Hết……… SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐÀ NẴNG KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2017 – 2018 Mơn thi: TỐN Thời gian: 120 phút, không kể thời gian giao đề Đề số 38 Bài 1: (1,5điểm) a) Tính A = b) Rút gọn biểu thức B = Bài 2: (2,0 điểm ) a) Giải hệ phương trình : b) Giải phương trình : Bài 3: ( 2,0 điểm ) Cho hai hàm số y = x2 y = mx + ,với m tham số a) Khi m = ,tìm tọa độ giao điểm hai đồ thị hai hàm số 39 b) Chứng minh với giá trị m ,đồ thị hai hàm số cho cắt hai điểm phân biệt A1(x1 ;y1) A2(x2 ;y2)Tìm tất giá trị m cho (y1)2 + (y2)2 = 72 Bài :(1 điểm ) Một đội xe cần vận chuyển 160 gạo với khối lượng xe chở Khi khởi hành bổ sung thêm xe nên xe chở dự định lúc đầu gạo (khối lượng xe chở nhau) Hỏi đội xe ban đầu có ? Bài : (3,5 điểm ) Cho nửa đường tròn tâm O đường kính AB C điểm nửa đường tròn (C khác A,B) Trên cung AC lấy D (D khác A C) Gọi H hình chiếu vng góc C lên AB E giao điểm BD CH a) Chứng minh ADEH tứ giác nội tiếp b) Chứng minh AB AC = AC.AH + CB.CH c) Trên đoạn OC lấy điểm M cho OM = CH Chứng minh C thay đổi đường tròn cho M chạy đường tròn cố định -Hết -SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2017 – 2018 Mơn thi: TỐN Thời gian: 120 phút, khơng kể thời gian giao đề Đề số 39 Câu (2,0 điểm) Giải phương trình hệ phương trình sau: 1) 2) Câu (2,0 điểm) 1) Cho hai đường thẳng (d): để (d) (d’) song song với 2) Rút gọn biểu thức: (d’): với Tìm m Câu (2,0 điểm) 1) Tháng đầu, hai tổ sản xuất 900 chi tiết máy Tháng thứ hai, cải tiến 40 kỹ thuật nên tổ vượt mức 10% vả tổ vượt mức 12% so với tháng đầu, vậy, hai tổ sản xuất 1000 chi tiết máy Hỏi tháng đầu tổ sản xuất chi tiết máy ? 2) Tìm m để phương trình: (x ẩn, m tham số) có hai nghiệm x1, x2 thỏa mãn Câu (3,0 điểm) Cho đường tròn tâm O, bán kính R Từ điểm M ngồi đường tròn, kẻ hai tiếp tuyến MA MB với đường tròn (A, B tiếp điểm) Qua A, kẻ đường thẳng song song với MO cắt đường tròn E (E khác A), đường thẳng ME cắt đường tròn F (F khác E), đường thẳng AF cắt MO N, H giao điểm MO AB 1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn 2) Chứng minh: MN2 = NF.NA vả MN = NH 3) Chứng minh: Câu (1,0 điểm) Cho x, y, z ba số thực dương thỏa mãn: nhỏ biểu thức: Tìm giá trị -Hết - SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ N I KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN Năm học 1989 - 1990 Môn thi : Tốn Thời gian: 150 phút (Khơng kể thời gian giao đề) Đề số 40 Bài 1: Xét biểu thức a) Rút gọn A b) Tìm giá trị x để A = -1/2 Bài 2: Một ô tô dự định từ A đến B với vận tốc 50 km/h Sau 2/3 quãng đường với vận tốc đó, đường khó nên người lái xe phải giảm vận tốc 10 km quãng đường lại Do tơ đến B chậm 30 phút so với dự định Tính quãng đường AB Bài 3: Cho hình vng ABCD điểm E cạnh BC Tia Ax ⊥ AE cắt cạnh CD kéo dài F Kẻ trung tuyến A Δ AEF kéo dài cắt cạnh CD K Đường thẳng qua E song song với AB cắt A G 41 a) Chứng minh AE = AF b) Chứng minh tứ giác EGFK hình thoi c) Chứng minh hai tam giác AKF , CAF đồng dạng AF2 = KF.CF d) Giả sử E chạy cạnh BC Chứng minh EK = BE + điều kiện chu vi Δ ECK không đổi Bài 4: Tìm giá trị x để biểu thức đạt giá trị nhỏ tìm giá trị … Hết … SỞ GIÁO DỤC VÀ ĐÀO TẠO THÁI BÌNH KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN Năm học: 1988 - 1989 Mơn thi : Tốn Thời gian: 150 phút (Không kể thời gian giao đề) Đề số 41 Bài 1: Cho biểu thức a) Rút gọn P b) Chứng minh P < với giá trị x ≠ ±1 Bài 2: Hai vòi nước chảy vào bể sau 48 phút đầy Nðu chảy thời gian lượng nước vòi 2/3 lương nước vòi chảy Hỏi vòi chảy riêng sau đầy bể Bài 3: Chứng minh phương trình : có hai nghiệm x1 = x2 = 42 Bài 4: Cho đường tròn tâm O đường kính AB = 2R điểm M di động nửa đường tròn ( M khơng trùng với A, B) Người ta vẽ đường tròn tâm E tiếp xúc với đường tròn (O) M tiếp xúc với đường kính AB Đường tròn (E) cắt MA, MB điểm thứ hai C, D a) Chứng minh ba điểm C, E, D thẳng hàng b) Chứng minh đường thẳng MN qua điểm cố định K tích KM.KN không đổi c) Gọi giao điểm tia CN, DN với KB, KA P Q Xác định vị trí M để diện tích Δ NPQ đạt giá trị lớn chứng tỏ chu vi Δ NPQ đại giá trị nhỏ d) Tìm quỹ tích điểm E …… Hết …… SỞ GIÁO DỤC VÀ ĐÀO TẠO NINH BÌNH KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN Năm học: 1990 - 1991 Mơn thi : Tốn Thời gian: 150 phút (Khơng kể thời gian giao đề) Đề số 42 Bài : Cho biểu thức a) Tìm điều kiện x để P có nghĩa rút gọn P b) Tìm giá trị nguyên x để biểu thức Bài 2: a) Giải phương trỡnh x4 – 4x3 – 2x2 + 4x + = b) Giải hệ 43 nhận giá trị nguyên Bài 3: Trong mặt phẳng tọa độ Oxy cho (P) có phương trình Gọi (d) đường thẳng qua điểm (0; - 2) có hệ số góc k a) Viết phương trình đường thẳng (d) Chứng minh (d) cắt (P) hai điểm phân biệt A B k thay đổi b) Gọi H, K theo thứ tự hình chiếu vng góc A, B lên trục hồnh Chứng minh tam giác HK vuông Bài 4: Cho (O; R), AB đường kính cố định Đường thẳng (d) tiếp tuyến (O) B MN đường kính thay đổi (O) cho MN khơng vng góc với AB M ≠ A, M ≠ B Các đường thẳng AM, AN cắt đường thẳng (d) tương ứng C D Gọi trung điểm CD, H giao điểm A MN Khi MN thay đổi Chứng minh rằng: a) Tích AM.AC không đổi b) Bốn điểm C, M, N, D thuộc đường tròn c) Điểm H ln thuộc đường trũn cố định d) Tâm J đường tròn ngoại tiếp tam giác H B ln thuộc đường thẳng cố định Bài 5: Cho hai số dương x, y thõa mãn điều kiện x + y = Hãy tìm trị nhỏ biểu thức …… Hết …… SỞ GIÁO DỤC - ĐÀO TẠO PHÚ YÊN ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH LỚP 10 THPT CHUN Năm học: 2009 - 2010 Mơn thi: TỐN Thời gian: 150 phút (không kể thời gian phát đề) Đề số 43 Câu 1.(4,0 điểm) Cho phương trình x4 + ax3 + x2 + ax + = 0, a tham số a) Giải phương trình với a = b) Trong trường hợp phương trình có nghiệm, chứng minh a2 > Câu 2.(4,0 điểm) a) Giải phương trình: b) Giải hệ phương trình: 44 Câu 3.(3,0 điểm) Tìm tất số nguyên x, y, z thỏa mãn : 3x2 + 6y2 +2z2 + 3y2z2 -18x = Câu 4.(3,0 điểm) a) Cho x, y, z, a, b, c số dương Chứng minh rằng: b) Từ suy : Câu 5.(3,0 điểm) Cho hình vng ABCD tứ giác MNPQ có bốn đỉnh thuộc bốn cạnh AB, BC, CD, DA hình vng a) Chứng minh SABCD (MN + NP + PQ + QM) b) Xác định vị trí M, N, P, Q để chu vi tứ giác MNPQ nhỏ Câu 6.(3,0 điểm) Cho đường tròn (O) nội tiếp hình vng PQRS OA OB hai bán kính thay đổi vng góc với Qua A kẻ đường thẳng Ax song song với đường thẳng PQ, qua B kẻ đường thẳng By song song với đường thẳng SP Tìm quỹ tích giao điểm M Ax By …… HẾT…… SỞ GIÁO DỤC - ĐÀO TẠO NINH BÌNH KỲ THI TUYỂN SINH LỚP 10 THPT CHUN Mơn thi: TỐN Năm học: 2006 – 2007 (Thời gian: 120 phút (Không kể thời gian giao đề) Đề số 44 Câu (2đ) Cho phương trình bậc hai ẩn x, tham số m: x2 + 2mx – 2m – = a) Giải phương trình (1) với m = -1 (1) b) Xác định giá trị m để phương trình (1) có hai nghiệm x1, x2 cho nhỏ Tìm nghiệm phương trình (1) ứng với m vừa tìm Câu (2,5đ) 45 Cho biểu thức A= a) Rút gọn biểu thức A b) Tìm giá trị nguyên x để biểu thức A nhận giá trị nguyên Giải phương trình: Câu (1,5đ) Một người xe đạp từ A tới B, quãng đường AB dài 24 km Khi từ B trở A người tăng vận tốc thêm km/h so với lúc đi, thời gian thời gian 30 phút Tính vận tốc xe đạp từ A tới B Câu (3đ) Cho ABC nhọn nội tiếp (O) Giả sử M điểm thuộc đoạn thẳng AB (M A, B); N điểm thuộc tia đối tia CA cho MN cắt BC trung điểm MN Đường tròn ngoại tiếp AMN cắt (O) điểm P khác A 1) C MR tứ giác BM P CNP nội tiếp 2) Giả sử PB = PC Chứng minh ABC cân Câu (1đ) Cho , thỏa mãn x2 + y2 = Tìm GT N : … Hết … SỞ GIÁO DỤC VÀ ĐÀO TẠO KHÁNH HÒA ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN NĂM HỌC: 2006 – 2007 Mơn thi: Tốn Thời gian: 120 phút (Không kể thời gian giao đề) Đề số 45 Bài 1: (2đ) a) Tính biểu thức sau: 46 b) Tìm x, y, z cho biết: x2 + 5y2 + 5z2 + ≤ 4xy + 4yz + 2z Bài 2: (2đ) Cho phương trình bậc hai: x2 – mx + m + = (1) a) Tìm m để phương trình (1) có hai nghiệm trái dấu b) Tìm m để tổng bình phương nghiệm phương trình (1) 10 Bài 3: (4đ) Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn cố định (O; R), góc Vẽ hai đường cao BE CF (E∈ AC, F∈ AB) H trực tâm tam giác ABC Gọi M K trung điểm của cạnh BC đoạn AH a) Tính số đo góc Tính đoạn EF theo R b) Chứng minh tứ giác MFKE hình vng gọi S tâm c) Giả sử cạnh BC cố định (O) Chứng minh A di động cung lớn BC đường tròn (O) S di động đường cố định d) Chứng minh đường thẳng EF, KM OH đồng quy Bài 4: (1,5đ) a) Phân tích thành nhân tử biểu thức: T = x2 + 2y2 + 3xy – 4x – 5y + b) Giải hệ phương trình: ………… HẾT ………… 47 ... - SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2 010 - 2011 Mơn thi : Tốn Thời gian: 120 phút (Không kể thời gian giao đề) Đề số 10 Câu I (3,0 điểm) Cho biểu thức A... Hết SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2 010 - 2011 Mơn thi : Tốn Thời gian: 120 phút (Không kể thời gian giao đề) Đề số Câu I (3,0 điểm) Cho biểu thức A... thức: Hết SỞ GIÁO DỤC - ĐÀO TẠO PH THỌ KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2009 – 2 010 Môn thi: Tốn Thời gian: 120 phút (Khơng kể thời gian giao đề) Đề số 14 Câu (2đ) a) Giải phương trình 2x

Ngày đăng: 22/03/2020, 18:52

TỪ KHÓA LIÊN QUAN

w