1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Electric circuit theory: Magnetically coupled circuits - Nguyễn Công Phương

47 30 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 47
Dung lượng 386,47 KB

Nội dung

Lecture Electric circuit theory - Magnetically coupled circuits presents the following content: Mutual inductance, Dot convention, analysis of magnetically coupled circuits, energy in a coupled circuit, transformers.

Nguyễn Công Phương Electric Circuit Theory Magnetically Coupled Circuits Contents I Basic Elements Of Electrical Circuits II Basic Laws III Electrical Circuit Analysis IV Circuit Theorems V Active Circuits VI Capacitor And Inductor VII First Order Circuits VIII.Second Order Circuits IX Sinusoidal Steady State Analysis X AC Power Analysis XI Three-phase Circuits XII Magnetically Coupled Circuits XIII.Frequency Response XIV.The Laplace Transform XV Two-port Networks Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn Magnetically Coupled Circuits Mutual Inductance Dot Convention Analysis of Magnetically Coupled Circuits Energy in a Coupled Circuit Transformers Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn Mutual Inductance (1) i (t ) + +  v – – N turns di d di d Faraday’s law: v  N L N dt di dt dt d LN di Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn Mutual Inductance (2) i1 (t ) L1 12 + + 11 L2 – + v1 – – N1 turns di1 v2  M 21 dt N turns 1  11  12 d1 v1  N1 dt d1 di1 di1  N1  L1 di1 dt dt d12 v2  N dt d12 di1 di1  N2  M 21 di1 dt dt Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn Mutual Inductance (3) i1 (t ) L1 12 v2 – + L2 21 i2 (t ) 22 v2 + v1 N turns + – – di2 v2  L dt di1 dt – – L1 di2 dt v2  M 21 – + v1 N1 turns v1  M 12 di1 v1  L dt + + 11 L2 N1 turns N turns Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn Mutual Inductance (4) i1 (t ) L1 12 + + 11 L2 + v1 v2 – – – N turns N1 turns i1 (t )  v1  di1 v2  M 21 dt 12  11 v2  Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn Mutual Inductance (5) i1 (t )  v1  i1 (t )  v1  12 i1 (t )  11 di1 v2  M dt  12 v1  i1 (t )  11   di1 v v2   M dt   12  11 di1 dt v2   M  12  11 Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn di1 v2  M dt  Magnetically Coupled Circuits Mutual Inductance Dot Convention Analysis of Magnetically Coupled Circuits Energy in a Coupled Circuit Transformers Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn Dot Convention (1) + L1 L2 v2 – – • If a current leaves a dotted terminal of one coil, it induces a negative voltage at the dotted terminal of the second coil i1 (t ) M + • If a current enters a dotted terminal of one coil, it induces a positive voltage at the dotted terminal of the second coil di1 v2  M dt Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 10 Magnetically Coupled Circuits Mutual Inductance Dot Convention Analysis of Magnetically Coupled Circuits Energy in a Coupled Circuit Transformers Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 33 Transformers (1) If k   M  L1 L2  N1 L2 n L1 N2 I1 I2 + + v N V N    n    n V1 v1 N1 V1 N1 N1 – d v1  N1 dt d v2  N dt V2  V1 L2 V1  nV1 L1 p1  p2  v1i1  v2i2  N2 V2 –  V1  j L1I1  j MI   V2   j L1I  j MI1  V2  i2 v1 I N     i1 v2 I1 N n Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 34 Ex Transformers (2) Given an ideal step-down transformer rated at 22/0.4 kV, 1000 turns on the primary side Find: a) The turn ratio? b) The number of turns on the secondary side? Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 35 Transformers (3) V2 V1 N2 V2 N I N1 V2 ;   N1 I1 N V1 I1 I2 V1 N1 N2 V2 – – – V1  j L1I1  j MI  V2  j L1I  j MI1 –  V2 N V  N n  1   I   N1    I1 N2 n N1 + – –  V2 N V  N n  1   I  N1   I1 N n N2 +  V1  j L1I1  j MI   V2   j L1I  j MI1 M  L1L2 p1  p2 N1 + V2 V1 I2 + N2 I1 + N1 I2 + + + V1 I1 – I2 – I1 N I N V2  2;  N1 I1 N2 V1 Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 36 Transformers (4) I2 V2 V2 I2   n;  V1 I1 n I1 I2 V1 N1 N2 V2 – – – – – – n N2 – I1  N1 + + V1  n; V1 + + + I2 + + + • If v1 & v2 are both positive or both N1 N2 V2 V1 negative at the dotted terminals, V2 I use +n  n;  V1 I1 n Otherwise, use –n I1 I2 • If i1 & i2 both enter into or both N1 N2 leave the dotted V2 V1 terminals, use –n Otherwise, use +n V I I1 – I1 V2 I   n;   n V1 I1 Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 37 Transformers (5) – I1 + Z2 – – I1 – b I2 + Zin a Z2 – b + – Z2  Zin  n E1 + V2  Z 2I R1 a I2 + I1  nI + Vab V1 Zin   I1 I1 V1  V2 / n I1 Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn R1 a E1 Zin b 38 Transformers (7) I1  V2  R2I  I1 I2 + + V1 N1 N2 V2 – – 6I1  V1  100 0o   I1  5V1  100    I1  I1  10 A  I   A V2 – R1I1  V1  E1 E1 V1 R2 – – Method R1 + E1  100 0o V; n  5; R1  6; R2  100 ? + Given an ideal transformer, find currents if I2 + Ex V2 I  n;  V1 I1 n Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 39 Transformers (8) Ex I1 I2 Given an ideal transformer, find currents if + E1  100 0o V; n  5; R1  6; R2  100 ? – Method R2 R1 E1 R2 100 Zin    4 n 25 I1 + 100 E1 I1    10 A R1  Z in  – I1 I1  n   I2   A I2 Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn R1 Zin E1 40 Transformers (9) V1 V2 R2 – – E1 I2 + – Z  j 20 ? R1 + Given an ideal transformer, find currents if E1  100 0o V; n  5; R1  6; R2  100; I1 + Ex R1I1  V1  Z3 ( I1  I )  E1 + + Z3 I1  I  V2  R2I  Z3 ( I1  I )   I1   o I  V  j 20 I   100 I1 I2    5     5V  100  I1  j 20  I  I1   N1 N2 1   V2 V  5   I1  3.79  j 4.85A V2 I I1  n;   I   1.90  j 2.43A V1 I1 n Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 41 – – Transformers (10) Ex R4 I1 I2 + R2 R1 E1 – Z3 Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 42 Transformers (11) I1 V1 + N2 V2 – I1 N2 p1  p2   I N1  N I2 N1 – V1 N1  N   N1 V2 + d v1  ( N1  N ) dt d v2  N dt + I1 V1 – Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn N1 N2 V2 – V1 I1 N1  N N1  ;  V2 N1  N I N1 + I2 43 Transformers (12) I1 I2 V1 90 turns – – V1 100  V2    10 0o V 10 10 o V2 10  I2    0.40  j 0.80 A Z  j10 E1 10 turns + o + V1 N1  N 10  90    10 V2 10 N1 + Given an ideal autotransformer, find currents if E1  100 0o V; Z   j10 ? I3 V2 Z2 – Ex I1 N2 90    0.9  I1  0.9I  0.36  j 0.72 A I N1  N 10  90 I  I1  I  0.040  j 0.080 A Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 44 Transformers (13) 1: n + + I primary I secondary Vprimary Vsecondary – – Vsecondary  nVprimary I secondary  I primary n Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 45 Transformers (14) I secondary I primary + + Vprimary Vsecondary – – Vsecondary  nVprimary I secondary  I primary n Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 46 Transformers (15) • Applications: – – – – Power supply transformers Transformers in power systems Isolation applications Impedance matching Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 47 ... Three-phase Circuits XII Magnetically Coupled Circuits XIII.Frequency Response XIV.The Laplace Transform XV Two-port Networks Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn Magnetically. .. sites.google.com/site/ncpdhbkhn Magnetically Coupled Circuits Mutual Inductance Dot Convention Analysis of Magnetically Coupled Circuits Energy in a Coupled Circuit Transformers Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn... 28.46 Magnetically Coupled Circuits - sites.google.com/site/ncpdhbkhn 30 Magnetically Coupled Circuits Mutual Inductance Dot Convention Analysis of Magnetically Coupled Circuits Energy in a Coupled

Ngày đăng: 13/02/2020, 02:12